COBORDISM OF LINE BUNDLES WITH A RELATION

BY
V. GIAMBALVO

In this paper a cobordism theory for line bundles over oriented manifolds,
with w,(Base) = wi(bundle), is studied. The cobordism groups A, are
computed. A homomorphism

Ap — Q7" (Zy)
is given, and it is shown that this is a monomorphism mod torsion.

1. The classifying space

We reserve the term manifold for oriented, compact C* manifolds, without
boundary unless otherwise specified. Let BSO be the classifying space for
stable oriented vector bundles, and BO; the classifying space for line bundles.
Let

f:BSO X BO,— K(Z,, 2)

be the map give by f*(1) = w, ® 1 + 1 ® ', where ¢ ¢ Hz(K(Zg_, 2), Z,) is
the fundamental class, ¢ ¢ H'(BO: , Z,) the generator, and w; ¢ H'(BSO, Z,)
the sth universal Stiefel-Whitney class. Then f induces a fibration over
BSO X BO, from the path space over M(Z;, 2)

E —— PK(Z,,2)

d l

BSO X BO, 1 K(Z,, 2).

Given an oriented manifold M and a line bundle » over M, the classifying
map v of the stable normal bundle of M, and the classifying map » of 5 induce
a map

v X n: M — BSO X BO,.

Now wy (M) 4+ (wi(n))’ = b X N*(w ® 1 +1® &) = (v X 0)**().
So » X 7 lifts to a map ¢ : M — E iff wy(M) 4+ (wi(n))® = 0. Thus we have
the following definition.

Define an equivalence relation on the set of triples (M", 3, ¢), where M" is
an n-dimensional manifold, 7 a line bundle over M, and ¢ a lifting of » X nto F
as follows: (M1, m, ¢) is equivalent to (Mgz , n2, ¢;) if there is a triple
(W, u, ¢) where W is an (n 4+ 1)-dimensional manifold with boundary, 7 a
line bundle over W, and c a lifting of vw X 5 to E, such that

(1) oW = My + (—M,)
(2 ¢|Mi=c¢ i=1,2.
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Note that c determines » and so 7 | M; = 5, automatically. Let A, denote
the set of equivalence classes.

We can also do this entire procedure over BSO; X BO; and obtain E; . But
the map BSO, — BSOy4y lifts to a map E, — Ex,1. Hence, this is a special
case of ‘B, f'-cobordism according to Lashof [3], where B = E and f is the
composition £ — BSO X B0, — BS0. So we have the following [3].

THEOREM 1. A, s a group with operation induced by disjoint union.
Furthermore, setting Ax = @, Ay, we have Ay = ws(M(£)), the stable homot-
opy of the Thom space of the bundle & over E induced by the composition E —
B8O X BO; — B8O from the unversal bundle over BSO.

Also there is a product in Ay , given by cartesian product of manifolds, and
tensor product of line bundles. Lifting the composition

E X E— BSO X BO, X BSO X BO, —

BSO X BSO X BO, —2>® _, B3SO X BO,

gives a map u : B X E — E such that the diagram

EXE—*,E

lﬂ'l X m lﬂ'l

BSO X BSO —— BSO

commutes. So uinduces p : M(£) N\ M(§) — M(£), and Ay is a graded ring.
Since m p. 1 E, — BSO(n) X BZ, — BSO(n) is a mod p homotopy
equivalence for odd primes p, it follows that w+(M (£)) has no odd torsion.

2. H*(M(&); Z)

For the rest of this paper, all homology and cohomology will be with co-
efficient group Z. , @ will denote the mod 2 Steenrod algebra, and w; ¢ H*(BSO)
the "™ Stiefel Whitney class.

THEOREM 2. As a graded @ algebra, H*(E) s isomorphic to the polynomial
ring .
Zo[(m p)*(wi), 7 # 2" + 1] ® Z[(m p)* (D)),
¢ being the generator in H(BZ,), with the extension given by (m p)*(f) =
(m p) *(wz)-

Proof. 1In the fibration K(Z,, 1) — E — BSO X BZ, the fundamental
group of the base acts trivially on the cohomology of the fibre. The funda-
mental class

weH(K(Zy, 1))
transgresses to p*(w, ® 1 + 1 ® ). Hence i transgresses to
Sgp*(w ® 1+ 1® &) = p*(ws ® 1)
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and &’ transgresses to p*((wai+1 + decomposables) ® 1). Thus, by Borel’s
theorem, H*(E) is the required quotient of H*(BSO X BZ,).
Hereafter we drop the p* from p*(w;) and p*(2).

