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Abstract
Let S be an rbitrary infinite set nd let G be the group of finitely sup-

ported permutations of S; give G the topology of pointwise convergence on S.
Iet B be a reflexive Banach space and let F be continuous representation of
G on B such that F (g) <: M for ll g e G for some fixed positive number
M. Through the use of a canonically defined dense subspace of cofinite
vectors, it is shown that F is strongly continuous and contains an irreducible
subrepresenttion. An equivalence relation of cofinite equivalence of repre-
sentations is defined;if is irreducible, then 1 is cofinitely equivalent to n
irreducible wekly continuous unitary representation of G on Hilbert space.

1. Introduction and notation

The author [1] has shown that any wekly continuous unitary representa-
tion of an infinite symmetric group on Hilbert space is the direct sum of
irreducible representations; these irreducible representations were explicitly
constructed.

Below, we consider wekly continuous uniformly bounded representation
F of an infinite symmetric group on reflexive Banach space B. We show that
B contains cnoniclly defined dense subspace which is invriant under F;
vector v is in this subspace iff it is inwriant under the action of certain

type of subgroup. F is strongly continuous and contains an irreducible
subrepresentation. If F is irreducible, then there is unique (up to unitary
equivalence) wekly continuous unitary representation of G on Hilbert
space such that the restriction of F to its cnoniclly defined dense subspace
is algebraically equivalent to the restriction of 2 to its cnoniclly defined
dense subspace.
S will denote fixed arbitrary infinite set nd G will denote the group of

those permutations II of S such that {s e S II (s) s} is finite. Give G the
topology of pointwise convergence on S; G is topological group but is not
locally compact.

If B is a Bnach space, then B’ denotes the dul of B. If D is subset of
B, then sp (D) is the subspace of B that is spanned algebraically by D and
cl sp (D) is the closure of sp (D);

D lfeB’ :f() 0forallveD}.

A representation of G on the Banch spce B is homomorphism of G
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into the bounded linear operators on B. The representation F is weakly
(strongly) continuous if 1 (g)v is a weakly (strongly) continuous function
of g for every v e B; 1’ is uniformly bounded if there is a real number M such
that I]F(g) ll - M for every geG.

If T S, let

and let

Note that Gs_r Gr.

Gr {g e G g(s) sifseT}

Gr= {geG’g(s) sifseT}.

DEFINITION. Let I’ be a representation of G on the Banach space B.

(1) Let v e B. Then v is a cofinite vector for F if there is a finite subset T
of S such that F (g)v v for all g e G.r The vector v is cofinite of type n if T
may be chosen to have cardinal number n and if it is impossible to choose T
with cardinal number less than n.

(2) Let v be a non-zero cofinite vector for F of type n. Then is a mini-
mally cofinite vector for 1 if no non-zero vector in cl sp (F (G)v) is cofinite
of type less than n.

(3) F is uniformly of type n if no non-zero vector in B is cofinite of type m
with m < n and if cl sp ({ cofinite vectors of type n} B.

(4) If T is a finite subset of S, then

Br {vB:F(g)v vforallgGr}.

(5) Br is the subspace of all cofinite vectors for F.
(6) Let D be a Banach space and let t be a representation of G on D.

Then F is cofinitely equivalent to t iff there is a 1-1 linear mapping U from
Br onto Da such that UF (g)v t (g)Uv for every ; e B and g e G.

(7) A Banach space B is an 1 space [2, p. 60] if there is an arbitrary
index set A and a family/Nx e A} of finite-dimensional subspaces, directed
by inclusion, whose union is dense in B and such that each Nx is the range of a
projection P of norm one of B.

(8) F is completely decomposable [4, p. 230] if Iv e B: T (G) acts irre-
ducibly on cl sp (F (G)v)} is dense in B.

Remarks. (1) Clearly cofinite equivalence is an equivalence relation on
the set of representations of G on Banach spaces.

