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Introduction
This paper is concerned with relations in general categories. MacLane [1],

Puppe [2], Hilton [3] considered the abelian case; namely, the categories of
relations extending abelian categories. In order to develop a general theory
which still includes the classical case, we need some structure to insure the
existence of a good factorization of morphisms; it seems that the bicategory
structure in the sense of Isbell [4], Semadeni [5] is adequate. By imposing
this structure, we include the classical counterpart in the form of categories
with images. Moreover, since a category can generally be made into a bi-
category in several ways, the choice may be of importance. To obtain a reas-
onable system it is likely that only few conditions on the chosen type of cate-
gory (finitely complete [6] bicategories) may be relaxed.
For completeness some facts about bicategories are established. Relations

are introduced and composition defined using the set-theoretical relations as a
natural model. Associativity is shown to be false inthegeneral case. Theasso-
ciative case is characterized bya categorical form of the Ore conditions in semi-
groups and rings. However, in the general exposition associativity is not as-
sumed and it seems that even the nonassociative case can be handled for some
purposes. Functors and extensions are considered. In the last section con-
gruences are introduced and a regularity property is proved for congruences
with respect to group-like structures.
The content of this paper was essentially a part of the Ph.D. thesis of the

author at the Hebrew University in Jerusalem. The author enjoys the op-
portunity to express thanks to his supervisor Professor S. A. Amitsur.

We denote the class of morphisms A -- B in by (A, B). denotes the
class of objects of . (Co-) Retractions are (left-) right-invertible morphisms.
A product of A, B in is usually denoted (A B, r, r) and the unique
morphism " into A X B such that r , r, , is denoted by {, }. We
denote a pullback

u

by Sv, u,,$.
(0.1) A bicategory is a category with a structure consisting of two sub-

categories and $ such that the elements of are monics, those of $ are epics;
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n $ is the subcategory of isomorphisms in ; every morphism a in is fac-
torizable into a’ ’’a a, a e , e $ in an essentially unique way, namely if
with , ’ , , ’ e $, then there is an invertible e that satisfies e ’, e- ’It follows that a e if and only if the epic a’, ia any i-s-factorization of a, is
an isomorphism.

(0.2) If a then .
For, a (a) (8) with , a’ is an i-s-factorization of a, so , is

invertible, therefore ’ is a coretraction; but f* is epic, hence invertible. In
particular the class of coretractions is included in .

In the general case the monics of are not necessarily images. The i-s-
factorization coincides with image-factorization if and only if is the class of
monics. The following lemma will show that our theory includes the "clas-
sical" case.

(0.3) If is a category with images and with pullbacks and finite products
then there is a bicategorical structure on with the class of monics as .

Proof. If such a structure exists then i-s- and image-factorizations are
identical. If a ’ and i is an image of a, then an image of ’ must be in-
vertible. Thus we have to define $ as the class of morphisms with invertible
images. Then e $ if and only if a with monic implies that is in-
vertible. In particular n $ is the class of isomorphisms. The uniqueness of
i-s-factorization follows from the property of images.
The elements of $ are epics: if e $ and aa a and if

$ v, u, {1, a’}, {1, a} $

is a pullback, then v u and it is monic; but {1, a}a 1, a’}a, so there is
that satisfies u , hence u is invertible and by au a’u we obtain
To show that $ is a subcategory let a’a with a’ e $ and monic and

we have to show that is invertible. Let , q,/, a’ $ and by’ =/v there
is a satisfying . But is monic, hence invertible and so a’ =/ (-1)
and is invertible.

(0.4) Let b, q, v, be a pullbac in a bicategory; if then b

Proof. By } ,@ there is an v for which (}) (@) and denoting
f e() we have () . Hence there is a ), that satisfies
and by cancelling we obtain 1 ’. But is monic (since is monic),
so ’ is a monic retraction, hence invertible. Thus e .

Consider X -. X’ in t. If X A, X’ X A exist, then

Hence X 1 e by (0.4). Applying twice this result we conclude

(0.5) If , then X e . (It holds even without pullbacks [4; 2.3].)
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For any , t with common codomain Z in e and with , o, t, we have

where " t. Since {lz, lz} is a coretraction, it follows by (0.4) that

(0.6) If , o, v, then {, } .
I. Relations

(1.1) Let ( be a bicategory with finite products. We say that [R, p,
with p e (R, A ), ps e e (R, B) is a relation from A to B in (, provided
{p., p} .
Given relations [R, p, p], [S, ,] from A to B, we declare [R, p, p]

[S, z, z] if an isomorphism e (R, S) exists such thatz p ands
For A, B e e we denote by te (A, B) the class of relations from A to B in

It is not necessarily a set and it is not empty since [A B, r, v] e te (A, B).
For different pairs of objects in the respective classes of relations are disjoint
(since relations are introduced as some "triples" and not as subobjects of
products ).

