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A derivation on a Banach algebra is a linear map
ties (ab) a(b) + (a)b for all a, b . Let () denote the bonded
finear operators on a Hflbert space . It is known that every derivation
on () is inner; that is, for some A, () where

Aa B AB BA

for all B e (). (In fact, every derivation on avon Neumann algebra is
inner; see Kadison [8], Kaplansky [10], and Sakai [15].) Lumer and Rosen-
blum [12] have deterned the spectrum of an inner derivation. They showed
that

It iso [17] that

]] a 2 n{] A kI l[:k complex}.

(For the norm of a devation in a yon Neuma Mgebra see [5] and [9].)
We now tn our attention to the range of the derivation h. Specie

qutio about the size of a,(()), raised in [2], [18] and [21], 1 be
answered. (For a not unrelated question from the algebraist’s point of ew
see [11], question 12.)
The basic tool in the main theore is the followg simple lemma. Tho

essential spectrum of A, denoted by (A) is the spectrum of A the Calkin
algebra ()/ where is the two sided ideal of compact operators.

LEMMA 1. Let A e(). Let k0e0(A). Then there exist utually
orthogonal sequences of unit vectors {f}, {g} such that

(A ko)h O and ] (A ko)*g] O.

Proof. If k0 e O(A), then k0 is in the left essential spectrum of A and
hence by [4] there ests an orthonormal sequence {f} such that
]] (A k0)f ] 0. By the same reasoning there ests an ohonormal
sequence {g} such that (A k0)*g 0. By replacing {} and {g,}
by appropriate linear combations we easily achieve the desired result.

EOEM 1. Let A e (). Then (A), the range of Ax, is ner norm
dense in

Proof. Choose k0, f}, {g} as in Lemma 1.
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Define V as follows

V f-, g,
V clm [f} - clm {g arbitrary but bounded.

Then for any T e (B(C),

V- (AT- TA) [I >_I([V- (AT- TA)]f,,
1 - ((A o)f, T*g) (Tf,,, (A 0)*g.)

-,1 as n--.
The proof ,is complete.

Remark. This answers a question raised in [18]. It is easy to modify the
definition of V to make i unitary, self-adjoint, nilpotent or almost what you
will.
By 6t(A)- we mean the norm closure of 6t(A).

COROLRr. Let A e 5(C) Then ()/(R(A,) is not separable.

Proof. As in the previous proof choose 0, {f.I and {g]. Assume without
loss of generality that 0 0 and that clm {fl F and clm {g,]" G are
infinite dimensional. Let a be a subset of Z+ and define

UJ f-l-g for n
\--g, for n

Extend U to a map of F onto G so that U is unitary. Clearly
2 for a t. Define an equivalence relation on the set U.I as follows"
U. U if they differ at only a finite number of the f.’s. Clearly there are

an uncountable number of distinct classes. Moreover

[] (AT- TA) -I- (V,- U) I! >- 2

for U,, U in distinct equivalence classes by the argument in the previous
theorem.

Since inf{ ]] L W (U U) II L e (R(Aa)-] 2 for U,, U in distinct
equivalence classes, it follows that ((C)/((h) can not be separable.

Remar]c. Note that (A) can itself be non-separable. For example if
A is the operator valued matrix

0 2I,

on @ N: hen 61(zX) is already norm elosed and consists of all operaors of
the form

0 S
R 0

where R, S are arbitrary operators in (C). On the other hand for A com-
pact, ((5) is always separable.
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In problem 49, page 479 of [21], J. Daleckii asks whether

6l(Aa)= + {At’ 6()

for all self-djoint A e6(). (Here {AI’ denotes he eommuan of A.)
If we seA (1/n) where is an orhonormal basis for H, i is no hard
o see we do no obtain equality. In fae ()/[(a)= + {A}’] is no
even separable in his case.

If A is no self adjoin then even more sriking behavior can occur. Le A
be he Donoghue shift" Aq, 2-+t where {} is an orhonormal basis
for . Then by a resul of Nordgren [22], {A}’ consists of eompac opemors
(in fae, any opemor in {A}’ is he norm li of polynomials in A). Thus
(a)= + {A}’ is subse of he eompae opemors and hence is separable.

