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Abstract

Let S be an arbitrary infinite set and let G be the group of finitely sup-
ported permutations of S; give G the topology of pointwise convergence on S.
Let B be a reflexive Banach space and let T' be a continuous representation of
G on B such that || T'(g) || < M for all g ¢ G for some fixed positive number
M. Through the use of a canonically defined dense subspace of cofinite
vectors, it is shown that I is strongly continuous and contains an irreducible
subrepresentation. An equivalence relation of cofinite equivalence of repre-
sentations is defined; if T is irreducible, then T is cofinitely equivalent to an
irreducible weakly continuous unitary representation of G on a Hilbert space.

1. Introduction and notation

The author [1] has shown that any weakly continuous unitary representa-
tion of an infinite symmetric group on a Hilbert space is the direct sum of
irreducible representations; these irreducible representations were explicitly
constructed.

Below, we consider a weakly continuous uniformly bounded representation
I' of an infinite symmetric group on a reflexive Banach space B. We show that
B contains a canonically defined dense subspace which is invariant under T';
a vector v is in this subspace iff it is invariant under the action of a certain
type of subgroup. T is strongly continuous and contains an irreducible
subrepresentation. If I is irreducible, then there is a unique (up to unitary
equivalence) weakly continuous unitary representation @ of G on a Hilbert
space such that the restriction of T to its canonically defined dense subspace
is algebraically equivalent to the restriction of € to its canonically defined
dense subspace.

S will denote a fixed arbitrary infinite set and G will denote the group of
those permutations II of S such that {se S : II(s) = s} is finite. Give G the
topology of pointwise convergence on S; (@ is a topological group but is not
locally compact.

If B is a Banach space, then B’ denotes the dual of B. If D is a subset of
B, then sp (D) is the subspace of B that is spanned algebraically by D and
cl sp(D) is the closure of sp(D);

D* = {feB' : f(v) = 0forallveD]}.

A representation of G on the Banach space B is a homomorphism of G
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into the bounded linear operators on B. The representation T' is weakly
(strongly) continuous if I'(g)v is a weakly (strongly) continuous function
of g for every v € B; T is uniformly bounded if there is a real number M such
that [T (g) || < M for every geG.
IfT C 8§, let

Gr={geG:9(s) =sifs¢T}
and let

G ={geG:g(s) = sifseT}.

Note that Gs_r = G".
DeriniTioN. Let T' be a representation of G on the Banach space B.

(1) LetveB. Thenuwisa cofinite vector for I if there is a finite subset 7
of 8 such that T' (¢)v = v for all g ¢ G.” The vector » is cofinite of type n if T'
may be chosen to have cardinal number n and if it is impossible to choose T
with cardinal number less than .

(2) Let v be a non-zero cofinite vector for I' of type n. Then v is a mini-
mally cofinite vector for I' if no non-zero vector in cl sp (I'(G)v) is cofinite
of type less than n.

(83) T is uniformly of type » if no non-zero vector in B is cofinite of type m
with m < n and if el sp ({ cofinite vectors of type n}) = B.

(4) If T is a finite subset of S, then

r={veB:T (g = vforallgeG}.

(5) Br is the subspace of all cofinite vectors for T.

(6) Let D be a Banach space and let 2 be a representation of G on D.
Then T is cofinitely equivalent to @ iff there is a 1-1 linear mapping U from
Br onto Dg such that UT'(g)y = Q(g)Uv for every ve B and g ¢G.

(7) A Banach space B is an 9, space [2, p. 60] if there is an arbitrary
index set A and a family {N) : X e A} of finite-dimensional subspaces, directed
by inclusion, whose union is dense in B and such that each N, is the range of a
projection Py of norm one of B.

(8) T is completely decomposable [4, p. 230] if {ve B : T(G) acts irrc-
ducibly on cl sp (' (G )v)} is dense in B.

Remarks. (1) Clearly cofinite equivalence is an equivalence relation on
the set of representations of G on Banach spaces.

(2) It follows from [1] that two weakly continuous unitary representa-
tions of G are cofinitely equivalent iff they are unitarily equivalent.

(3) Complete decomposability as defined in definition 8 agrees with the
usual definition in the case when T' is a unitary representation on a Hilbert
space.