(1.2) For a e (A, B) the morphism 1, =} A --. A B is in (it is a
coretraction since r{l, a} 1), hence [A, 1, a] e te(A, B). We shall
denote this relation by r and call it the graph of a.
A relation [R, p, p] is a graph if and only if p is invertible in and in this

case [R, p, p]
The correspondence between morphisms in (A, B) and their graphs in
e (A, B) is one-to-one. It is surjective if and only if every morphism having
A as codomain is invertible. Note that changes in the bicategorical structure
of do not affect the class of graphs, since always includes the coretractions.
The graphr will be cMled the diagal ofA and denoted by

(1.3) We introduce the following natural partial order into each e (A, B).
[R, p, p) [S, z, z] if there is a R S for which z
(hence e ).
[A X B] is the greatest element of e (A, B). Different graphs cannot be

compared by this partial order.

(1.4) With [R, p, p] e e (A, B) we associate the relation

[R, p, p,] e e (B, A
denoting it [R]- and naming it the converse of [R]. The converse mapping is an
order-isomorphism between the classes e (A, B) and e (B, A ).

(1.5) Now we add the assumption that e has pullbacks also, thus is a
finitely complete [6] bicategory. We define composition of relations.

Let JR, px, pr] ere (X, Y), [S, r, z] ere (Y, Z). We construct a pull-
back $ , o, at, pr , and we/-s-factorize the morphism {px o, az }, so

{px o, rz } {x z} M A C
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with {x, z} e , e $. Hence {M, x, tz} e (Re (X, Z), and we call it the
composite of the two relations, writing simply [M] [S][R].

By the definition of equality (1.1) composition is obviously well-defined.
Let us use the term near-category for a system subiect to the axioms of cate-

gory except the associativity of composition.

(1.6) With the defined composition the class (Re of relations over is a near-
category with (Re 1 and with the relations as morphisms. The diagonals
are the identities of this near-category. F -- (R which takes each a to its graph
F is a covariant embedding functor which is identity on e !"

Strictly speaking another assumption is not generally fulfilled, namely the"
classes (Re (-, -) are not always sets, but this assumption about categories is not
important in the present paper. However, we note that the assumption holds
for (Re if and only if is locally small in the sense of [6].
The converse operator [R] -- [R]- is an anti-isomorphism of (Re with itself,

showing that the near-category (Re is dual to itself. F- - (Re which takes
each to F: is a contravariant embedding.
We remark that since we have pullbacks, we have finite intersections in .

An intersection of monics belonging to is in . It follows that each (Re (-, -)
has finite intersections.

(1.7) For A -- X, 7 A -- Y the composition 1 r- is defined and it is a
relation from X to Y represented by the components of {, 7} .

(1.8) For X A, 7 Y --* A the composition r -r is relation from
X to Y and by (0.6) it follows that [., ] where $ , , 7, is a
pullback.

A consequence of (1.7) is that (Re is generated by the graphs and their con-
verses"

(1.9) TttEOREM. JR, pA, pB] FpB F-A for every [R, p. p] e (R (A, B).

Proof. {pA p} e .
This factorization is not necessarily unique; if [R, p, p] F I’, then a
e $ exists such that a p , p ’, and " is not necessarily invertible.

(1.10) THEOREM. For [R, p., pB] e (R (A, B) we have" [R][R]-

_
h/f

and only if p. is monic" [R]-[R] _> A if and only if p. e $.

Proof. If p is monic, then 1, 1, p, p $, hence [R][R]- is obtained
by factorizing {p, p}. Since {p, p}e (by (0.2), due to r{p, p} p),
it follows that {p, PB}P is an i-s-factorization of {p, pB}. Thus

[R][]- [., , ] _< [B, , ].
Conversely, let

[R][R]- [M, ta, ]

_
/.
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Thenl . If ,,p ,p $ then
so {p, p} {p, p}. It follows that since {p, p} is monic.
Finally p is monic since p 7 p implies the existence of a k that satisfies
k % ,thus, .
Now let p e $. Forming ’, t, p, p and/-s-factorizing

we have [R]-[R] [., v, .]. By pB 1R p 1R there is a k’ such that q,’k’
1R k’k’. This implies {pa, pa} {p ’, p ’}k’, hence {1, l}p
{, }’k’ and here the left-hand side is/-s-factorized since pa e $. It follows
that{l,l} {,}.