CoROLLARY 1. The bundle & over E has a Spin’ structure, and its classifying
map
£: E — BSpin’

nduces a monomorphism on cohomology.

COROLLARY 2. Let U e H'(M(£)) be the Thom class. Then the homomor-
phism
e — H*(M(¥))

give by @ — aU has kernel G/G(Sq', Sq°).

This follows from the corresponding fact for H*(MSpin°) [7].
In order to compute H*(M(£)) as an @ module, we will need the following
building blocks.

DeriNmmioN. Let M be the @ module obtained from the direct sum
@/GS¢ ® B @

by the relations S¢’ze = S¢'zy, S¢*S¢*z; = S¢'ziy1, where 2, denotes the
generator of the summand @/@Sq’, and z; the generator of the 4th summand.
Note deg (@) = 0, deg (z;) = 47 — 3.

THEOREM 3. Let g be the set of all non-decreasing sequences of integers
(41, =+« 1 Js) of finite length such that 7. > 1 for all r. Let Y be the graded Z,
vector space with one generator Y ; for each J € g, with deg ys = 4n(J) = 4 D i
Then H*(M(£)) is isomorphic as an G module to M ® Y @ F, where F is a
Sfree @ module.

The proof will occupy the remainder of this section. The homology of
M ® Y and H*(M(%)) with respect to the differentials Qo , and @ , induced
by operation of Sq¢' and S¢® + S¢°Sq, respectively will be computed. Then

fx HM ® Y, Q) — HH (M%), Q)

will be shown to be an isomorphism and Theorem 5.1 of [6] will be applied.
Note that the product in Ay gives H*(M(£)) the structure of a coalgebra
over Q.

The first step is to compute H(H*(M(£)), Qo) and H(H*(M(£)), Q.).
Since QU = 0 and QU = 0 in H*(M(%)), the Thom isomorphism
H*(E) — H*(M (%)) induces an isomorphism on Q, and Q; homologies. So
H(H*(E), Q;) will be computed.

LemmAa 1. There are classes ugi eHzi(E) and Tgi—s eHZLZ(E') such that
(1) H(H*(E), Q) ~ Zgw;, i #= 2'] ® Zofusi ,j > 1]
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(2) HH*E), Q) ~ Zowhi, 1 # 2 — 1] ® Zofusis, j > 2] ® Aws).

Proof. (1) Qo(ws) = Wait1, Quwgipr = 0, @t = £ = w,. There are
classes

usi ¢ H” (BSpin®)

such that wsi = wsi + decomposables, and Qo usi = 0 [7, pg. 316]. Hence
we can write H*(E) as

Zz[’l,l)g,‘ ) QO We; , 1 # 21] ® Zz[U2i 7j > 1] ® ZZ[t]’

where uyi is the image in H*(E) of s .

(2) Qrwsi=Wairs, Quwsips = 0, @1t =1 = ws. Choose @ai_s as in proof
of (1). Then we get

H*(E) = Zofwss, Quuwss , 1 # 2 — 1] @ Zoffiais, j > 2]® Zaft).

CoroLLARY 3. H(H*(E)) has Qo homology only in dimensions congruent to
0 mod 4.

LEMMA 2.
H*(MSpin®) ~ (@, (&/a(8q", 8¢*))z;) ® F

where F is a free module, deg z; = 4n(J ), and g is the set of all finite non-de-
creasing sequences J of positive integers.

Proof. [7, pg. 319].
We use this to construct themap f: M ® ¥ — H*(M(¥)).
Letzy U ¢ H*™ (M Spin°) be the generator of the (&/G( Sq', 8¢°))xy. Let

20 U e H*(M(£))
be its image. Recall M is a quotient of the direct sum
@/GS¢ PCOADAED -

with generators xp, @1, @, --+. Let flwzo ® ys;) = 2,U. Then
Sq'(z; U) = 0. Now

Sq¢'(8¢°2,-U) = 8¢°2,-U = 0.
So by Corollary 3, there is a zy e H*""™(E) with S¢'zy = Sq%,. Let

fle: ® ys) = 25 wyTHU + 2wt
Now

Sg'f(z: ® ys) =zrwa U + 82 U = zywo U + 8¢’z U = Sg'f(20® )
and
Sg’Sq’f(x: ® ys) = ws' T2y U + (Sg’zs)wa'U