Example. Let M, be a positive number and let m be a measure on S such
that My > m({s}) > 1/MoforeachseS. Letl < p < «,let n be a positive
integer, and let B = L”(S", m"). Then B is a reflexive Banach space and
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the canonical representation I' of ¢ on B, defined by
TG (s, 82,y 8a) = 0(g " (81), 97 (s2), =~ 9 (8a))

is weakly continuous and is uniformly bounded by M3".

If v € B, then v is a cofinite vector for I' iff there is a finite subset 7 of S8
such that support (v) < T". The non-zero vector v is minimally cofinite iff
v is the characteristic function of { (s, s, - -+, s)} for some seS.

2. Statement of the results

In the next section, the following theorems are proved.

THEOREM 1. Let T' be a uniformly bounded weakly continuous representation
of G on the reflexive Banach space B. Then

(1) By is dense in B,

(2) T s strongly continuous.

THEOREM 2. Let T' be a uniformly bounded weakly continuous representation
of G on the reflexive Banach space B. Assume there is a non-negative integer n
such that T s uniformly of type n. Then T s completely decomposable.

If, in addition, T'(g) is an isometry for each g ¢ G and there is a minimally
cofintte cyclic vector for T, then B is an 9, space.

THEOREM 3. Let T be a uniformly bounded weakly continuous representation
of G on the reflexive Banach space B. Then T contains an irreducible subrep-
resentation.

TuEOREM 4. Let T' be an irreducible uniformly bounded weakly continuous
representation of G on the reflexive Banach space B. Then there s a Hilbert
space H and an trreducible weakly continuous unitary representation Q of G
on H such that T 1s cofinitely equivalent to Q. Q is unique up to unitary equiva-
lence.

Remarks. (4) The theorems and their proofs hold, with trivial modifica-
tions, if T is an antirepresentation of G.

(5) 1If Bis an infinite cardinal number, let G be the set of those permuta-
tions IT of S such that {seS : II(s) # s} has cardinal number less than g;
note that G is the group of all permutations of S if 8 is sufficiently large.
Give Gj the topology of pointwise convergence on S. Theorems 1, 2, 3, and
4 remain valid if G is replaced by Gs. The proofs require trivial modifica-
tions.

3. Proof of the theorems

For the remainder of this paper, Z will denote the set of all finite subsets
of 8. If Q ez, | Q| will denote the cardinal number of @ and Z, will denote
the set of all finite subsets of S — Q. Z and Z¢ are directed sets with respect
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to set inclusion as the partial order relation. If m is a non-negative integer,
Sn =1{QeZ:|Q| = m}.

M will always denote a fixed real number such that || T'(g) || < M for all
ged.

If A is an index set and x) ¢ B for each X e A, then zy = 0 a.a. (almost al-
ways) if {NeA : ax 5 0} is finite.

Proof of Theorem 1. (1) Let feB’, f % 0. Pick we B so that f(w) = 1.
By continuity, there is a neighborhood U of e such that real f(I'(g)w) >
if ge U. Therefore, there is a finite subset 7T of S such that f(I' (¢)w) >
if geG.

If QeZr, let Ro = | Q™ Yoo I'(9). Note that T (h)Re = Roif heGo.
| Ro|l < M. Therefore | Row| < [[Rellllwl] < M| w]. Since Bis
reflexive, the ball of radius M in B is weakly compact. Consequently, there
is a subnet {Ro: QeYr} of {Rg: QeZs}, where Yr C Z,, such that
{Row: QeYr} converges weakly to a limit point ».

Let ge G"begiven. Let ¥ = {seS:¢g(s) & s};then Y eYy,.

(SR

I'(g)v = I'(g) weak limitoey, Row
= weak limitoey, I' ()R w

= weak limitoeyr,oor I'(¢)Row

I

weak limitQ,tyT,sz RQ w =0,

Consequently, v is a cofinite vector for T'.
Let Q € ‘yT . Then

real f(Row) = real | Q | Louaq fT@w) 2 (@11 Tewo 3 = &

Therefore real f(v) > 1. Consequently, (Br)+ = 0 and By is dense in B.

(2) LetxeBr. Assumez e By, where T is some finite subset of S. Then
G" is a neighborhood of ¢, and T'(g)z = x if g ¢ G". The strong continuity of
T follows immediately from the density of Br and the uniform boundedness
of T.

Proof of Theorem 2. Let v be a non-zero cofinite vector of type n; assume
TeS, and T(g)y = v for all geG". Let D = cl sp(T'(Qw). If geG, let
Q(g) = T'(g)|D.

