ODD p GROUPS AS FIXED POINT FREE AUTOMORPHISM GROUPS

BY
TrOMAS R. BERGER!

Introduction

In this paper we extend the results of [1] to a large class of odd p groups.
With certain prime exceptions then a solvable group G which admits an odd
prime power group A as a fixed point free automorphism group (i.e.Ce(4) = 1)
must have its fitting length bounded by the power of p dividing the order of 4.
The proof of this result is the same as the weaker theorem of [1]. Since the
proof is lengthy it is not given here. The extension is made possible by an
examination of representations of p groups. Suppose P is a p group acting on
a vector space V over GF (q), ¢ % p. Then P permutes the vectors of V.
Certainly if ¢ is very large, P will have a regular orbit on V. The striking fact
is that P “almost always” will have a regular orbit on V. Aside from other
applications, this result applies to our fixed point free theorem.

Suppose R is an extra special r group. Suppose PR is an extension of R
with R A PR and [P, D(R)] = 1. Suppose % is a complex irreducible charac-
ter of PR nontrivial on D (R). Itiswell known [1, (IV.9)] that if P is eyclic
and faithful on R then ¥ |» “almost always” contains the regular P character.
Surprisingly enough this result is almost always true of odd p groups in general.

These two facts along with some minor related results make up the main
body of this paper.

We assume a knowledge of the p Sylow subgroups of GL(n, ¢) [3]. Some of
the calculations assume a familiarity with [1].

l. Wreath products

Let P, = C,,\ Cp:-- Cp\ Cpe ,n C,’s, where e > 1 and p is an odd prime.
Let r be a prime different from p and ¢ the smallest positive integer with
r =1 (mod p) and p° || (*"* — 1). Now P, is an irreducible p Sylow sub-
group of GL (ty p", 7). Let V = V (t p", r) be the {, p" dimensional space over
GF (r) on which GL (t, p", ) acts. So V is an irreducible P, module. Assume
that P, = (p,,)\ P,_1. Then with p, = p we may write

P\ =Py X Piy X -+ X Pi.
We set Py = Cpe. Now P, = (p)P% where p permutes the 7t component into
the 4 4+ 1°* component by the conjugation » — »* = p 'wp. Further

V0 =Vid -+ + V,where p”'Vi = Viq and the "™ component of P}, is
faithful and irreducible on V; with the j # ¢ component trivial.
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We now investigate the characters of P,. Suppose x is an irreducible char-
acter on P,. Consider x |s?. Two cases arise. If x |s! = ¢ is irreducible
theny = ¢¢® -+ ¢" ”" where ¢ is an irreducible character on P,_,. Now ¢
is induced from a linear character u* on a subgroup A of P,;. So
P M = fond X AP X - X A" = A% induces ¢ on PS.
There is a linear extension u of 4 to (p)A° such that x = u |™. Clearly
Z(P,) < A" Ifoisof order pin Z(P,) then 4(¢) = 1. So a character of
this first type is not faithful.

If x |¢ is reducible then x [s2 = ¢ + ¢° + --- 4+ ¢" " where ¢ is ir-
reducible on P} . Now

p—1 p—pt1
b= ¢z ‘- Pp
where ¢; is irreducible on P,_;. Since ¢ is not stabilized by p we must have
¢1 # ¢; for some 7.

Lemma 1.1.  Suppose x is an irreductble character of P,. If x(1) > 1 then
either x 18 induced from a linear character p on a subgroup

()(A X 4° X -+ X A7)
where A < P,y and
* kp~l “*p_P+1

—1
» lA)("'XAPp =W

for a linear character w* on A. Further p* |"-* is irreducible a'r_uli ker X ?
0 (Z(P,)). Orxisinducedfrom a character pon Po . Ifd = ugh -+ o5 "
where ¢; 1s irreducible on P,y then for some j, ¢1 = ¢;.

Next let us consider characters faithful on P,. We define
Pr=PY=CpXCX - XCX", Py=PiiXPiLiX - XPH.

i1
We consider a faithful character x of smallest degree. Then x is induced from
a character g6y -+ % " = ¢ponP’. By taking an appropriate conjugate
we may assume ¢; (1) is the largest degree of the ¢;(1). Then ¢, - - -, ¢, will
all be linear and ¢, will be faithful on P, of smallest degree. Clearly a char-
acter of degree p faithful on P; is induced from P;. So if we assume ¢, is in-
duced from P,_; then x is induced from a linear character on P,. So by in-
duction x is induced from P,. Hence

x(1) = [P,:P,] = p".