EOREM 2. Let A, G e () be fixed where G O. Then tre exists a
unitary operator U such that U*GU (Ax); that is (A) contains no uni-
tarily invariant subset of operators.

Proof. If G [ then G (Aa) since I is not a commutator by a well
known result of Wintner [20]. If G XI then there exists a basis {} for H
such that

(G,) 0 forn, m 1,2, (see [13])

let (Gn, +) z. Choose 0, {fn}, {g} aS in Theorem 1. We assume
X0 0. By passing to a subsequence we can guarantee that

z, and Agll n z.

We define U as follows

U j .
U" g +1
U elm [f, g,} elm {,+} 1-1, onto, and isometric.

Clearly U is unitary. Assume AT TA U*GU for some T e ${C).
then

Hence I[T n/2 for all n which is bsurd.

COROLLARY. For A e $(), (Aa) does not conin all operators of ranlc
one and hence does not contain any ideal in (e).

This corollary answers a question raised in [2].

COROLLARY. Let A, G e () jbr 1, 2, .. Then there exists a,
uniry operator U such that U G U (Ax) for 1, 2,

Proof. Assume without loss of generality that each G XI. An easy
modification of the argument in [13] enables us to choose an orthonorml basis
{suchthat (G,,) 0for/c,n,m 1,2, .... Set Z
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where each n is infinite dimensional and has a subset of the n’S aS an ortho-
normal basis. Ii’or each G/ it is possible to repeat the argument in the theorem
(on aC) to attain the desired consequence.

Let K be compact and let X >_ X >_ be the eigenvalues of (K’K)1,.
Then K e e (Schatten p-class) if )2 M I" < -IEMMA 2. There exists a compact operator K which does nol commute with
any operalor of Schagen p-class.

Proof. Let {q} be an orthonormal basis for aC. Define K,, an
where a 1/log n for n > 2 and a a 1. Assume B commutes with K.
Let B. Z’ b,i. If B 0 then be,1 0 for some /c since ql is a eyelie
vector for K. Let m be the smallest k for which b.t does not vanish. Assume
b,,l 1. A routine calculation shows that

bm+j ,j+l
am am+j--1

al aj
forj 1,2, .--.

Hence b+.+l -> a,+;-, - forj >_ m.
Thus for any p _> 1

Ej=I Bpj I[ Ey--n am+j_l
(m-) Ey--2m_l (log j)-’-}

" > zHence B can not be of Sehatten p-class since if p _> 2 then B II,
for any orthonormal basis {.} (see Gohberg and Krein [6, page 95]).

TH)]OREM 3. There exists a (compact) operator K such that 5t( A)= 3C

the ideal oj" compact operators.

Proof. We choose K to be the operator constructed in the previous lemma.
Since K is compact KT TK 3 for all T e (g(3C) and hence 61(A) J.
On the other hand by Theorem 3 of [19], if A does not commute with an
operator of trace class then 6t(A) D . Hence (It(A)= X.

Remark. If A XI -t- compact, then 6I(A) contains a non-compact
operator. This result, which admits a variety of proofs, can be found in [3].
We now turn our attention to one of the major unsolved problems on the

range of a derivation: Is I e 6t(Aa)= for any A e (g(C) ? The following state-
ments are easily seen to be equivalent:

(i)
(it)
(iii)

I
there exists an invertible operator B in {A}’ such that B e 6/(Aa)=
tit( Aa)= contains all the invertible operators in {A}’.

Our partial answer to the question indicates that it is no mean feat for
6(A)= to contain the identity. We begin with the following"

LEMMA 3. If A <- l and (AT- TA Ill < e then

(An+T TAn+l) n -I- 1)A < 3e.
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Proof. We proceed by induction. Assume AT TA nA"- +
3- where II ]I < . Multiplying fore, then aft by A and adding we
obtain

(A"+T- TA+) + (A"TA ATA") 2hA" 2 3-
where 11 }+, I! < e. But

(A"TA ATA") A(A"-T TA-)A (n 1)A + 3-
where il 5-- < e. Thus A"+T TA"+ (n + 1)A" + 2.3"-5,+ +
3"-._ which completes the proof.