Since Gy is a finite group, sp (T'(Gz)v) is a finite-dimensional subspace and
consequently there is a positive integer m and subspaces D;r, 1 < j < m of
sp (T (Gr)v) such that sp (I'(Gr)v) = ®i<j<m Djr and T'(Gr) acts irreducibly
on Djr for 1 < j < m. There are vectors v;, 1 < j < m, such that
v = D ucicmvjand v e Dir. Let D; = clsp (T (G)v;) = elsp(I'(@)D;r). To
prove that T' is completely decomposable, it suffices to prove that T' (@) acts
irreducibly on D; for 1 < 7 < m.
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This will be proved by a sequence of lemmas; the hypotheses of Theorem 2
are assumed in these lemmas. The second conclusion of Theorem 2 is an im-
mediate consequence of Lemma 3 and Lemma 5. Several of these lemmas
are used in the proof of Theorem 4.

Levmva 1. Let QeS, and x € Bo. Let Q be a non-empty subset of Q. As-
sume Qo = {t1,ta, -+ ln}, wheret; #= txifj = k. For1 < k < m, let sx; be a
sequence of elements of S — Q. Assume s; 7= sy unless kb = k' and j = 7.
Let g; = h; HZ;; (te, S;), where h; e G°, hj(seq) = Siq for all j, k, and q, and
B = e. ((t, ;) is the 2-cycle which interchanges b, with sy;.)

Then there is a subsequence g;; of g; such that

weak limit,.. I'(g;;)xz = 0.

Proof. ||T(gj)x|| < M | x| forallj. Since B is reflexive, there is a vector
w e B and a subsequence g;; of g; such that

weak limit;,. I'(g;,)z = w.

Pick h e G°7° arbitrarily. Pick a positive integer p so that h(s;;) = sy, if
1<k<mandiZ2> p.

T'(h)w = T (k) weak limit,.. I'(g;,)x
= weak limit... I'(R)T (g;;)x
= weak limit .« I (g;;)T (9;; hg;; )z
= weak limit;,. I (g;;)z
= w

since g;, hg;; e G if ¢ > p and since g} = e for each j.
Therefore T (h)w = w if h e G4, Since Q — o has cardinal number less
than n, this implies that w = 0.

LemMa 2. Let W be a finite subset of S. Let
T = Zoes,, ZTe,

where Tq € Bq for each Q €8, and zq = 0 a.a. Then

el > M7 Zoesn,ogwxe ll-
The subspaces Bq, Q €8, , are linearly independent.

Proof. Let X be a finite subset of S such that zo = 0if Q €8, and @ SL‘ X.
Let X; = X — W. Assume X; = {4, b, - - - t,}, for some integer g, where
t; # b, if J = k. Let si; be a sequencein 8§ — (X u W) foreachk, 1 <k < g;
assume 8; # Sy unless k = k" and j = 7.

Let g; = [[fe1 (), sk;). By repeatedly applying Lemma 1, obtain a sub-
sequence g;, such that weak limit ;.. I'(g;,)x¢ = 0if Q €8, and @ $ w.
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Then weak limiti,e T'(gj; ) = D oegnocwZo. Therefore
| 2" cesmacw zo | < sUPicice || T(gi)z || < M | 2 .
IfWezandz = qusn Zq, with zq = 0 a.a., let

Pyx = Zaesn-ogw Zq-

Pw'x = z;||Pwz| < M| 2| by Lemma2. Py hasbeen defined on the sub-
space spanned by the minimally cofinite vectors; consequently, Pw can be ex-
tended in a unique way to a linear operator on B; this operator is a projection
and has norm < M. Note that

PWx = ZQ;S",QQWPQ:E if z e B.
Therangeof Pw = sp({Bo : Q€8$,,Q S W}) =clsp({Be: QeSn, Q@ S W}).

Levmma 3. Let x € B. Then strong limitweg Pwax = x. If Pox = 0 for
all Qe8,, thenx = 0.

Proof. Assume z = qusn Zq, where zq € Bg for each Q €8, and z¢ = 0
a.a. Then Pz = 2 if W 2D U {QeS8, : x¢ # 0}. The result for a general
vector z follows from the density of the subspace spanned by the minimally
cofinite vectors and the uniform boundedness of the Py .