Lemma 1.2. A faithful irreducible character x of smallest degree on P, is of
degree p" and is induced from a linear character of order p° on P, .

Let v* be a faithful linear character of Cpe. Set vo = 'y*l”_1 e 17 on
Py where v*, 1 are characters of Py = Cpe;y; = v;1 1° " ++- 17" on B,
where 1 is the identity on P;y. Then set I'; = v, |.

By choosing the representation of the wreath product appropriately we may
assume the Brauer character of P;on V (o p’, ) is a sum of ¢, algebraic conju-
gates of T;.
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Next we investigate representations of p groups which are not absolutely ir-
reducible. It turnsout that absolute irreducibility is not essential to show that
irreducibles are induced from cyclic irreducibles. The proof is due to Blichfeldt
[2, (50.7)].

Lemma 1.3.  Suppose P is an odd p group, k s a field for which char k £ p,
and V is an irreducible k[P] module. Then there is a subgroup A < P and an ir-
reductble k[A] module W on which A is cyclic so that W | >~ V.

We use induction on | P |. If P is abelian or not faithful then we use induc-
tion. So we assume P is faithful. Since p is odd, P contains a noncyclic
normal abelian subgroup A,. Hence A = ©;(A4,) is noncyclic normal of ex-
ponent p. Since P is irreducible, 4 is not contained in Z (P).

Consider V |4 = n(W1 + -+ + W,). We consider the case t = 1. In
that case Wi is an irreducible faithful k[A] module. So A would be eyclic.
This is not the case so ¢t > 1.

Let Py = Stab (W3, P). Then W* = nW; is an irreducible k[Ps] module
and W* |P~V. Nowker[P;— Aut W*] > ker [A — Aut W3] > 1s0 P, < P.
Now by induction there is B < Py and a cyelic irreducible k[B] module W so
that W |7* ~ W*. Hence W |* ~ V completing the proof.

CoroLrARY 1.4. Suppose P is an odd p group with a faithful character x of
degree p°.  Suppose k is a field with char k 4 | P | and V is an irreducible k[P]
module whose character is a sum of conjugates of x. Then V splits in k[x].

There is a subgroup 4 < P and an irreducible cyclic k[A] module W with
W [P~ V. If the character of W is a sum of conjugates of the linear character
u then u and A may be so chosen that u |* = x. Clearly A splitsin k[u]. The
character of V is a sum of ¢ conjugates of x. Thatis,dim V = x(1){. Further
dim V = dim W-x (1) since x (1) = [P : A]. But the character of W must
then be a sum of ¢ conjugates of u. Thus k[u] = k[x] is a splitting field for P
since u |© = x.

We now look again at the wreath product P, and derive some results on
representations of subgroups of P,. ForP) = P,y X Ph_1 X -+ X Py
and (w1, ++ - ,mp) = we P wesetn,(r) = m. When there is no confusion we
write 7 = 7,. The following results are concerned with extensions of extra
special groups.

Now P, = (C, 1 e \ Cp)Ag,n Cp's, where Ag = Ay is an abelian p group
of type (p°, -+, p°), n p%s.

Lemma L5, If P is a subgroup of P, trreducible over GF (r) and regular then
PnA, <L Z(Pn)[Pn;AO]
Let (m, -+ ,mp)ePandonP = PnA,. Takep(ry, -+, 7p)eP — P).
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Then using (ab)? = a"b"8? for S € {a, b)’ we have

{p(Tl Ty, " Tp Wp)}p
= (Tamy - Ty WP I, Ty W Tp M TIMLT2 W, ** , TLTL * " Tp Tp)
= (ry oo Tprial, e, T T al)SP

Let M = 9" (4,). Then working mod M we have

— »
Tl Mgl < - TpMp +v- TiMi = Tigp <+ Tp + -+ Ts TF.
So mmy® w7t - - rt = 1. Therefore (m, m* Y, -+, 75 ) € [P, AlM.

But [P, , Ao M char P, hence
(T, + o) €[Pn, AdM = [Pn, AdZ (Py).

Lemma 1.6. If P is a regular subgroup of P, irreducible over GF (r) then
P n P contains no elements of the form (1, -+, 1, w, 1, -++,1) = a.

Suppose otherwise. Then by conjugating we may assume P n P; contains
(r,1, -+, 1) =a. LetB=p(r, - ,m)eP —P%. SetT = (" |i>0),
To = ([T, B°]). Let M be the inverse image in T of D (T/T,). By factoring
M out we assume M = 1. Now T is abelian of type (p, ---,p), p p’s, and 8
operates regularly as (8)/(8”). Hence (T, 8) is an irregular section of P. This
contradiction proves the lemma.

