DERIVATIONS ON @®&(3c): THE RANGE

BY
JoserH G. STtAMPFLI

A derivation on a Banach algebra % is a linear map A : % — ¥ which satis-
fies A(ab) = aA(b) + A(a)bforalla,beN. Let ®&(5C) denote the bounded
linear operators on a Hilbert space 3¢. It is known that every derivation A
on ®(3C) is inner; that is, A = A, for some A ¢ ®(3¢) where

Ay:B— AB — BA

for all B e ®(3). (In fact, every derivation on a von Neumann algebra is
inner; see Kadison [8], Kaplansky [10], and Sakai [15].) Lumer and Rosen-
blum [12] have determined the spectrum of an inner derivation. They showed
that

O'(AA) = {)\1 - )\2 . )\1, )\2 GO'(A)}
It is known [17] that

| Al = 2min{ || A — M || : X complex}.

(For the norm of a derivation in a von Neumann algebra see [5] and [9].)

We now turn our attention to the range of the derivation A,. Specific
questions about the size of A,(®(3C)), raised in [2], [18] and [21], will be
answered. (For a not unrelated question from the algebraist’s point of view
see [11], question 12.)

The basic tool in the main theorers is the following simple lemma. The
essential spectrum of A, denoted by gess(A) is the spectrum of 4 in the Calkin
algebra ®(3C) /X where X is the two sided ideal of compact operators.

LemMmA 1. Let A e®(3C). Let No€00es(A). Then there exist mutually
orthogonal sequences of unit vectors {fa}, {gs} such that

| (A = 2)fall >0 and || (A — M)¥ga || —O.

Proof. If N € 30ess(A), then N\ is in the left essential spectrum of A and
hence by [4] there exists an orthonormal sequence {f.} such that
| (A — No)fn|| — 0. By the same reasoning there exists an orthonormal
sequence {g.} such that || (A — N\o)*g. || — 0. By replacing {f.} and {g.}
by appropriate linear combinations we easily achieve the desired result.

TaeorEM 1. Let A ¢ ®(5¢). Then ®R(A4), the range of A, is never norm
dense in ®(3C).

Proof. Choose N, {fa}, {ga} as in Lemma 1.
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Define V as follows

V ifa—gn
V : clm {fa}* — clm {ga}* arbitrary but bounded.

Then for any T ¢ ®(5¢),

|V — (AT — TA) | 2 [ ([V — (AT — TA)fx, gn) |
=14 ((4 — N)fn, T*gn) - (Tfn: (4 — >‘0)*gn)
—1 as n— .

The proof is complete.

Remark. This answers a question raised in [18]. It is easy to modify the
definition of ¥ to make it unitary, self-adjoint, nilpotent or almost what you
will.

By ®(A4)~ we mean the norm closure of ®R(A,).

CoROLLARY. Let A e ®(3C). Then ®(3C)/R(A4)" s not separable.

Proof. As in the previous proof choose Ny, {f»} and {g.j. Assume without
loss of generality that Ao = 0 and that clm {f,}* = F and clm {g,}* = G are
infinite dimensional. Let a be a subset of Z* and define

Uafon +g, formnea,
\—g. forn¢a.

Extend U, to a map of F onto G so that U, is unitary. Clearly || Us — Us ||
= 2for @ % 8. Define an equivalence relation on the set { U,} as follows:

U. ~ Upgif they differ at only a finite number of the f,’s. Clearly there are
an uncountable number of distinct classes. Moreover

| (AT — TA) + (U — Up) || 2 2

for U,, Up in distinet equivalence classes by the argument in the previous
theorem.

Since inf { | L + (U — Up) || : L e R(A4)™} = 2 for U,, Up in distinet
equivalence classes, it follows that ®(3C) /®(A4)~ can not be separable.

Remark. Note that ®(A,) can itself be non-separable. For example if
A is the operator valued matrix
I 0
0 2I|,

on 3¢ @ 3¢ then ®(A,) is already norm closed and consists of all operators of
the form

0 8
R 0

where R, S are arbitrary operators in 8(3¢). On the other hand for 4 com-
pact, ®R(A,)~ is always separable.
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In problem 49, page 479 of [21], J. Daleckii asks whether
R(AL)T + {4} = ®(3C)

for all self-adjoint A e ®(3C). (Here {A}’ denotes the commutant of A.)
If we set Ap, = (1/n)¢, where ¢, is an orthonormal basis for H, it is not hard
to see we do not obtain equality. In fact ®&(3¢)/[R(A4)~ + {A}'] is not
even separable in this case.