= S¢'(wi'tes U + wi'z; U) = 8¢'f(ips ® ys)
and hence f: M ® Y — H*(M(%)) is defined.
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Let @, be the sub Hopf-algebra of @ generated by S¢° = 1, Sq¢' and S¢’.
Define M as the quotient of the direct sum @;/@; S¢' ® G ® @ ® - -- by
the relations

S¢’ro = Sq¢'zy, S¢°S¢’x: = Sq'wis -

Then M = @ @q, M. Let M be the elements in M of degree 7, and M the

sub @; module of 7 generated by M7, j < 1. Then M® < M® < --- de-
g y M, j <

fines an increasing filtration on M, and M® = @ ®q, M gives an increasing

filtration on M.

LemMMA 3. The inclusion M© — M induces an epimorphism
H(M®, Q) — H(M, Q).
Proof. Tt is enough to show this for M. Now
MO ~ @;/6:(Sq", 8¢°) and M /M“™® ~ a:/a. Sq'.
In the spectral sequence for H(M, Q;), E" is isomorphic to
H(M®, Q:) ® @4 H(G1/G1 8¢, Qi).

In the case ¢ > 0, H(G:/G S¢', Q) ~ Z» ® Z,, given by the classes of the
generator z; and S¢’S¢’z; . Now dizi = 8¢’S¢’xiy if ¢ > 1, and
dy 21 = S¢’zo = S¢’xe % 0. So only the H(M®, Q) term survives.
Since H(@1/G1 Sq', Q1) = 0, the result follows.

To conveniently express H(M, Q;), note that dualization following an ap-
plication of the cannonical antiautomorphism X of the Steenrod algebra in-
duces an isomorphism of Q; homology. Let ; ¢ @* be the usual generator of
degrees 2° — 1.

LemMma 4.
H(M, Q) ~ Z[&"], H(M, @) ~ Algi, i > 1].
Proof.
H(e/a(S¢, 8¢'), Q) ~ ZlE), H(a/a(S¢, 8¢), Q) ~ Alg, ©> 1]

by [7]. In the E1 term of the spectral sequence for H(M, o), the term cor-
responding to £°* is a boundary, by proof of Lemma 3. Ior the same

reason, the spectral sequence for H(M, @) collapses.

LemMA 5. f induces an isomorphism fx : H(N, Q) — H(H*(M (%)), Q:)
forv=1,2.

Proof. This is analogous to the corresponding state for M Spin’ [7, Lemma
1, p. 320]. We can consider H(H*(E), Qo) as the free Zy[w3;, 1 > 1] module
on generators

Ugi(n) - Ui, 1< J(1) < J(2) < --- < ().
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. 2 2 2
Write waic1y -+ Waith) , Ugi(1) « -+ Ugi(s) &S Wr Usg , Where

I = (i(1), ---,4(k)), S = (3(1), - ,5(s)).

Partially order the monomials w; us by w; us < wir us if dimension w; <
dimension wj. . Then
HM®Y, Q) =HM) ®Y.

Let au, ¢ H(M, Qo) correspond to £&°. Then, exactly as in [7], f(¢f ® y,) =
wrus-U + Dy wpus U where wy > w; and 8 = (5(1), - -, j(s) is the
dyadic expansion of 4k. Thus f induces an isomorphism on @ homology.

To show f induces an isomorphism on @; homology, write H(H*(E), Q)
as the free Zs[ws,, j > 1] module on generators

Ui (1)—g Tai(2y—g * + + Uai(sr—g

where 1 < j(1) <j(2) < ---j(s),setting @iy = wy. I K = (ky, ks, -+, k)
is a finite sequence of 0’s and 1’s, let ax e H(M, Q1) be the homology class
corresponding to £°'65°2 - -+ £, Then [7)

f*(aK ® yJ) = Wy Us U + ZJ'U)J'usl
where
wye > wy and  us = (fazs)™' (Uss_a)™ -+ (Upa+1_s)"".