TreoreMm 1.7. Suppose P s an irreducible subgroup of P,. Then P has a
regular orbit on V unless P is irregular and p°* = r* — 1.

Let O1, - -+, O, be the regular orbits of P,y on Vy. Choose v1, ---, v; as
orbit representatives. We form vectors vi, + p 05 =+ -+ + p"’“viP where
some %; 3 7, . Bach of these vectors generates a regular orbit on P,. Hence
we get a regular orbit by restricting to P. The only problem arises when
t = 1. We see that if ¢ > 2 then we get at least ((* — t)/p regular orbits on
P,,n > 0. Forodd p thisis >2. Hence we only need worry about n = 0.
In this case t > 2if p° # r" — 1. We are reduced to considering a regular p
group P.

If p° = ¢ — 1 then we get a regular P orbit as follows: For
(1, -+ ,mp) ePusetn((m, - ,m)) =m. Theny(PnP,)=P*< P,,
has a regular orbit on V;. Choose v; ¢ V; so that v; generates a regular P***
orbit on V;. Set 4 = o, + -+ =+ v,1. For « ¢ P to centralize wu,
a= (1,1, ---,7). By the previous lemma, no such « existsin P. Hence P
always has a regular orbit on V.

CoroLLARY 1.8.  Suppose R s an elementary abelian r group and P s faithful
and irreducible on R. Then 1p |"F|p contains the regular P character unless
p° = 1" — 1 and P is irregular where p° < exp P,r" | |R|.
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We look at 1p |7%|r = D exr 1% |penel”. We may choose z ¢ R so that
P?n P = 1 by the theorem. This proves the corollary.
Now we turn our attention to representations of P on extra special r groups.

Lemma 1.9. SupposeP 18 ap group and P* C’,,\ P. LetC, = {p) and
PP=PXP X - XP"" If|P| = p* then there are p*®™ elements
(r1, -+ ,7p) e P° wzthnn cov1p=vwyeP. Furtherifv = (61, -+ ,0p) e P°
and gy0y + -+ 0, = vy € P then

dim Cy (o») = dim Cy, (v).

Choose 71, **+ , Tp-1 arbitrarily in P. Then solve 71 -+« 7p1 & = » for z.
This shows (71, - -+, 7,) € P° may be chosen in p*® ™ ways.

Next we show that v = v, 4+ - -+ 4+ v, € Cv(ov) where v; e V; if and only if
v1 € Cy, (np) which completes the proof of the lemma.

So computing

v=pou = por, -, 4+ -0 +plor, -+ ,0p)0
= (02,03, """, 0p,00)01 + -+ + (02, "+, 0p,01)00p.

Therefore (o2, -+ ,0p,01)p0; = Viq0r (61 "=+ 0p, 1, ==+, 1)ty = povy = vy.
Next let P, be faithful and irreducible on R/D (R) and trivial on D (R)

where R is extra special of order ¥**'. Then 2m = & p". Let % |r, = %a

where %, is the character of P, R given by [1, (IV. 15)]. Suppose ¢ € P, .
Then R/D(R) = V as a (o) module splitsasin [1, (IV.3)]. SoCy(¢s) haseven
dimension 2m (¢). Also 2m = D ; ni t, p* + 2m(c) where there are n; ir-
reducible (¢) modules on V of dimension #, p**. Sol(e) = (2m — 2m(c)/te =
Sinip” = Y n; = n(S) (mod 2) since p is odd. Hence

%, (o) = rm(cr)(_l)l(c) - m(c)(_1)2(m—m(v))lto.
Levma 110, Assume A < P,_jand A° = A X A® X A" < P%. Let
u be a linear character of T = (p)A° < P,. Nowp|s = pu*. So
GEnlry ) = /P Encr o, 85+ G2 — 1) Facx |4, 8¥)dl
where § = 04f up) 5= 1 and & = 1 otherwise.

[T G lrs)r = Dveas B IEE) + 2o0mt D veso Za (0B (0%).

For each » ¢ A® there is a unique # ¢ A° such that p'» = (p8)°. Further » — »
is a one-one map of A° onto A°. Also, u being a linear character is multiplica-
tive. So

2 Y en B 0)E(0) = 205 Dseso En({o8} B0 ()
= 22 B (") Dpens Xu(00)E* (9)

Xu(p0) = %a({p9}") (sinee (7, p) = 1)
= 2P )P T Drges Enca (00D (90).