(2) It follows from [1] that two weakly continuous unitary representa-
tions of G are cofinitely equivalent iff they are unitarily equivalent.

(3) Complete decomposability as defined in definition 8 agrees with the
usual definition in the case when F is unitary representation on a Hilbert
space.

Example. Let M0 be a positive number and let m be a measure on S such
that M0 :> m ({ s} >_ l/M0 for each s e S. Let 1 < p < , let n be a positive
integer, and let B L (S", m). Then B is a reflexive Banach space and
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the canonical representation F of G on B, defined by

r () (, s, s) v (- (), - (s.), - (s))

is weakly continuous and is uniformly bounded by M.
If v e B, then v is a cofinite vector for F iff there is a finite subset T of

such that support (v) T. The non-zero vector v is minimally cofinite iff
v is the characteristic function of /(s, s, s)} for some s e S.

2. Statement of the results
In the next section, the following theorems are proved.

THEOREM 1. Let F be a uniformly bounded weakly continuous representation
of G on the reflexive Banach space B. Then

(1) Br is dense in B,
(2) F is strongly continuous.

THEOREM 2. Let F be a uniformly bounded weakly continuous representation
of G on the reflexive Banach space B. Assume there is a non-negative integer n
such that F is uniformly of type n. Then F is completely decomposable.

If, in addition, F (g) is an isometry for each g e G and there is a minimally
cofinite cyclic vector for F, then B is an 91 space.

TttEOREM 3. Let F be a uniformly bounded weakly continuous representation
of G on the reflexive Banach space B. Then F contains an irreducible subrep-
resentation.

THEOREM 4. Let F be an irreducible uniformly bounded weakly continuous
representation of G on the reflexive Banach space B. Then there is a Hilbert
space H and an irreducible weakly continuous unitary representation of G
on H such that F is cofinitely equivalent to . is unique up to unitary equiva-
lence.

Remarks. (4) The theorems and their proofs hold, with trivial modifica-
tions, if 1 is an antirepresentation of G.

(5) If t is an infinite cardinal number, let G be the set of those permuta-
tions II of S such that Is e S II (s) s} has cardinal number less than
note that G is the group of all permutations of S if t is sufficiently large.
Give G the topology of pointwise convergence on S. Theorems 1, 2, 3, and
4 remain valid if G is replaced by G. The proofs require trivial modifica-
tions.

3. Proof of the theorems
For the remainder of this paper, 2; will denote the set of all finite subsets

of S. If Q e z, Q will denote the cardinal number of Q and ZQ will denote
the set of all finite subsets of S Q. 2; and ZQ are directed sets with respect
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to set inclusion as the partial order relation. If m is a non-negative integer,
$ tQez" ]QI m}.
M will always denote a fixed real number such that F (g)[I -< M for all

geG.
If h is an index set and xx e B for each k e A, then xx 0 a.a. (almost

ways) if {h e A xx 0} is finite.

Proof of Theorem l. (1) LetfeB’,f 0. PickweBsothatf(w) 1.
By continuity, there is a neighborhood U of e such that real f(r (g)w) >
if g e U. Therefore, there is a finite subset T of S such that f (F (g)w) >
if g eGr.
IfQeZr,letR= Q-F(g). Note thatF(h)R =RifhG.

]Rl] M. Therefore l[Rw ]]R]] w M]w]]. SinceBis
reflexive, the ball of radius M in B is weakly compact. Consequently, there
is a subnet {R" Qer} of {R" Qezr}, where r Zr, such that
R w Q e r} converges weary to a limit point v.
LetgeGrbegiven. Let Y {seS’g(s) s};thenYe

F (g)v F (g) weak limitor R w

weak limitr F (g)R w

weak limitr. r F (g)Ro w

weak limitr,rR w v.

nConseque fly, v is a cofinite vector for F.
Let Q er. Then

real f(R w) real Q Z af(r(g)w) q - .
ne eore real f(v) > . Consequently, (Br) 0 and Br is dense in B.
(2) Let x e Br. Assume x e Br, where T is some finite subset of S. Then

GT"Gr is a neighborhood of e, and V (g)x x if g e The strong continuity of
r follows immediately from the density of Br and the uniform boundedness
of F.