Finally suppose [R]-[R] > A Then v are retractions. Butp p’
and ’ e $, so p ’ e $, hence p e $ (0.2).

(1.11) COIOLLAaV. [R]-[R] A if and only if p $ and p is monic.

It follows that for a bicategorical structure with all monics in # both equal-
ities [R]-[R] A and [R][R]- A hold, if and only if [R] is the graph of an
isomorphism.

(1.12) COIOLLARY. If e e (A, B) then r, r- <_/, r- r, >_ za.
(1.13) COROLLARY. For a e (A, B) we have F- r, A. if and only if a is

monic; F, F- / if and only if $.

Proof. By (1.10) with [R] I’ and by (1.12).

Thus I’ -- (Re assigns to each monic of a coretraction in (Re and to each
element of $ a retraction in (Re.
The last statement can be improved" F, is a retraction if and only if 8.

Suppose [A, 1, a][R, p., p] / then since F,[R] is constructed via
J. p, 1R, 1, p by/-s-factorizing {pB, ap}, it follows that ap e $, hence
a (0.2).

In the lst proof we ctully obtained F(F r-) F F-. Hence
graphs nd converses ppering in the order F, r, r- (or r-, I, l" re "ssoci-
ative". The trouble rises with F, F-, F (or F-, F, F-) (2.1).

Thus far we have a near-category of relations over a finitely complete bi-
category. Some words about the chosen frame-work. Composition of rela-
tions in set-theory is actually an image of a certain morphism constructed via
an intersection or a pullback. Hence the immediate generalization seems to be
toward categories with images and to define relations with the aid of the class of
monics. However, (0.3) shows that we have included this case even by further
generalization to bicategories and by defining relations with the aid of the
classes t of special monics in the bicategorical structure.
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2. Associativity

(2.1) A counterexample. Consider the category of topological Hausdorff
groups 5gh with the class of homeomorphisms onto closed subspaces and $ the
class of mappings with dense ranges. 6t is well defined. The rational line
Q and the real line R are elements of 15ghl and the immersion Q --. R is an
element of $, hence I’ r A (1.13). Choose an irrational x and define

Q --. R by (q) xq (q Q). So (I’ r )r, r,. Since obviously the
constructed sides of a pullback of , v are 0 -- Q, it follows (1.8) that ri-r, [0],
hence [0]. Thus
Assuming that 6re is a category and identifying with the image of r, thus

writing a instead of I’,, we have that every p e 6re can be written in the form-
p =/a- with a, e (1.9), and the elements of $ are exactly those a of for
which aa- identity (1.13). So the elements of 6te look like "right-quo-
tients" over and the elements of $ are exactly the "right-regular" elements.
In the well-known theories in semigroups and rings, the "Ore conditions" are
sufficient for embedding a semigroup (or ring) into a semigroup (or ring) of
right-quotients such that a prescribed class of elements will become right-
regular. Hence we formulate an Ore-like categorical condition

(A) For every , in with common codomain and with e $, there is a com-
mon right multiple u vv with v $.

Common multiples were already assumed in the form of pullbacks. The
condition (A) does not require that u tv should be a pullback. However, if
we have pullbacks in and if (A) holds, then (by (0.2)) it holds in particular
in a pullback.

Turning back to the example in 5gh we observe that (A) does not hold in
that system (with the particular , of the example, v is 0 -- Q, so v e $). The
necessity of (A) for associativity could be predicted with the aid of the counter-
example, as follows.

(2.2) LEMM. Let v, u, , be a pullbact in and suppose $ and

F (F-F,) (F F- r, Then v $.

Proof. e $ implies (F r )r, r, (1.13). r r, [., v, u] (1.s), hence
the assumptions imply I’[. v, u] r,. The composite F[. v, u] is obtained
by factorizing {v, u}, and, since the result has to be F,, a " e $ exists satisfying
{v,u} {1, v}i’. Thusv i’e$.

