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The automorphism theory of the unitary group and the projective unitary
group has been investigated only over fields. In particular, no automorphism
theory has been available for the groups of unitary matrices whose entries are
taken from an integral domain. In this paper, we consider subgroups G of
the projective unitary group PU,(V) such that for each isotropic line L of
V, G contains at least one non-trivial projective transvection with proper
line L.
We require the underlying hermitian form to have Witt index at least 3.

We then give group-theoretical properties of the projective unitary transvec-
tions in G which suffice to distinguish the projective transvections from the
other projective unitary transformations. From this it follows that an auto-
morphism A of G must preserve all projective unitary transvections. This
yields a bijection L -+ L of the isotropic lines of the underlying vector space
V; we extend this to a bijection of all the totally isotropic subspaces of V and
then apply a theorem of Chow and Dieudonn [3, p. 82] to conclude the
bijection of totally isotropic subspaces is induced identically by a unitary semi-
similitude g of V. It is then easy to show the automorphism A is given by
transformation by the projective semi-similitude corresponding to g. Our
results hold for Witt index at least 3 and characteristic not 2.
Having obtained the automorphisms of such projective unitary groups G we

determine as a corollary all the automorphisms of any subgroup S of Un(V)
that contains at least one non-trivial transvection on each isotropic line of V.
In the final section we apply these results to the unitary groups Un, U, T
defined over integral domains and to their congruence subgroups. We show
each such unitary congruence group contains a non-trivial transvection on
every isotropic line. Applying our previous results we thus obtain an auto-
morphism theory for the unitary congruence groups.
The techniques used in this paper are modifications of the original method

of residual spaces introduced by O’Meara in [6] for the congruence subgroups
of the special linear and general linear groups.

1. Preliminaries

Let V be an n-dimensional vector space over the field F, d let x(F) de-
note the characteristic. Consider a hermitian form (x, y) on V, i.e., a map
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from V X V into F such that

(ax - z, y) a(x, y) -t- (z, y)

(x,y) (y,x)* for allx, y, zinV, allainF

where a -* a is an automorphism of F of order two and not the identity.
Let E denote the fixed field of the * map; FIE is a galois extension of de-

gree two. low let (x, x) H(x). Note H(ax) aa*H(x) for a e F, and
since(x,x) (x,x)*,H(V) _c E. If x(F) 2, F E(/0)forsome0eE
and ( W /0) * a %/0 for all a and in E.

In all that follows we shall assume that (x, y) is a non-degenerate hermitian
form on the n-dimensional vector space V over F. Here non-degenerate means
(V,x) 0impliesx 0.

DEFINITION. Let W be a subspace of V and set

w* {x v (w, 0}.

W is called regular if W n W* 0, degenerate if W n W* 0; and W is
called totally degenerate if W 0 and W W*. We define tad W to be the
subspace W n W* of W; so rad W rad W*. Since we always assume V to
be regular, we have that dim W W dim W* dim V and therefore (W*) * W
[3, p. 13]. Since tad W W* we see

dimradW-< n- dimW.

We call a non-zero vector x of V isotropic if H(x) O, anisotropic if
H(x) 0. A subspace W is called isotropic if it contains an isotropic vector,
anisotropic otherwise. For the rest of this paper we make the further assumption
V is isotropic.

The n-dimensional unitary group, written U.(V) or simply U(V), is all
o- GL,(V) such that (ax, ay) (x, y) for all x, y in V. Such a is called
a unitary transformation. Now it can be shown using Witt’s theorem on
the extension of unitary transformations that all maximal totally degenerate
subspaces of V have equal dimension [3, pp. 21-23]. This common dimension
is called the Witt index of V, ( V); one has 2. (V) -< n.
Now foraeU(V),weletP {x. eVlzx=x} and we purR P*. Pis

called the fixed space of and R is the residual space of a. We have
dim R + dim P n. Whenever a transformation e U.(V) is under dis-
cussion, the letter P will always denote the fixed space of and the letter R
will always denote the residual space of . Similarly we associate Pi and Ri
with any in U(V). And res a denotes dim ( 1) V.
For any in U(V) we have aP P and aR R. And

1.1. P ker (a- lv),R (- lv)V,
where 1 denotes the identity map of V. For any 2 e U.(V), 2a2:-1 has fixed
space 2P and residual space 2R.
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DEFINITION. A subspace W of V is called a hyperbolic, plane if it is regu-
lar, two-dimensional, and isotropic. It follows from La G$omdtme des Groupes
Classiques, p. 21, that W is a hyperbolic plane if and only if W has a basis of
isotropic vectors x, y such that (x, y) 1.