If 4 is not self adjoint then even more striking behavior can occur. et A
be the Donoghue shift: Ag, = 2 "¢,y where {¢,}T is an orthonormal basis
for 3¢. Then by a result of Nordgren [22], { A}’ consists of compact operators
(in fact, any operator in {A}’ is the norm limit of polynomials in A). Thus
®R(A4)~ + {4} is a subset of the compact operators and hence is separable.

TueoreEM 2. Let A, G e ®(3C) be fized where G % 0. Then there exists a
unitary operator U such that U*GU ¢ ®(A4); that is ®(A,) contains no uni-
tarily tnvariant subset of operators.

Proof. 1f G = N then G ¢ ®R(A,) since I is not a commutator by a well
known result of Wintner [20]. If G s A then there exists a basis {¢,} for H
such that

(Gony om) #0 forn,m=1,2, --- (see [13])

Tet (Gesn, @3ns1) = 2.. Choose No, {fu}, {gn} as in Theorem 1. We assume
M = 0. By passing to a subsequence we can guarantee that

| Afall < 7720 and || A% || < 1%,
We define U as follows
U f'n — P3n

U . gn - P3n+1
U : clm {f, g} * — clm {@s4a} 1-1, onto, and isometric.

Clearly U is unitary. Assume AT — TA = U*GU for some T e B(3).
then
L2 | = [ (U*GUfn, gu) | = | (AT = TA)fn, 92) | < 2 T || |20 |/n.

Hence || T || > n/2 for all n which is absurd.

CoroLLARY. For A € ®(3C), R(A,) does not contain all operators of rank
one and hence does not contain any ideal in &(3C).

This corollary answers a question raised in [2].

CoroLLARY. Let A, G, e®(3C) for k = 1, 2, ---. Then there exists a
unitary operator U such that UG U ¢ R(Ay) fork = 1,2, - -.

Proof. Assume without loss of generality that each G = M. An easy
modification of the argument in [13] enables us to choose an orthonormal basis
{onfT such that (Gy en, ¢m) #= 0 fork,n,m = 1,2, ---. Setd = = @ 3C,
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where each 3¢, is infinite dimensional and has a subset of the ¢,’s as an ortho-
normal basis. Tor cach G} it is possible to repeat the argument in the theorem
(on 3¢;) to attain the desired consequence.

Let K be compact and let My > X > - be the eigenvalues of (K*K)"2.
Then K € €, (Schatten p-class) if Z |\, |” < .

Lemma 2. There exists a compacl operator K which does not commute with
any operator of Schatten p-class.

Proof. Let {¢a}T be an orthonormal basis for 3¢. Define K¢, = @ ¢ni1
where a, = 1/lognforn > 2and a; = a, = 1. Assume B commutes with K.
Let Bo; = Z7 br,jor. If B 5 0 then b,y ## 0 for some k since ¢, is a cyclic
vector for K. Let m be the smallest k for which b, ; does not vanish. Assume
bn1 = 1. A routine calculation shows that

bmtjjar = IO g i 0
v Ay * - aj
Hence | bmijjsr| 2 [ @myja |77 forj > m.
Thus for any p > 1

25 [ Bes | 2 2fem [ @i P77 = 2 (log ) 77 = oo,
Hence B can not be of Schatten p-class sinceif p > 2 then || B ||5 > Z || BY; ||°

for any orthonormal basis {;} (sec Gohberg and Krein [6, page 95]).

TuroreM 3. There exists a (compact) operator K such that ®(Ax)~ = X
the ideal of compact operators.

Proof. We choose K to be the operator constructed in the previous lemma.
Since K is compact KT — TK e X for all T ¢ ®(3C) and hence R(Ax) C X.
On the other hand by Theorem 3 of [19], if A does not commute with an
operator of trace class then ®R(A4)” D K. Hence R(Ax)™ = K.

Remark. If A # N 4+ compact, then ®R(A,) contains a non-compact
operator. This result, which admits a variety of proofs, can be found in (3].

We now turn our attention to one of the major unsolved problems on the
range of a derivation: Is I e ®(A,)” for any A e ®(3)? The following state-
ments are casily seen to be equivalent:

(1) Te®(Aa)™
(ii) there exists an invertible operator B in { A}’ such that B e R(A4)~
(i1)  ®(A4)~ contains all the invertible operators in {4}’

Our partial answer to the question indicates that it is no mean feat for
®(A4)” to contain the identity. We begin with the following:

Iemma 3. If||A|| £ land | (AT — TA) — I || < ¢ then
| (AP — TA™) — (n + 1)A" | < 3"
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Proof. We proceed by induction. Assume A™T — TA" = nd"™" +
3", where || 6, | < e. Multiplying fore, then aft by A and adding we
obtain

(A™M'T — TA™Y) 4 (A™TA — ATA™) = 204" + 2-3" %, 1
where || dn41 || < &. But
(A"TA — ATA™) = A(A™'T — TA"HA = (n — 1)A™ + 3" %,

where || 6,1 || < & Thus A"M'T — TA™™ = (n + 1)A" + 23" %61 +
3" %,-1 which completes the proof.