(2.3) The definition of composition is easily generalized to a "ternary"
(or even n-ary) composition. For [R, p, pr], [S, r, z], [T, rz, rv] we con-
struct

$ /, q, o’r, pr. and ’, q’, rz, az $ andthen $ 0’, , ’, .
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Let
{, ’o’} {, } N -. Z U.

We define [T]o[S]o[R] [Y, x, ].

(2.4) LEMMA. Binary composition of relations is associative if and only if
IT] [S] o [R] [T] ([S][R]) for every three composable relations.

Proof. If binary composition is associative, then with the notation of (2.3)
and by (1.8), (1.9) we have

[T] ([S][R]) r,,(rT, r,)(r:

r r, (rj r)r;r r r, r,, r,r r,

If the stated condition holds generally, then

([T][S])[R] ([R]- ([S]-[T]-))- ([R]- o [Z]- [T]-)-

[T] o [S] o [R] IT] ([S][R]).

(2.5) THEOREm. is a category if and only if (A) holds in e.

Proof. One part of the assertion is proved by Lemma (2.2). To establish
the other part we assume (A) and use (2.4), thus trying to prove [T] ([S][R])
[T] [S] [R], (using again the notation of (2.3)). If {px,az} {gx, gz}
is an i-s-factorization then [S][R] [. gx, gz]. Now we take pullbacks

,,rz,z and v,u,,.
We obtain two pullbacks

v, U, rz z nd ’0’,0, rz z
the first by juxtaposition of the preious two pullbacks and the second by
juxtaposition of the last two in (2.3). The two pullbacks just obtained, are
both constructed on the same pair of morphisms rz and az gz . Hence
there is an invertible that satisfies

"vX ’0’ and u O.
So we have

px 0 px uk x uk x vk, rv rv "vk
implying

Now we use (A)" e S implies v e $. Thus vX e $ and so the last equality implies
{px 0, rv ’0’} {x rv with e invertible. Here the left-hand side
represents IT] [S] o [R] and the right-hand side represents [T] ([S][R]) proving
the assertion.
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Remark. In the general case [T] o [S] o [R] _< [T]([S][R]) (and thus
<_ ([T][SI)[R] also); this follows from {px 0, rv ’0’} {x ro }(vk) in
the proof above.

(2.6) We have proved that $te is a category if and only if the bicategorical
structure on is connected with the pullbacks in such a manner that ina
pullback

if e S then v e $.

We saw that this associativity condition (A) does not hold in 5gh with a
certain bicategorical structure. But it holds in 3gh if we take for $ the class
of quotient maps. (If is an open map and

u v
K )X ’)A =K ;Y’ A

is a pullback, then v is open. For, we can take K (x, y) (x) (y)}
with the topology induced by X Y and, to show that v is open, let U be
open in K and yo vU. There is an x0 in X for which (x0, y0) e U, hence there
are open sets C c X, D c Y such that

(xo, yo) e (C >< D K U.

Then - (}C) n D is open in Y and yo (}C) n D vU.)

A simple example shows that (A) may hold for two bicategorical structures
on the same category, yet fail to hold for an intermediate structure. With the
usual way of regarding ordered classes as categories, a partially-ordered class
(9 with finite intersections is a finitely complete category. Such an (9 carries
two obvious bicategorical structures (a (9, $ Identities; $ (9, a Iden-
tities) satisfying (A). Then look at the following (9 of four objects and with
the bicategorical structure as indicated

i (*.._.ii
(01 1
II’- ,III

Of course (A) does not hold in the only non-trivial square, even though the
bicategorical structure lies between the two extremal structures.

(A) enables us to prove the following: If [R] is invertible in e then
[R]-1 [R]-. Let [R, p, p]-i [S, a, aa] and consider $, 9, , p .
By [S][R] X we have {pa 9, $} 1, 1A}i’with e$. Therefore pA , e$.



Andso [R][S] A.implies p.,a.e$. Henceg, $ e$ by (A). Nowp
and p. . 6, hence {p, p,} {aa., .} and both sides are/-s-factorized.
This implies [R, p, ps] [S, , ,], that is [R]- [S].
We remark that by (1.11) it follows that [R] is invertible if and only if

p, p. e $ and are monics. If a includes all the monics, then this occurs if and
only if [R] is the graph of an isomorphism in , hence in this case the class of
isomorphisms is not enlarged in passing from e to e. This happens in par-
ticular if e is balanced.