Proof of Theorem 3. By a theorem of Peterson [6, Theorem 5.1], since f
induces an isomorphism fx : H(N, Q) — H(H*(M(%)), Q:) for i = 0, 1,
Theorem 3 will follow if we verify the following:

Let z ¢ N, degree = n, such that z is not in the submodule of N gencrated
over @ by terms of degree less than n. Then there is an element b ¢ Gy, b 5 0,
such that bz = 0. But this is trivial, since z must be D a; z; ® Ys; where
a; € Zy. But S¢*Sq' does the job.

3. m (M)

We now obtain information on w4« (M (£)) via the Adams Spectral sequence.
Since
H*M(®))~M®Y ®F,

to compute the E, term it is sufficient to compute Extle(M ; Zy). Since
M = @ ®q¢ M as an @ module, Exte(M, Z,) = Exte,(M, Z,) [4]. Note
Exte, (M, Z,) is an Exte,(Z», Z3) module. Let

ho e Bxtel(Zs, Zo) and  hy e Extyr(Zy, Zs)
be the elements coming from the relation S¢'1 = 0 and S¢*1 = 0.
TuroreM 4. For each interger © > 0, there are elements
2 e Ext®* (M, Z,) and ;e Ext™ (M, Zs)

such that the only nonzero elements are hy, hiiz; and Ry where J=2 and 0 <
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ki < 20+ 1. There is a relation given by hyy; = ho M iya and since hohy =
0, ho' Pz, 11 = 0.

Proof. Construct a resolution. This is a simple computation.

CoROLLARY 4. Exty'(M; Z,) = Ounlesst — s = 0, 1 mod 4.

THEOREM 5. FE; = F».

Proof. Since in Exty (M ® Y; Z,) there are only entries for ¢t — s = 0,
1 mod 4, and the elements with ¢ — s = 0 mod 4 build infinite towers, the
only non-zero differentials can come from the summand Exti*(F; Z,) =

Exte*(F, Zy). We compute F to see that this cannot occur.
Let &k : BSpin — E be a lifting of the composition

BSpin — BSO — BSO X pt — BSO X BZ,.
Since k'(£) is the universal bundle over BSpin, k induces a map
k : MSpin — M(§)
with k*(w; U) = w; U (4 # 27 + 1), and so %™ induces an isomorphism
k: HY(M(%)/(t) —» H*(MSpin),
where H*(M (£))/(t) is quotient by the submodule generated by (powers of
) le{;)m [1] we have
H*(MSpin) = @/a(8¢', 8¢") ® Y @ a/aS’ @ Y @ F

where Y’ and Y” are the subspaces of ¥ generated by those J e g with n(J)
even and n(J) odd, respectively. For n(J) even, we have

(M ® ys) = &/a(S8¢, S¢") ® ys .

For n(J) odd, 1eM, k*1 ® y,;) = S¢ ® v;. (Recall for n(J)
odd, deg (y7) = n(J) — (2). Let

[: (MSpin) — H*(M(¥))

be defined by l(ws, -+ wy, U) = ws, -+ wi, U. If ay e H*™72(M(E)) is
given by I(1 ® ys) = as, then a; is the generator of a free @ module. So is
tay , and fa; = w;a, generates a copy of M, ie. woa; = 1 ® y,. Similarly,
we identify all the #'a, . These cannot support differentials, since they either
come from infinite cycles in Ej (M Spin), or are products of other zero-
dimensional elements in E;. An analogous argument gives the results for
elements of the form #1(Z;), where Z; generates a free @-module in M Spin.
Thus one canread off A, . A short table is as follows:

nlOll 2|34 5l6‘7 8 9 1011 12 13

Aa |Z) Z4|0)|0|Z| Z1s OIO ZOZ | Zes ®Zy |2y |22 | ZDBDZBZ| Zoss D Z1s D Zy
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4. Relation to Q5" (Z,)

If (M, n, ¢) € A, , then the sphere bundle S(5) of 7 admits a natural free
orientation preserving involution, and also a Spin structure, since

w(S(m) = p*(wa(M)) = p*(n(1))* = 0.

So there is a homomorphism A, — Q57"(Z,), the cobordism group of oriented
manifolds, with free, orientation preserving Z, action. By forgetting the Z,
action, and using the natural inclusions, we get a diagram

8

Spin®
An Q"

o [+

@ (22) —5 ™.

Then 2s(x) = yBa(z) for all a e A, . Now s maps the integral summands
of Ay, monomorphically, as a look at the map s* in cohomology shows. Hence
a is a monomorphism on A,/torsion.
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