DEFINITION. For two subspaces U and W of V with (U, W) 0 and
U n W 0 we denote the direct sum U W by U 2. W. For any group G
whatever we denote the commutator subgroup of G by DG, and for a, b, in
G we let In, b] aba-lb-1.
By a transvection r is meant an element of SL,,(V) that fixes a hyperplane

pointwise. If r lv, (r lv) Visa line L, called the proper line of
is considered a transvection having any line of V as proper line. Which
transvections r fall in U(V) ? If r lv, r e U.(V), and P is thefixedhyper-
plane of r, thenL (r I)V P*. Sincedet r l it is easily seen
L P L*, and so L is an isotropic line. Now for an isotropic vector a of
V and an element k of F, define the map

ra,x by ra.x(x) x- k(x,a)-a for all xeV.

A computation shows each r,x is a transvection having Fa as its proper line,
and r.x e U.(V) if and only if * 0. Conversely each transvection
in U.(V) with isotropic proper line Fa has the form r.x for a suitable
element of F of trace zero. If 2 e U.(V), one easily sees

2,x 2-1 ra,x and (a,)- 7"a,--,

The following propositions are now easily proved.

1.2. Let . and rb,a be in U,,( V) Then . rb, :* a ob with
for some ( e F.

1.3. The product of two unitary transvections is a transvection if and only if
the two unitary transvections have the same proper line.

1.4. Let r,x be a transvection in U,( V) and let a e U,,(V). Then a and
’,,x commute if and only if aa aa for some element a in F with aa 1.

1.5. Two unitary transvections commute if and only if their proper lines are
orthogonal.

For any m-dimensional vector space W whatever we denote the scalar trans-
formations of GL,(W) by RL,(W), or simply RL(W).

1.6. Let W b a two-dimensional vector space and suppose

(re GL(W) RL.(W).

Then the centralizer C(r) of in GL.(W) is abelian.

Proof. Apply 2.6 of [6]. Q.E.D.
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1.7. Let n

_
2 and suppose r e U,( V) fixes all isotropic lines of V.

e RL(V).
Then

Proof. If dim V 2, a fixes at least 3 lines of V which implies a e RL(V).
If dim V > 2, fixes all hyperbolic planes since a hyperbolic plane can be

spanned by isotropic vectors. Any anisotropic line is the intersection of two
hyperbolic planes [3, p. 43] so fixes all lines. Q.E.D.

1.8. Let n

_
4 and e U,( V) be such that Z(Fa) Fa for some isotropic

line Fa of V. Let ra.), be a non-trivial transvection in U,,( V). Then and
--1’., r._), don’t commute, if x(F) 2.

Proof. Suppose they did commute; then

Choose a vector X orthogonal to 2-1a but not to a. Upon substitution of X
in the above equation we obtain

-)(X, a)a + )(X, Za) Za )2(a, a) (X, a)a )(X, a)a

which implies a e F. 2a, a contradiction. Q.E.D.

DEFINITION. We say a subgroup S of U(V) "has enough transvections"
if for each isotropic line L of V there is a non-trivial transvection in S with
proper line L.
We now define the projective unitary group, written PU,(V) or simply

PU(V), to be the quotient group of U(V) by its center, i.e., PU(V) U(V) /
RL(V) n U(V). Let- denote the natural map of U(V) onto PU(V). For
any subset A of U(V), A or A- denotes the image of A under the map.
We call e PU(V) a projective transvection if one coset representative of
in U(V) is a transvection. If n -> 2 there cannot be two distinct coset repre-
sentatives of which are transvections, and so we may define the proper line
of a projective transvection to be the proper line of the unique coset repre-
sentative of which is a transvection.

DEIINITION. Let G be a subgroup of PU(V). We say G has enough
(projective) transvections if for each isotropic line L of V there is a non-trivial
projective transvection in G with proper line L. We define

so A is a subgroup of U(V) that has enough transvections and RL(V) f U(V)
_

A. For the rest of this paper whenever G or A is mentioned we always
understand them to be defined as above. If A

___
A (resp. A

_
G), then C(A)is

Ca(A) (resp. Ca(A)).