(2.7) Dualization of the definitions yields near-categories associated
with fitely co-complete bicategories e. A morphism in (A, B) is a co-
relation [p, p, R] with p a (A, R), p e (B, R) and (p, p} .- A co-
variant embedding of into is obtained by assigning to every e (A, B)
the co-graph [1, , B].

For the category ns (sets and functions, as initial object), both extensions
and are categories (A) is easy). r (groups) is an example with

being a category, whereas is only a near-category. To see that (A) does
not hold in r, observe that a pushout in r is represented in the form

Y X*Y/M
Y

where M is the normal subgroup generated by the elements g g- (g G)
in the free product X Y, and u, v take elements into respective cosets. We
need a pushout with monic and v not. So, let G, X, Y be free groups, G with
two generators g,, g=, X with two generators x, x= and Y with one generator
y. We define , v by

x2 x, x2; ya, y, ya2 1.

Hence is monic. X Y is free with generators x, x, y and M is a normal
--1subgroup containing a va x y-, a a x2 x x2. Hence x e M.

so y e M and v (y) 1, showing that v is not monic.

3. Functors

e, defied b
[p p] [p p].
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5 "decreases" composition, (namely ([S][R])

_
((R[S]) ((R[R]) when-

ever [S][R] is defined), if and only if F preserves pullbacs.

Proof. Suppose F preserves pullbacks. For [R, px, p] and IS, , az] in
e let $ , , #r, pr and {px , z } {x, z} an i-s-factorization. Then

[., Fu Yu] ([][R]).

Since F, F, Far, For in e’, it follows that {F (px), F (az )} represents
([S]) ([R]). The asserted inequality then follows from

{F (px ), F (az )} {Fux, fuz}f

since F is an i-functor. On the other hand, if decreases composition and if"
v, u, n, is a pullback in a, it follows by rTr [., u, v] (1.s) that

r, r; a[., u, v] [., Fu,
But F,F [., , ] where , , F, F is a pullback in a’, so {Fu, Fv}
{, ]. Since (F) (Fu) (F) (Fv) implies {Fu, Fv} {, }, we conclude
that Fv, Fu, Fy, F is a pullback in

"increases" composition, if and only if F is an s-functor.

Proof. Suppose F is an s-functor. With [S], [R] and pullback of the pre-
ous proof, let ’, ’, Far, For. Hence by (Far)(F) (Fpv)(F)
there is a k’ in ’ that satisfies ’k’ F, k’ F, so

(Fo)’, (f)’}x’ {Fu, u} (F).

Here the right-hand side is/-s-factorized, hence

(Fo)’, (f)’}’ {fu, Fu},

proving the assertion. On the other hand, if y increases composition, then in
paicular for e Se, by F, r7 A (1.13), we obtain rv r% (r,
in e,. But r, FT, A in any case (1.12), so Fa e Se, (1.13).

If is a finitely complete bicategory then for every A e [] the functor
e (A, e 8ns (sets) is an i-functor preserving limits. So, the extended
mapping e(a.-) from e to s,, takes relations in into relations of sets and
it decreases composition. Hence e(a,-) is a functor if and only if (A, )
is an s-functor, that is what we should cM1 a functor of bicategories. We con-
clude

(3.2) e(e.-) e , is a functor if and only if the object P of is pro-
jective in the bicategorical sense of [5] (S-projective in the sense of [6] ).

X is finitely complete category and carries a natural bicategorical
structure given by ee Se X e, Seze Se X Se. Fixing the products
in , we have a product functor F e X , F (a, ) a X . If the condi-
tion (A) holds in then F is a functor of bicategories. To prove this we re-
mark that F is an i-functor, even without (A) (0.5). Then for
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y" Y-* Y’bothinSe,weshoweS. Since $X lr,x,x,,,it
follows that 1 r e Se by (A); similarly lx, e Se, hence

Since F e X e --* e preserves products and pullbacks we conclude

(3.3) If (A) holds in e then 5t (Rexe -- (Re is a functor of categories.

Let : be any (small) category and consider , the category of functors
--. and natural morphisms. Denote byE -- the obvious embedding

taking elements of to "constant" elements of . For each A e l!
there is a "projection" functor II. --. , II tA.