LeMMmA 4. Let xeB and WeZ. Then Pyxecl sp(T(G)x). If in addi-
gonT(g)x = x for all g e G”, then Py z = .

Proof. Let € > 0 be given. By Lemma 3, there exists Y ¢ Z such that
YO Wand|z— Pyx| <e Bytheproof of Lemma 2 and a weak compact-
ness argument, there is a sequence g; ¢ G” and an element y ¢ B such that

y = weak limit;., I'(9;)x, and PwPyx = weak limit;, I'(g;)Pyz.
However, Py Pyx = Py x and
ly —Pwal| =|ly — PwPrz|| <Mz - Pra| < Me

Since y ecl sp(I'(G)x), it follows that Pw z ecl sp (T'(G)z).
Assume now that I'(g)z = z for all ge G¥. Then I'(g;)z = z for all j so
thaty = 2. Then ||z — Pwz || < Me for arbitrary ¢ < 0, sothatz = Pyz.

LeMMA 5. Assume now that x is a minimally cofinite vector for T'y X €8, ,
zeBx, and ¢l sp(I'(G)x) = B. Then Bx = sp(T(Gx)zx).

Proof. Let y e Bx. Since z is a cyclic vector for T, if ¢ > 0 is given we
can find a finite subset {g; : 1 < ¢ < k} of G such that

ly — ZISiSkP(gi)x | < e.
IfQeS,, let

@) = {i:1 <4 <kand g:(X) = Q and 2o = Yo (g
Note that z¢eBq, z¢ = 0 a.a., and D ees, To = leislc I'(g:)x. Apply
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Lemma 2 with W = X to obtain

M7y —ax || Sy — 2eesuval < e

Since zxesp(I'(Gx)z), yecl sp(I'(Gx)x). Since Gx is a finite group,
sp (T' (Gx)z) is a finite-dimensional subspace of B and is therefore closed, so
that y e sp (T'(Gx)z) = cl sp(T'(Gx)x).

LemMA 6. Assume the hypotheses of Lemma 5. Assume further that T'(Gx)
acts trreducibly on Bx. Then T is an irreducible representation of G.

Proof. Lt weB be any non-zero vector. By Lemma 3, there exists
Q €8, such that Pow > 0. By Lemma 4, Powecl sp(T'(G)w). Pick ge@G
such that ¢ (Q) = X. Then

T(g)PoweBx and T (g)PoweclspT(@)w).
Then

el sp(T(G)w) D el sp(T(G)T(9)Po w) = ¢l sp(T(GT(Gx)T' (g)Pq w)
= clsp(I'(G)Bx) = B.

Since any non-zero vector in B is a cyclic vector for the representation I', T'
is irreducible.

Proof of Theorem 3. By Theorem 1 and the well-ordering of the non-nega-
tive integers, there is a non-zero v ¢ B such that v is minimally cofinite for T'.
The subspace ¢l sp (' (G)v) is invariant under I'(G) and by Theorem 2, the
subrepresentation of T' on ¢l sp(I'(G)v) contains an irreducible subrepre-
sentation.

Proof of Theorem 4. Assume z € B, x # 0, and z is a minimally cofinite vec-
tor for I'.  Assume z is cofinite of type n, T €S, , and z € By.

It follows from Lemma 5 that I' (Gr) acts irreducibly on Br. Since Gy is
a finite group, there is a finite-dimensional Hilbert space H, an irreducible
unitary representation A of Gy on Hy, and a 1-1 linear operator Uy from By
onto Hy such that Ur T'(g)v = A(Q)Ur v if geGr and v e Br.

By part Ib of Theorem 2 of [1], there is a Hilbert space H and an irreducible
weakly continuous unitary representation € of G on H such that

(1) Hr S Hand Hy = {veH :Q(g) = v for all g e G"}.
(2) =z is a minimally cofinite vector for Q.
(3) Alg) = Qg) [Hrif geGr.

By Lemma 4 and Lemma 5, By = sp (I'(G)Bzr) and Ho = sp (Q(G)Hr).
Let y e Br. Then there is a finite subset Y of 8, such that
y = Zoéy aeT (ge)za,

where aq is a scalar, go e G and g(7') = @, and xq ¢ By, for cach Q €Y. Let
Uy = qug aeQ(go)Urxq. The function U is well defined and satisfies the
conclusions of the theorem; this may be shown by direct computation.
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