DEFTO. We say an element of U(V) is aquasi-symmetry if its resid-
ual space is an anisotropic line or if it is 1. An element of PU(V) is a pro-
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jective quasi-symmetry if it is the image under the map of a quasi-symmetry.
Finally we say an element of U(V) is a shearing if it leaves a hyperplane point-
wise fixed; projective shearings in PU(V) are defined in the obvious way.

DEFINITION. Let W be a subspace of V. We define E(W) { e AIR
W} where R is the residual space of a.

DEFINITION. Let a e U(V) n SL,(V). We call a a plane rotation if its
residual space R is a plane, a is called a totally degenerate plane rotation or
a hyperbolic rotation if R is respectively a totally degenerate plane or a hyper-
bolic plane.

1.9. Let ,( V) >_ 3, let P be a subspace of V of dimension at least n 2.
Write P tad P .L W. Then W is isotropic.

Proof. The hypotheses imply n >_ 6; and we have tad P P* P. Since
dim rad P

_
2 and (V) __> 3, rad P cannot be a maximal totally degenerate

subspace of V. So rad P T for some three-dimensional totally degenerate
subspace T of V. It follows that

T T* (radP)* P - P*.
Since W P - P*, a dimension argument implies W n T 0. So W is
isotropic. Q.E.D.

1.10. Let ( V) >_ 3 and suppose P is a subspace of V of dimension at least
n 2. Then every isotropic line of P not in rad P lies in two distinct hyper-
bolic planes of P.

Proof. As in (1), p. 42 of [3]. Q.E.D.

1.11. Let a and be in U( V) and suppose and commute. Let a W ,
e RL(W). If 2 dim W n, then a and commute.

Proof. Since and commute, a /. 2a2-1 with/ e RL(V). Choose
non-zero x in W n 2(W). From the equation a(x) /. a2-l(x) it follows
a aor/ 1. Q.E.D.

2. Double centralizer results
2.1. Let S be a subgroup of U,( V) that has enough transvections. Let a be a

non-involution in S SL,( V) with residual and fixed spaces R, P with R P.
Suppose n >- 2 and dim R 2. Then E(R)

_
CDC(a).

Proof. Let RL(R) denote the scalar transformations of GL.(R). Since
R P, alR 1R. Nowa[ReRL(R) since if so, 1 deta detaIR,
which implies a R -1R. But a is not an involution. Thus

IRe GL.(R) RL(R),

and 1.6 tells us C,(alR) is abelian where C.(a R) denotes the centralizer of
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R in GL.(R). Let 1 e DC(); so I(R) R and

R e DC(z) R

_
DC(z R) 1.

So z R 1 and R** P

_
R; any z. in E(R) will have its residual space

R2 R R**. Thus z and zl commute by 1.5 of [6] and so E(R) CDC(r).
Q.E.D.

2.2. Let (V) >_ 3 and let e A have dim R <_ 2. Then CDC((r)

_
E(R)-

Proof. The hypotheses imply n _> 6. Now let L Fa be any isotropic
line of P not in rad P. By 1.10 we can choose two distinct hyperbolic planes
Fa + Fb and Fa + Fc in P with b and c isotropic. Let ra, , re, be non-
trivial transvections in A with proper lines Fa, Fb, Fc. Let f [ra, r] and
g [ra, re]; f and g have residual spaces Fa + Fb and Fa + Fc respectively.
Since z fixes a, b, and c, f and g are in DC(z) and so ] and are in DC(z)-
DC(a).
Now let , e CDC(). , and ] commute and by 1.11, 2 and f commute

since n _-> 6. So 2 acts on the residual space of f and similarly 2: acts on the
residual space of g. Hence 2 acts on their intersection, Fa. So 2 fixes all
isotropic lines of P not in rad P. If rad P 0, let K be a line of rad P and
write P rad P .l_ W. W is isotropic and regular by 1.9. Let L0 be an iso-
tropic line of W. All lines of K L0 are isotropic and the only line of K L0
in rad P is K. So 2 fixes all lines of K @ L0, except possibly K. Therefore
2:K K. So 2: fixes all isotropic lines of P.