There is a unique bicategorical structure on such that E and all the II’s
are functors of bicategories. It is constructed by takinge the class of all
e with tA e for each A e I, and Se is defined similarly.
Since is a finitely complete category, we have

(3.4) 6te exists and 5 5e 5e, 5. 5e ----> 5e are functors.
If (A) holds in ( then it holds in e since pullbacks in can be constructed

"pointwise". Thus, if 6re is a category then the 6tec’s are categories.

Obviously, if F --. e’ is a functor of bicategories and if it preserves pull-
backs, then 6t (Re --* (Re’ is a functor. It is the only functor (Re -- (Re,
for which I’ rF and/F- r-F. The only functor/ satisfying both last
equalities is necessarily defined by/[R, p, p.] 1 1;. This suggests
to try to extend more F’s to functors from (Re to 6re,, by using this definition.
We do this for instance when associativity holds at least in (Re.
For a (near-) category a we call involution to a contravariant functor

(-)* of a onto itself satisfying (a*)* a for every a e a and 1" 1 for every
identity 1 in Ct. The conversion functor of 6re is an involution.

For a functor G from e to a category with involution a, we ask about functors
( from the (near-) category (Re to the category a which (1) extend G, namely
OF G and, (2) commute with the involutions, namely (([R]-) (([R])*
for every relation [R].

Suppose that such a G exists. First, since for a e $ we have r 1 Iden-
tity in 6te (1.13), this would imply

( rT) (r, r:) 1.

Then, for $ , , , $ in e we have rTr (1.8, 1.9), and this would
imply

(r,

(3.5) THEOREM. satisfying (1) and (2) exists if and only if
(Ga) (G)* 1 for every e $ and (Gy)* (G) (Gb) (Gq)* for every pullbact

b, , , in a. If such a exists then it is unique.

Proof. We have already established necessity of the conditions. We prove
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sufficiency. The unique way to define in order to fulfill (1) and 2) is by

[R, px, pr] (Gpr)(Gp:)* for [R, px, pr] e e (Z, Y),

since r should be =G and [R] (rpr)(rpz)-. This is a well-defined
mapping" if [R] JR’, p=, pr] then p= p= c, r r c with e invertible, hence
c e $, and by the associativity of a we have

We show that ( is a functor. For X e C I,
(A: (GI:)(G1;)* I: I 1.

Now, for a composite [S, r, z][R, px, pr] we go through @, , r, pr and
/-s-factorize {pxP,z} {# ,z};hence, wehave (G) (G)* (Gr)* (Gpr)
for the pullback and (G)(G)* 1 since e $, thus

(3.6) COROLLARY. Assume that , ’ are finitely complete bicategories and
(A) holds in ’. IfF is an s-functor from to ’ which preserves pullbacks, then
e e’ defined by [. p p] rr is a functor.

Proof. If e Se thenF e Se’, hencer F, . If , , , in e then
F, F, F, F in C’, hence r F r F. The assertion then fol-

lows from (3.5) with a e’ and G rE.
Example. If , are two finitely complete bicategoes with the same

underling category and if , then the extension of the "identity"
fctor e is not a functor since is not an s-functor ($ $);
but if (A) holds in , then, by the corollary, the extension of the "identity"

is a functor from the near-category e onto the category e.
4. Congruences and rectangles

In the abelian case a basic fact is that the relations are "regular" in the sense
ofVon Neumann, pp-p p ([1], [2], [3]), but this is obviously false in the general
case. However, we show here that this is true for "congruences" with respect
to group-like structure (in the sense of Kan [7] and Eckmann-Hilton [8]). So
we start with introducing congruences. Through this section will be a
finitely complete bicategory.

Following [7], [8] we say that (A, m) with m A X A -- A is a monoid-
structure on A and given monoids (A, m), (A, m) we call a e (A, A) a
homomorphism if m’ (a ) am.

(4.1) Let (A, m), (B, ms) be monoid-structures. We say that

[R, p, p=] e e (A, B)
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is an m, roB-congruence if there is a morphism u R R -- R satisfying

p u m(pa X p), pB u m(p X p),

that is if and only if p, p, are homomorphisms from (R, u) to (A, m),
(B, roB) respectively. The morphism u is then uniquely determined since

and {pa, p.} is monic.
We can make the following general definition: for [R, p, pB] e (Re (A, B) and

[S, a,, a.,] e (Re (A’, B’) and a e e(A, A’), e(B, B’) we say that the pair
a, B maps [R] into [S] if there is a u e (R, S) satisfying

(hence u is unique). By this definition [R] is aa m, m.-congruence if and
only if the pair m, mB maps

[R X R, p X p,p, p,]e(Re(A X A, B X B) into[R]e(Re(A,B).

r, is an m, roB-congruence if and only if a is a homomorphism from (A, m
to (B, m,). An intersection of m, m.-congruences is an m, m,-congruence.
It can be shown that if e $ implies i" e $ then compositions of congruences
are congruences. This implies the following.