Toa 4. If A O, then I ( /L)

Proof. We may and do assume [I A <- 1. Choose T e B() such that
[I (AT- TA) I < e. Then by thelemma

II (AT TA) kA- < 3-e.
Hence ]] A- < -3- and since e was arbitrary it follows that A- 0.
By repeathg the arment we are led, inexorably, to the concision that
A 0, wch is absurd.

COROLXRY. If A is compact, (tt is, A is nilpont in the Calkin algebra)
then I (

Proof. The argument given above is valid in a e* algebra.
Because we will have occasion to appeal to the next lemma several times, we

state it here eficitly. The proof is left to the reader.

LEMA 4. Let A e () be similar to an operator of the form
S 0
0 T

on . U I, (As)- then I (

EOR5. Let A e(). Let f(A) N where N is rmal a f is
analytic on an open set confining a( T). Then I

Proof. We must consider two cases. The first when a(A) h ite
carnaSty; the second when it has not. Let a(A) be inflate and let z, --.,
z be the zeros off’. Let W ff( z) ]. Choose a closed disc such that

n W 0 and 7 a(A) 0. Thus f’ never vashes on . Let
N k dE(k). Since A commutes with N and hence with E(. we may
ite

A A, 0 onE(f()) E(f()’)
0 A

and
:(A) f(A) 0

0 f(A)
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(here denotes set complementation). Since f(A) is normal and ]’ never
vanishes on a(A) f-[f()] W’, it follows from [1], that A is scalar on
E(f(7))C; that is, similar to a normal operator. Thus 6t(zX)- does not
contain the identity, and hence by the previous lemma, neither does
(It is easy to see that I 6t(A)" for B normal [16]. This point will be dis-
cussed again shortly.)
Now let a(A) be finite. Choose z0 e a(A) and let f(zo) o. Then A

is similar to an operator of the form

A 0 onx@.
0 A

wher (A) {z0} and (A) (A)\{z0} (see [14] Chapter XI). By the
normality of N, the spectral mapping theorem, and any one of several argu-
ments (one of which was used in the first case) f(Ax) i’0I where I here is
the identity on C. Hence g(A) f(A) o Iet O. After factoring
as (z zo)"h(z) we conclude that (A z0)" 0. Thus Ie, 6t(Aa,)" by
Theorem 4 and hence I 6t(zXa)- by the previous lemma.

ColOllAlV. If A is of the following form (or similar to an operator of the
following form) then I 6(

(1) f(A normal
(2) A hyponormal + compact
(3) A Toeplitz + compact
(4) ]] (A X)!] spectral radius of (A X)for some .
Proof. Actually operators of the form (2), (3) or (4) are all in h, that is,

they all possess an approximate reducing eigenvector. More precisely, given
e > 0, there exists a X0 and a unit vectorf such that

(A X0)f]l < e and ][ (A- X0)*f]] < e

(see [16]). It is easy to see that the conclusion follows from this condition.

Remark,. If is a yon Neumann algebra and A 9 then Aa --* [.
We mention that Theorem 1 is valid in this context, that is, Aa(9/) is never
norm dense in . Since any yon Neumann algebra can be written as the
direct sum of algebras of the various types it suffices to consider the case when
[ itself is of fixed type. The algebras of type I, or II, are easily handled by a
trace argument. Using powerful results from his work on yon Neumann
algebras, Herbert Halpern has taken care of the remaining algebras (the
properly infinite ones) thus completing the proof. (See [7] for details.)

Added in proof. Joel H. Anderson has recently shown that there exists
strange and wondrous operator A for which I e R (Aa)’. His pper, "The iden-
tity and the range of a derivation", will appear in the Bulletin of the Ameri-
can Mathematical Society.
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