Since W is isotropic and regular 1.7 implies

Z IW X with heRL(V) nU(V).
We claim 2 [rad P ,. This follows from considering the effect of 2 on
KL0. Hence2iP X.leandso2eX.E(R). Thus

e (X.E(R) )- E(R)-. Q.E.D.
2.3. Let ,( V) >-- 3 and e A. Then CDC( (z) is abelian if is a transvection

or a totally degenerate plane rotation or quasi-symmetry. And CDC() is non-
abelian if (z is a hyperbolic rotation with (r 1 ,

Proof. If z is a transvection or a totally degenerate plane rotation or a
quasi-symmetry, 2.2 implies CDC()

_
E(R)-. Since dim R 1 or R is

totally degenerate, 1.4 of [6] implies E(R)- is abelian.
If z is a hyperbolic rotation withz lv, 2.1 implies E(R) CDC(z), so

E(R)- (CDC(z))- CDC() since C(z)- C(e) by 1.11. Since R is
hyperbolic plane and G has enough proiective transvections, there are two
non-commuting projective trnsvections in E(R)-. Q.E.D.

3. Applications to automorphism theory
3.1. Let A be an isomorphism of G into PU(V) which maps each projective

transvection in G to a projective transvection having the same proper line. Then
h equals the identity map on G.
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Proof. Let L be an isotropic line of V and e a non-trivial projective trans-
vection in G having proper line L. Let be a typical element of G; write
i A and let el Ae where r is a transvection having proper line L.

--1 --1Set f r and g r A] is a projective transvection with line L and
is a projective transvection with proper line alL. Since A] , a- fixes

all isotropic lines of V and 1.7 implies a a, with ), eRL(V)n U(V).
Hence ()al)- ha for all @ in G. Q.E.D.

DEFINITION. Let g be a semi-linear isomorphism of V onto V. We say g
is a unitary semi-similitude if there is k e F such that (gx, gy) k(x, y)u for
all x, y in V where u is the field automorphism of g.
Given a unitary semi-similitude g we may define a map Ag of Us(V) onto

U,(V) by A(a) gag-1 for e Us. Similarly we define the map of
PU,(V) onto PU,(V) by () (A(a))- for all ePU,(V). It is easy
to see A and are automorphisms of Us(V) and PUs(V) respectively.

3.2. Let g be a semi-linear isomorphism of V onto V and n >- 2. Then g is a
unitary semi-similitude =, for all x, y in V, (x, y) 0 implies (gx, gy) O.

Remarlc.

is clear. The converse implication is proved on page 18 of [3].
Q.E.D.

We assume x(F) 2 in the rest of Section 3.

3.3. Let A be an automorphism of G and a shearing in A with residual line
L. Suppose ,(V) >_ 3. Then A is a projective transvection or projective
qUasi-symmetry.

Proof. We can assume iv Put , A; by 1.7 there is an isotropic
line Fa in V such that Fa Fa. Let ra.X be a non-trivial transvection in A
with line Fa. Put T ra.X by 1.8, 2 and T%-IT- don’t commute and the
equation

[, T] aT-T- with a RL( V)

is impossible by a dimension argument. Put Av T, h [2, T], and
T
-If [a, ]. Since , and ,--1 cannot commute, and ra- cannot com-

mute; hence L rL and (L, rL) 0. So L + rL is the residual space of f.
Now h is the product of the transvections ETZ- and T- which have the

district proper lines Fa and Fa. Hence h is a plane rotation with residual
space R Fa Fa. Because a is isotropic, R is either a hyperbolic plane
or a totally degenerate plane; we will show R is a hyperbolic plane.
Note ZTZ- rZa.X and T- ra,--k ;from these formulas it follows ZT-and T- both fix the plane R. Thus either T- and T- both induce 1. or

they induce non-trivial transvections on R with distinct proper lines (depend-
ing on whether (a, Za) 0 or (a, a) 0). In any case hR [, T]R
-1.sincex(F) 2. By 1.7of [6] h 1; and surely h .lwith

1. So is not an involution and since A] ,f is not an involution. So



160 ROBERT SOLAZZI

f satisfies the hypotheses of 2.1 and so E(L + rL) CDC(f). Thus

E(L + rL)

_
(CDC(f)) CD(C(f)) CDC(])

since C(f)- C(]) by 1.11. Thus CDC(]) is non-abelian, since both and
e-le-, are in E(L + rL)- and they don’t commute. Hence CDC(f) is non-
abelian. So if R were totally degenerate 2.3 would imply CDC(f) is abelian,
a contradiction. Thus R is a hyperbolic plane.