(4.2) Let 9 c and for each A 9 let a monoid-structure (A, m.) be
given. If (A) holds in then the class of m. m-congruences with A, B run-
ning through 9 is a subcategory of the full subcategory of (Re with objects in 9.

We call e (X, Y) a constant if v for every , v with codomain X and
with common domain. (With our notations, is a constant if and only if
r F [X X].) Fora monoid-structure (A, m), wecall e A --. A a unit
if e is a constant and if m{ 1, e} 1 m{e, 1}. Then h A -- A is called
an inverse if m l h} e re{h, 1}.
An associative monoid-structure with unit and with inverse will be called a

group-structure. (We recall that (A, m) is associative if m(m 1)
m(1 X m)awherea" (A A) ) A--*A (A A)isthenaturaliso-
morphism [8].)

Let ea, eB be units for (A, ma), (B, m.) respectively and let [R, p, p.] be
an ma, m.-congruence with induced structure (R, u); if the pair ea, e, mtps
JR] into [R], then there exists a unit f for (R, u), namely the unique f" R --+ R
that satisfies (ea eB){p, p.} {pa, pn}f. A similar fact holds for inverses.

(4.3) LEMMA. For every [R, pa p,] e (Re (A, B) the inequality [R] o [R]- o [R]
[R] holds. (Ternary composition was defined in (2.3).)

Proof. If $, q, p,, pB, ’, q’, p, p and $’, 8, q’, b$ then
[R] o [R]- o [R] is represented by {p , p, ’0’} . The pullback property im-
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plies existence of such that ), 1 and a ’ such that ’?,’ 1R ’),’,

" 0" ’. {p,then such that X, 0’X" Hence {pO, p ’0’}"
yielding the ssertion.

(4.4) The inverse inequality is generally flse, nd (using term justified
in sets) we sy that [R] is rectangular if [R] JR]- [R] [R], that is to sy if
[R]
For instance if p is monic than [R, p, p,] is rectangular ((1.10) and (2.5)

remark); in particular graphs are rectangular. If for a, in the product
a X is in , then the components of a X represent a rectangular relation, so
"rectangles" are rectangular (with p a, p. in the proof of (4.3)
we have

hence {pa +0, p +’0’} a yielding the assertion).
For an i-functor F preserving products and pullbacks, the mapping "de-

creases" ternary composition (proved as with binary composition in (3.1)),
hence it preserves rectangularity (by (4.3)).

In the category ans the group-structures are the groups and the congrueaces
which are subgroups are rectangular. We establish 8 general

(4.5) TEOEM. Let (A, m), (B, m) be group-structures with units
ea e and inverses ha, h and let [R, pa pa] be an ma m-congruence mapped
into itself by the pa+ ha, h. Then [R] is rectangular.

Proof. We remark that the induced structure (R, u) is a group-structure"
it is easily shown to be associative and, if k is the morphism which by assump-
tion satisfies

thenf u{l, k} satisfies (ea X e){p, p} {p, p}fand sol is a unit for
(R, u) and k is an inverse.
To prove the theorem let

and denote +0 , 0 +’0’, +’0’ . Then pa 7 p and p p .
The relation [R] o [R]- o [R] is represented by {o , p } , hence it suffices to
construct a v such that {p, p}v {p , p }.
Wehavep:u m(pa X p),pu m(p X p)andhpa pak,

h p p k. Set v u{u{9, }, } and for both p, p we obtain (indices
not marked)

m{u( to } m(m x ho },
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With the index A, we use the "associator" a and obtain

p ,( m){{p , h p }, p }

( ){p , {h p , p }}
m{p , m{h pa , p } }.

But p p , hence

{hp,p} {h,l}p nd m{hp,p} epa

since m{h, 1} e, nd since e is constant we hve

p v m{p , e p } m{p , e p } m{l, e}p p .
With B we obtain

m{e p, p } m{e p , p } m{e, l}p p .
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