TasoreEM 4. If A* = 0, then I ¢ R(AL)".

Proof. We may and do assume || 4 || < 1. Choose T e ®(3¢) such that
| (AT — TA) — I|| < &. Then by the lemma

| (A*T — TA*) — kA* || < 3 7e.

Hence || A* ™ || < k78" "¢ and since & was arbitrary it follows that A*™ = 0.

By repeating the argument we are led, inexorably, to the conclusion that
A = 0, which is absurd.

CoroLrARY. If A is compact, (that is, A is nilpotent in the Calkin algebra)
then I ¢ R(A4)".

Proof. The argument given above is valid in a €* algebra.
Because we will have occasion to appeal to the next lemma, several times, we
state it here explicitly. The proof is left to the reader.

LemMA 4. Let A € B(3C) be similar to an operator of the form

S 0
(LA

on 3, @ 3 = 3. IfIyp, ¢ R(As)” thenI ¢ R(AL)™.

THEOREM 5. Let A ¢ ®(5C). Let f(A) = N where N is normal and f is
analytic on an open set containing o(T). Then I ¢ R(AL)™.

Proof. We must consider two cases. The first when ¢(A) has infinite
cardinality ; the second when it has not. Let ¢(A) be infinite and let 2y, - - -,
2n be the zeros of /. Let W = f[f(Uf 2;)]. Choose a closed disc v such that
yanW = @ and ¥y n ¢(A) # @. Thus f/ never vanishes on vy. Let
N = f)\ dE(\). Since A commutes with N and hence with E(:) we may
write

A = A1 O
0 A

on E(f(y))3 & E(f(v)")3c

and '
A AP il
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(here ’ denotes set complementation). Since f(A;) is normal and f' never
vanishes on ¢(4,) < f[f(8)] € W', it follows from [1], that A, is scalar on
E(f(v))3c; that is, similar to a normal operator. Thus ®(A,,)” does not
contain the identity, and hence by the previous lemma, neither does ®R(A4)™.
(It is easy to see that I ¢ ®R(Az)~ for B normal [16]. This point will be dis-
cussed again shortly.)

Now let ¢(A) be finite. Choose 20 e¢c(A) and let f(z) = (. Then A
is similar to an operator of the form

A4: 0
0 A4,

on ity ® I, = 3

where 0(41) = {24 and ¢(A4s) = o(A)\{20} (see [14] Chapter XI). By the
normality of N, the spectral mapping theorem, and any one of several argu-
ments (one of which was used in the first case) f(41) = {oI where I here is
the identity on 3¢;. Hence g(41) = f(41) — ¢olg, = 0. After factoring f
as (2 — z0)"h(2) we conclude that (A; — 2z0)" = 0. Thus Iy, ¢ ®R(A4,)” by
Theorem 4 and hence I ¢ ®R(A,)™ by the previous lemma.

CororrArY. If A is of the following form (or similar to an operator of the
Sollowing form) then I ¢ R(A4)™:

(1) f(A) = normal

(2) A = hyponormal + compact

(3) A = Toeplitz + compact

(4) | (A — N) || = spectral radius of (A — \) for some \.

Proof. Actually operators of the form (2), (3) or (4) are all in &;, that is,
they all possess an approximate reducing eigenvector. More precisely, given
& > 0, there exists a N\ and a unit vector f such that

(4 =27l <e and || (4 =27l <e
(see [16]). It is easy to see that the conclusion follows from this condition.

Remark. If ¥ is a von Neumann algebra and A e then A, : A — 2.
We mention that Theorem 1 is valid in this context, that is, A4() is never
norm dense in . Since any von Neumann algebra can be written as the
direct sum of algebras of the various types it suffices to consider the case when
9 itself is of fixed type. The algebras of type I, or IL, are easily handled by a
trace argument. Using powerful results from his work on von Neumann
algebras, Herbert Halpern has taken care of the remaining algebras (the
properly infinite ones) thus completing the proof. (See [7] for details.)

Added in proof. Joel H. Anderson has recently shown that there exists a
strange and wondrous operator A for which T ¢ R (A,)". His paper, “The iden-
tity and the range of a derivation’, will appear in the Bulletin of the Ameri-
can Mathematical Society.
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