Finally we show A is a proiective shearing. We saw above

e E(L + rL)- (CDC(f) )-

_
CO(C(f) )- CDC(]).

So we have that A e CDC(A]) CDC(f). By 2.2,

A, CDC(f)
_

E(R)-;

thus we may assume the residual space of 2; is contained in R. If R is the
residual space of 2; and 2; R is a scalar, then since CDC(f) E(R)- we see

centralizes CDC(f) which contradicts the fact e CCDC(]); if R is the re-
sidual space of 2 and 2IR isn’t a scalar, the proof of 2.l shows E(R)
CDC(Z), contradicting the fact CDC() is abelian. So 2 has residual space
a line. Q.E.D.
Thus 3.3 says any automorphism A of G maps proiective shearings to pro-

jective shearings under the assumptions we made. For the rest of Section 3
let us assume the hypotheses of Theorem 3.3 are in force; we are going to show
that in fact A maps projective transvections to projective transvections. Note
if al and as are shearings lv with residual spaces L1 and L., then
iff L L. or (L, L) 0. We also see that if e G is a non-trivial shearing
with residual space the line L, then CC() E(L)-

DEFINITION. For a subspace W of V, let S(W) be all projective shearings
in G whose residual lines are contained in W. For a subset X of G, let C’(X)
be all projective shearings in G which commute with each element of X.

LEMMA 1. Let r and r be non-trivial commuting shearings in G with distinct
residual lines L and L. Then

C’C’(, .) S(L + L); and C’C’(I, ) S(L, + L)

if and are both transvections.

Clearly
C’(e, 2) S( (L + 53)*) u S(L) u S(L).

Thus C’C’(, ) S(L1 + L.). However if al and as are both transvec-
tions then C’(1, .) S((L + L)*) and this implies

S(L + L) C’C’(, ). Q.E.D.

LEMM/k 2. Under the hypotheses of 3.3, if a is a projective transvection in G
then AI is also a projective transvection.
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Proof. If char F p > 0, then each transvection 1 has order p while
no quasi-symmetry can have order p. So we can assume char F 0.
We may suppose 1 i; let 1 have residual line L1 and choose an isotropic

line L. in V such that (L., L1) 0 and L L1. Choose a non-trivial pro-
jective transvection in G with line L.. Let the shearings A and A have
lines L and L.
Then the totally degenerate plane L W L contains an infinite number of

distinct pairwise orthogonal isotropic lines. Thus

contains an infinite number of distinct pairwise commuting projective trans-
vections with pairwise distinct double centralizers. So C’C’(Ae, h) con-
tains an infinite number of distinct pairwise commuting projective shearings
with pairwise distinct double centralizers. We know

C’C’(A, A2) S(L + L)

so the plane L L contains an infinite number of pairwise distinct lines
K1... Kin... such that (K, K) 0 if i j. This implies the plane
L + L is totally degenerate which implies hl is a projective transvection as
desired, Q.E.D.
So we see (under the hypotheses of 3.3) the automorphism A of G carries

projective transvections to projective transvections.
For L an isotropic line define T(L) to be the group of all projective trans-

vections in G having proper line L. It follows from 1.3 that T(L) is a maxi-
mal group of projective transvections in G and that every maximal group of
projective transvections in G has the form T(L) for some isotropic line L.
Let A be an automorphism of G; by Lemma 2, AT(L) is a maximal group of
projective transvections in G and hence there is a unique isotropic line
such that AT(L) T(L’). The map L -- L’ is easily seen to be a bijection
of the isotropic lines of V. Since the commuting of two projective trans-
vections is equivalent to the orthogonality of their proper lines, we see
(L1, L) 0 if and only if (LI’, L.’) 0 for any two isotropic lines L1 and
L. And the bijection inverse to L ---. L’ is the one induced by the automor-
phism h-1 of G.
Now let L and L. be two distinct orthogonal isotropic lines, and and

be two nontrivial projective transvections in G with residual lines L and
respectively. We saw above that C’C’(, ) is equal to the set of all pro-
jective transvections in G whose residual lines fall in the totally degenerate
plane L1 + L.. From this centralizer computation and the fact A preserves
projective transvections, it follows that if L8 c L L then L c L +L,
and L’ -t- L is a totally degenerate subspace of V.