We have
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Since p is multiplicative and x(#) = u* (%), by (1.9),
X, (p9) = D 0= 7 (p) | A% (Fnt las 1*) 4
= A" (s o, ™)a 2205 8 )
= | A°] a1 las w*)ap = 1)

Zt-er X.(E@) = |A0] (%n a0, » |A° )a0
Now %n |40 = Fnct Ja Encr [0) " o+ Eacr |0 So
%n(p9) = | A°] (Fuca |u, u*)2.

Since | T'|/| A°| = p the lemma follows.
Suppose x is an irreducible character on P,. We call x a regular character if
G) x| = ¢¢" " -+ ¢ """ is irreducible and
@) n=1 and ¢ is nontrivial on P, , or
b)) n>1 and ¢ is regular onP, ;.
(i) x = (¢ds -+ &) o ) |™* where ¢1, - - - , ¢, are irreducible on P,_; and
(@) n=1 and at most one ¢; = 1, or
(b) n > land ¢, ---, ¢, are all regular.

Lemma 1.11. Suppose P is a regular irreducible subgroup of P, and x ts tr-
reductble on P. Then x | contains a regular character.

Next

We use induction on n. Suppose first that » = 1. “{91 set T =
Z (Py)[Py, Ao). Sincen = lwehave dg = Py X P) X --- X P} oy Writing
Ay additively over Z,., then letting v; be a generator for P§ ', we have
{1, ,0,},8 Zpe basisfor Ag. A characterf: Ag— Z3.is alinear functional
»
into the additive group of Z, .

Now{ws=v1+ - +vp,u =v —v;,72 =2, -+, p} is a set of generators

over Zye for T. Letg: T — Z;e be a character on 7. Then
g(u't) = aq, 1= 17 e, P
Now g(pv) = g(O wi) = D g(us) = D a;is in pZ,e so we may choose
BeZyesothat pB = >, a;. Now consider the character f. : 4o — Z','.fe defined
by
fe(vl)=ﬁ+s’ fe(vi)=ﬁ+€—0u, ’5=2,"',1’,
where € € p"'Zye . Then clearly
Je IT =4.
Next p* " Zpe — {— (8 — ai);% = 2, -+, p} is not empty since p°'Z,. con-
tains p elements. So we choose ¢ from th1s set. Then
B+e—a;=0 fori=2 ---,p.

In other words f.(»;) 0 fori = 2, ---, p. Therefore f. |"* contains only
regular characters We have proved that if u is an arbitrary character of T
then p | 1 contains a character » such that » |** is a sum of regular characters.
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Now suppose n > 1. Set n(P n P*) = P* and
Pt =P*X P* X ... X P*",

Now P* is a regular irreducible subgroup of P,_y. Let ¢1, «++, &, be ir-
reducible characters on P*. By induction on 7, ¢; | contains a regular
character ¢;on P,_;. Butnow (¢1¢5  --- &5 " ) |7 must be a sum of regu-
lar characters on P,. In other words, if u is any irreducible character of P*
then u |"» contains a character » with » |** a sum of regular characters.

Now let x be irreducible on P. Since Pn P, < PYor Pn P} < T, for every
character u contained in x |pns? , u |” » contains a character » with » |”» & sum of
regular characters. Finally, since PP, = P,, we have

x ™22 = x |enell"s
and

0
Gl v 1) = 1™ 182, 9) = (x |enedl™, »)

(X |Pnz>f,, v |Pnpﬂ) > (X |PnP£ ’ M) > 0.

Therefore x |°* contains a regular character.
Recall that P, is faithful and irrreducible on R/D (R) where |R| =r""",

2m = typ", and P = Cp | -+ \ Coe.

LevMa 1.12. (a) Suppose x is a regular irreducible character of P,,. Assume
that p° = r"? + 1. Then (%.,x) > 2.

(b) If, both 2p° = r'™® + 1 and p° = r''* 4 1, then for any irreducible x on
P,,
(Xn; X) > 2X(1)~

Proof is by induction on #. For any irreducible character x of P, we see
that by [1, (IV.9)],

(%, x) > 2 incase (b) and case (a)if x # 1
>1 incase (a)if x = 1.

p—pt+1

Suppose n > 0. First, assume that x = (¢1 AR ¢y ) |”™ where
é1, -+, ¢p are irreducible on P,_;. Then (%,, x) = [[=t ¥a-1, ¢:). In
case (a), x is regular so (¥,—1,¢:) > 277> 2. Incase (b), ¥n_1,d:) > 2¢:(1)
(evenifn = 1). So

II2= Far, 60) = 2°60(1) -+ (1) = 2(2°/p)x (1) = 2x(1).