Proq( of Theorem 2. Let v be a non-zero cofinite vector of type n; assume
GT"T e and F (g) v for all g Let D cl sp(r(G)v). If g e G, let

(g) r(g) D.
Since Gr is a finite group, sp (F (Gr)v) is a finite-dimensional subspace and

consequently there is a positive integer m and subspaces Dr, 1 j m of
sp (F (Gr)v) such that sp (F (Gr)) ,Dr and F (Gr) acts irreducibly
on Dr for 1 j m. There are vectors , 1 j m, such that
v v and v e Dr. LetD cl sp (F (G)) cl sp (F (G)Dr). To
prove that F is completely decomposable, it suffices to prove that Y (G) acts
irreducibly on D for 1 j m.
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This will be proved by a sequence of lemmas; the hypotheses of Theorem 2
are assumed in these lemmas. The second conclusion of Theorem 2 is an im-
mediate consequence of Lemma 3 and Lemma 5. Several of these lemmas
are used in the proof of Theorem 4.

LEMMA 1. Let Q e ,, and x B. Let Qo be a non-empty subset of Q. As-
sume Qo h t t,}, where t t if j k. For1 <_ <_ m, let s be a
sequence of elements of S Q. Assume s s,,, unless tc t’ and j j’.
Let g h II"= (t, s), where h G, h (sq) Sq for all j, 1, and q, and
h e. (t,, s,) is the 2-cycle which interchanges t with s,.)

Then there is a subsequence g of g such that

weak limit. F (g-)x O.

Proof. !1 F (g.)x _< M 11 x for allj. Since B is reflexive, there is a vector
w B and a subsequence g- of g- such that

weak limit. F (g)x w.

Pick h e Gq- arbitrarily. Pick a positive integer p so that h (s.) s,. if
l <_k<_mandi>_p.

F (h)w F (h) weak limit P (g.)x

weak limit F (h)F (g.,)x

weak limit F (g,)F (g, hg, )x

weak limit. P (g)x

since gi hg G if i >_ p and since g e for each j.
Therefore F (h )w wifheG-q ’ncc Q Qo has cardinal number less

than n, this implies that w 0.

LEMMA 2. Let W be a finite subset of S. Let

X EQe$n XQ

where x, B 2br each Q $, and xq 0 a.a. Then

The subspaces B, Q e $, are linearly independent.

Proof. Let X be a finite subset of S such that x 0 if Q $, and Q X.
Let X X W. Assume X Its, t., tq}, for some integer q, where
t. t if j /. Let s. be a sequence in S (X W) for each k, 1

_
k <: q;

assume s. s,., unless/ k’ and j j’.
Let g II= (t, s.). By repeatedly applying Lemma 1, obtain a sub-

sequence g., such that weak limit . F (g,)x 0 if Q e cn and Q W.
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Then weak limit. F (g.)x Y’Q$.._cw xQ. Therefore

If W, Z and x ,$ xo, with x 0 a.a., let

Pw x x; ] Pw x g M z ]] by Lemma 2. Pwhas been defined on the sub-
space spanned by the minimally cofinite vectors; consequently, Pw can be ex-
tended in a unique way to a linear operator on B; this operator is a projection
and has norm < M. Note that

Pw x $,,wPx ifxeB.

The range of P sp({Bo Q eg,, Q W}) clsp({Be Q eg, Q W}).

LEMMA 3. Let x e B. Then strong limitzP x x. U Po x 0 for
all Q e g. then x O.