3.4. Suppose {L}, 1 <= i

_
r, is a finite set of pair-wise orthogonal isotropic

lines. Then
L L -4- -t-L,. :* L

_
L -+- A- L’.
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Proof. Consideration of A- shows it is enough to prove

The above remarks establish this for r 3 and it trivially holds for r 1 or
2. So let r _-> 4 and induct on r. If L1 Lr the theorem is trivial. Assume
L1 Lr so 51 K -t- Lr where K is a line contained in L2
K is isotropic so

K’ __c L + + /2r_

by induction. And Li K’ + L’ since the theorem holds for r 3. Hence

LIK’+L_L+ +L. Q.E.D.

Now 3.4 implies the bijection L ---+ L’ of isotropic lines induced by A maps
any finite set of independent pairwise orthogonal isotropic lines to independent
pairwise orthogonal isotropic lines. For W any m-dimensional totally de-
generate subspace of V, choose a base x, x for W and define W’ to be
the m-dimensional (totally degenerate) subspce of V spanned by the in-
dependent lines (Fxl)’, (Fx,)’. Using 3.4 it is easily seen W’ is inde-
pendent of the particular base xl, .., x chosen for W. So A induces a
well-defined dimension-preserving map W -- W’ of the totally degenerate
subspaces of V. This map is easily seen to be a dimension-preserving bijec-
tion of the totally degenerate subspaces of V. And the bijection inverse to
W -- W’ is the one induced by the automorphism A- of G.
Now the bijection W --+ W’ of totally degenerate subspaces that h induces

satisfies the hypothesis of the theorem given on page 82 of [3]. Applying
that theorem we conclude there is a unitary semi-similitude g of V onto V
such that gW W’ for all totally degenerate subspaces W of V of dimension
v(V) 1.
Let L be an isotropic line of V. Choose a maximal totally degenerate sub-

space W of V with L

_
W. Then L , W, where {W,} is the family of

all subspaces of W of dimension P(V) 1 which contain L. We have
gL , gW, f, W’, L’. Hence gL L’ for all isotropic lines L of V.
One easily sees X-I o A is an isomorphism of G into PU,(V) that satisfies
the hypotheses of 3.1. Hence A X and we have proved

3.5. THEOREM. Let G be a subgroup of PU(V) which has enough projec-
tive transvections and suppose (V) => 3, x(F) 2. Let A be an automorphism
of G. Then there is a unitary semi-similitude g of V onto V such that A

3.5a. COROLLARY. Let P(V) ->_ 3, x(F) 2 and let S be a subgroup of
U( V) that has enough transvections. Let A be an automorphism of S. Then
there is a homomorphism x of S into the center of U,( V) and a unitary semi-
similitude g of V such that Az X(z)" g(rg

-1 for all e S.

Proof. A induces an automorphism X of given by X(e) (An)- for
zeS. ThusX by 3.5 and so Az)- (A(a) )- for all z e S, orAz
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x()"A(), X() a scalar in U=(V).
homomorphism. Q.E.D.

Since A is an automorphism, x is a

4. The automorphisms of the unitary congruence groups

Let o be an integral domain of any characteristic and for a e o let the map
a --* a be a non-trivial automorphism of of period two. Let F be the
quotient field of ; the automorphism * of has a natural extension to an
automorphism of F which we again denote by *.
Let V be an n-dimensional vector space over F and (x, y) be a non-degen-

erate hermitian form defined on V taking values in F. Let E denote the
fixed field of the * map.

4.1. Let a and be any two fractional ideals of o.
in F of trace zero such that ha b.

Then there is a non-zero

Proof. It is enough to prove this under the assumption a o, b o.
Let/ be a non-zero element of 13. Since o* o, /t* e b. Clearly we can
choose a non-zero in of trace zero. Then , t*t does the job. Q.E.D.

DEFINITION. An o-module M is bounded if there exists an o-linear iso-
morphism of M into some free a-module of finite dimension.