Second, assume that x | = ¢¢° ' ... 67" where ¢ is irreducible on
P,_;. Then

Fn, x) = U/P)(Fn1, 6)" + @Gp — 1) (#na, ¢)]
2 [, 6)/DN FEnt, )7 — 11,
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In case (a), ¥n,¢) = 250 (a, x) = (2/p)[2"" — 1] > 2. In case (b),
(Xn1,90) = 20(1)s0o (Xn,x) = (2% (1) — 2¢(1))/p > 2x(1).

Tueorem 1.13. Suppose PR is a group with normal extra special r subgroup
R and odd p group P. Suppose P s faithful and srreducible on R/D (R) and
trivial on D (R). Suppose X is any irreducible character of PR which s non-
trivial on D (R). Then for any irreducible character x of P,

(X |P) X) ..>_ 2nx
where

1) p° =1+ 1,n, = 1, and P is regular, or
©2) yp° #1' 4+ 1,and ny = x(1) for any v = 1, 2; p° < exp P; and
7‘2d+1 l |R |.

Now P < P, for some n where P, is irreducible on BR/D(R) = Vandisap
Sylow subgroup of S, (V'), the symplectic groupon V. By [1, (I1.2), (IV.15)],
we know that X = pX) for some pon PR/R and for some \. Butalso ¥\ = %,|p.
Let x be any irreducible character of P. So

X, x) = (&, x) = G, mx) = Ele,mx) = &, ] ™).

If P is regular, then we may select y a regular character in [ax] [ by (I.11).
So by (1.12) (a),

X, x) = G, [BX] ™) = Ea,¥) 2> 2.
In case (b), [ax] |™ = 2_ ay ¥ so

X, x) = @ B 1™) = 220 ay (En,¥) 2 200y 20y = 2[ax] | (1) = 2x(1).
This completes the proof.

Remark. If p > 3, then the result in (I.12) a) is much too small. A much
better lower estimate would be (%,, x) > ((2° — 2)/p)* "if p > 3. For
p = 3 there is actually a linear regular character u of P, for which (¥,,u) = 2
for the choice 2p° = r'* 4+ 1.

Il. Applications

Suppose A4 is an odd p group for a prime p. Let AG be a solvable group
with normal subgroup @ where (p, |G|) = 1. We assume that p* = r° 4+ 1
for any p° < exp A and r** || G|. Further, if A is an irregular p group we
assume p° # r* — 1and 2p® # r° + 1for+? | |@|. These prime assumptions
are made to handle the prime exceptions of (I.7) and (I.13).

Suppose that V is a direct sum of equivalent irreducible k[AG] modules
where k is a field of characteristic unequal to p. We also assume that G is
represented faithfully on V.
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Under the conditions outlined above we have

Taeorem II.1. (1) Cy(4) #= (0) or
2) Cv(4") = (0)or
B) Cy(4") = (0) and there s cyclic D < A with

(@) Cv(4'D) = (0),  (b) Ca(4'D) 2 Co(4").

In [1] this theorem (VI.1) was proved under the assumption that A was of
class < 2. The proof given there is quite general. The step (VI.10) may be
made using (1.7) of the previous section. The step (VI.11) follows from the
lemma below. Finally (VI.15) follows from (I.13) of the previous section.
Aside from this the proof follows verbatin.

The representation theorem just cited has application to groups with fixed
point free automorphism groups. Suppose the derived series of A4 is

A=A49>4%> .. >4" =1,
Then [[7= [4? : Caor» Co(A¥*P] = p’. Wemaysety(G) =f If|4]|=7"
then clearly f < d. We then have

Trrorem (I11.2). If A is fixed point free on G, that s, Cq(A) = 1, then the
Fitting length of G is bounded by ¢ (G). In particular, the Fitling lenath s
bounded bu d.

The proof here is again exactly as (VII.1) of [1]. Fixeept now we use (T7.1)
the previous theorem.

Lemma I11.3.  If (I1.1) holds for (A, G, V) and V|4,e is homogeneous for all
Ao AA then there is a subgroup D < A sothat D < C4(G) and [V, D] = V
unless (1) of (IL.1) s true.

We use induction on | A|. By the theorem there is a Dy < A so that
Ce(A’Dy) > Ce(A’). Further [A’'Dy, V] = V. Since Dy is cyclic we must
have A’Dy < A or A is abelian. In the former case we use induction on
(A'Dy, G, V). In the latter case Dy < Cg(A’) = G so we are done.
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