Proof. Assume x e$ xe, where xe e Be for each Q e g and x 0
a.a. ThenPx xifW U {Qeg’x 0}. The result forageneral
vector x follows from the density of the subspace spanned by the minimally
cofinite vectors and the uniform boundedness of the P.
LEMMA 4. Let x e B and W e Z. Then P x e cl sp (r (G)x ). U in addi-

tion P (g )x x for all g e GTM, then P x x.

Proof. Let e > 0 be given. By Lemma 3, there exists Y e Z such that
Y W and x P r x < e. By the proof of Lemma 2 and a weakcompact-

Ghess arment, there is a sequence gi e and an element y e B such that

y weak limit]. r(gi)x, and PPrx weak limiti r(gi)Prx.

However, P P r x P x and

]]y Px] llY PPrzll M {lx Pzl] < Me.

Since y ecl sp(r(G)x), it follows that P x ecl sp(r(G)x).
eW"Assume now that r (g)x x for all g e Then r (gi)x x. for all j so

that y x. Then x Px < Me for arbitrary e < 0, so that x Px.

]EMMA 5. Assume now that x is a minimally cofinite vector for F, X
xeBx, and cl sp(F(G)x) B. Then Bx sp(r(Gx)x).

Proof. Let y e Bx. Since x is a cyclic vector for r, if e > 0 is given we
can find a finite subset {g 1 i N k} of G such that

If Q e S, let

k(Q) {i’1 i N and g(X) Q} and z .()r(g,)x.

Note that xeBe, xe 0 a.a., and esXe 1 F(g,)z. Apply
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Lemma 2 with W X to obtain

Since xxesp(F(Gx)x), y eclsp(F(Gx)x). Since Gx is a finite group,
sp (F (Gx)x) is a finite-dimensional subspace of B and is therefore closed, so
that y e sp (F (Gx)x) cl sp (1 (Gx)x).

LEMMA 6. Assume the hypotheses of Lemma 5. Assume further that F (Gx)
acts irreducibly on B:. Then F is an irreducible representation of G.

Proof. Let w B be any non-zero vector. By Lemma 3, there exists
QessuchthatPQw0. ByLemma4, PQweclsp(F(G)w). PickgeG
such that g (Q) X. Then

r(g)PweBx nd r(g)Pweclsp(r(G)w).
Then

el sp(r(G)w)

___
cl sp(r(G)r(g)P w) cl sp(r(G)r(G)r(g)P w)

cl sp (F (G)Bx) B.

Since any non-zero vector in B is a cyclic vector for the representation F, 1
is irreducible.

Proof of Theorem 3. By Theorem 1 and the well-ordering of the non-nega-
tive integers, there is a non-zero v e B such that v is minimally cofinite for 1.
The subspace cl sp (1 (G)v) is invariant under r (G) and by Theorem 2, the
subrepresentation of F on cl sp(F (G)v) contains an irreducible subrepre-
sentation.

Proof of Theorem 4. Assume x e B, x 0, and x is a minimally cofinite vec-
tor for F. Assume x is cofinite of type n, T Sn, and x e Br.

It follows from Lemma 5 that F (GT) acts irreducibly on Br. Since Gr is
a finite group, there is a finite-dimensional Hilbert space Hr, an irreducible
unitary representation A of Gr on Hr, and a 1-1 linear operator Ur from
onto Hr such that Ur F (g)v A (g)Ur v if g e Gr and v
By part Ib of Theorem 2 of [1], there is a Hilbert space H and an irreducible

weakly continuous unitary representation of G on H such that

(1) HrHandHr {v eH (g)v v for all g eGr}.
(2) x is a minimally cofinite vector for
(3) A(g) (g)]HrifgeGr.

By Lemma 4 and Lemma 5, Br sp (F(G)Br) and H sp ((G)Hr).
Let y e Br. Then there is a finite subset q3 of $n such that

y a F (g)x,

where a is a scalar, g G and g (7’) Q, and xQ Br, for each Q e qJ. Let
Uy a(g)Urx. The function U is well defined and satisfies the
conclusions of the theorem; this may be shown by direct computation.
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