Let M be a bounded o-module contained in V such that FM V where
FM {ax a eF, x eM}.
For any vector a e V, define the coefficient of a, ca, as {a e F]aa e M}.

ca is a fractional ideal of o. And if p is a non-zero linear functional on V, then
p(M) is a fractional ideal of o.
We define the three integral unitary groups T,(M), U(M), and U(M)

as follows:

U,(M) {#e U,(V) IM M}, U-(M) U,,(M) n SL,,(V)

and T=(M) is the group generated by all transvections in U(M).
Now let a be a non-zero ideal in o. Put

a.M {E, a,x, a, e a, x, eM}

and define the unitary congruence groups to be

U,,,(M; a) {(re U,,(M) I(o" lr)M a.M}

U(M; a) U,(M; a) n SL,,(V)

and T,(M; a) is the group generated by all transvections in U,,(M; a). We
see T,,(M; a) U(M; a) U,(M; a) are normal subgroups of U,,(M),
and T,(M; o) T,,(M) U(M; o) +U,(M), U,,(M;o) U,,(M).
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The projective unitary congruence groups

PTL,(M; a), PU+(M; ), PU,(M;

are defined to be the images of T,(M; a), U+(M; a), U,(M; a) respectively
under the -map of Un(V) onto the quotient of Un(V) rood its center.

If ra.x e U(V), it is easy to see

h(M, a) ca.a k(M, a)a a.M ra.x TL,,(M; a).

4.2. For n >= 2, TL,(M; ) has enough transvections.

Proof. Let L Fa be an isotropic line of V; (x, a) is a non-zero linear
functional on V and so (M, a) is a fractional ideal of o. Using 4.1, choose a
non-zero in F of trace zero such that (M, a)

___
ca.a; since has trace zero,

r.x e Us(V). The above remarks show ra.x e TL,(M; a). Q.E.D.

4.3. Let (V) _-> 3, x(F) 2; let G be one of the groups

PU,(M; a), PU+(M; ) or PTL,(M; a),

and suppose A is an automorphism of G. Then there is a unitary semi-similitude
g of V onto V such lhat A

Proof. 4.2 implies G has enough projective transvections. Now apply 3.5.
Q.E.D.

4.4. THEOREM. Let (V) > 3, x(F) 2, let S be one of the unitary con-
gruence groups U,(M; ), U(M; a) or TL,(M; a), and suppose A is an auo-
morphism of S. Then there is a homomorphism x of S into RL(V) U,(V)
and a unilary semi-similitude g of V onto V such $hat A X(r). Ag() for all

Proof. Apply 3.5a and 4.2. Q.E.D.

REFERENCES

1. JOHN H. BIGs, Automorphisms of projective unitary groups, Thesis, University of
Illinois, 1966.

2. J. DIEUDONN, On the automorphisms of the classical groups, Mere. Amer. Math. Sot.,
New York, 1951.

3.,La Geometric des Groupes Classiques, Third Edition, Spriager-Verlag, Berlin,
1971.

4. M. I-IARTY, Automorphisms of the 4-dimensional unimodular unitary group, Thesis,
University of Illinois, 1967.

5. A. A. JOHNSON, The automorphisms of unitary groups over a field of characteristic 2,
Amer. J. Math., vol. 93 (1971), pp. 367-384.

6. O. T. O’ME, Group-theoretic characterization of transvections using CDC, Math.
Zeitschrift, vol. 110 (1969), pp. 385-394.

7. C. E. RIcKxa, Isomorphic groups of linear transformations II, Amer. J. Math., vol.
73 (1951), pp. 697-716.



AUTOMORPHISMS OF THE UNITARY GROUPS 165

8. R. E. SoLAzzI, The Automorphisms of the symplectic congruence groups, J. Algebra,
vol. 21 (1972), pp. 91-102.

9. E. SPIEGEL, On the automorphisms of the unitary group over a field of characteristic 2,
Amer. J. Math., vol. 89 (1967), pp. 43-50.

10. E. SPIEGEL, On the automorphisms of the projective unitary groups over a field of char-
acteristic 2, Amer. J. Math., vol. 89 (1967), pp. 51-55.

11. --, Automorphisms of unitary groups, J. Algebra, vol. 19 (1971), pp. 541-546.
12. J. WALTER, Isomorphism between projective unitary groups, Amer. J. Math., vol. 77

(1955), pp. 805-844.
13. M. J. WONENBVRGER, The automorphisms of U+(k, f) and PU+(k, f), Rev. Mat. Hisp.-

Amer. (4), vol. 24 (1964), pp. 52-65.

INDIANA UNIVERSITY
BLOOMINGTON, INDIANA




