The purpose of this paper is to relate several generalizations of the notion of the Heegaard genus of a closed 3-manifold to compact, orientable 3-manifolds with connected, nonempty boundary.

All spaces considered will be polyhedra and all maps will be piecewise linear. By a solid torus of genus n we mean a space homeomorphic to a regular neighborhood in \mathbb{R}^3 of a compact, connected graph with Euler characteristic $1 - n$. The Euler characteristic of any space X will be denoted $\chi(X)$. If D is a 2-cell, then $N(D)$ will denote a space homeomorphic to $D \times [-1, 1]$ where D corresponds to $D \times \{0\}$.

It is well known that any compact, orientable 3-manifold with nonempty connected boundary can be represented as $H \cup N(D_1) \cup \cdots \cup N(D_k)$ where H is a solid torus, D_i is a 2-cell for each i, $N(D_i) \cap N(D_j) = \emptyset$ if $i \neq j$ and $N(D_i) \cap H = \partial N(D_i) \cap \partial H$ corresponds to $\partial D_i \times [-1, 1]$ in $N(D_i)$. This will be called a Heegaard splitting (or H-splitting) for M, and $N(D_i)$ is called a handle of index 2. The genus of the splitting is the genus of H and the smallest possible genus of an H-splitting of M will be denoted $HG(M)$.

Downing [1] has shown that M may also be represented as $H_1 \cup H_2$ where H_1 and H_2 are solid tori of the same genus and $H_1 \cap H_2 = \partial H_1 \cap \partial H_2$. This may always be done so that $\partial H_j \cap \partial M$ is a disk with holes such that $\pi_1(\partial H_j \cap \partial M)$ injects naturally onto a free factor of $\pi_1(H_j)$ for $j = 1, 2$. In this case, we call this an SD-splitting of M and denote the minimal genus of such a splitting for M by $SD(M)$. If we require only that $\pi_1(\partial H_j \cap \partial M)$ injects naturally into $\pi_1(H_j)$, $j = 1, 2$, we call this a D-splitting and the minimal genus of any D-splitting for M is denoted $DG(M)$. If X is a subspace of Y, $N_Y(X)$ will denote a regular neighborhood of X in Y taken to be “small” with respect to all previously chosen objects in a given argument. The closure of any set A will be denoted $\text{Cl}(A)$.

If F is a compact orientable surface of genus g with k boundary components, then $\chi(F) = 2 - 2g - k$ and $\pi_1(F)$ is free of rank $2g + k - 1$.

Theorem 1. Let M be a compact, orientable 3-manifold with connected nonempty boundary of genus k. Let $M = H_1 \cup H_2$ be an SD-splitting of M of genus n. Then M has an H-splitting of genus n.

Proof. Let $K_i = \partial H_i \cap \partial M$ ($i = 1, 2$). Then each K_i is a disk with k holes and $\mu*(\pi_1(K_i))$ is a free factor of $\pi_1(H_i)$ where $\mu* : \pi_1(K_i) \to \pi_1(H_i)$ is induced by inclusion. Now choose simple closed curves $\alpha_1, \ldots, \alpha_k$ in

Received September 27, 1971.
int \left(K_1\right) which meet only in the base point and which generate \(\pi_1(K_1) \). This may be done so that the closure of each component of \(K_1 - N_{K_1}(\bigcup_{i=1}^l \alpha_i) \) is an annulus one of whose boundary components is a component of \(\partial K_1 \). Then [6] there exist properly embedded disks \(D_1, \ldots, D_k \) in \(\partial K_1 \) so that

\[
\text{Cl} \left(H_1 - \bigcup_{i=1}^k N_{\partial H_i}(D_i) \right)
\]

is a solid torus of genus \((n - k) \), \(D_i \cap \alpha_i \) is a point for each \(i \), and \(\partial D_i \cap \alpha_i = \emptyset \) if \(i \neq j \). Then, by an isotopy if necessary, \(D_j \cap K_1 = \partial D_j \cap K_1 \) may be taken to be a single simple arc properly embedded in \(K_1 \).

For \(j = 1, \ldots, k \), let \(\beta_j = \text{Cl} \left(\partial D_j - K_1 \right) \). Then \(\beta_j \) is a simple arc in \(\partial D_j \cap \partial H_2 \). Now we find pairwise disjoint, properly embedded disks \(D_{k+1}, \ldots, D_n \) in \(H_1 \) so that \(\text{Cl} \left(H_1 - \bigcup_{i=1}^n N_{\partial \partial H_i}(D_i) \right) \) is a 3-cell. Since

\[
\text{Cl} \left(K_1 - \bigcup_{i=1}^k N_{\partial H_i}(D_i) \right)
\]

is a disk, we may assume \(D_j \cap K_{k+1} = \emptyset \) for \(j = k + 1, \ldots, n \).

Now \(H_2 \cup (\bigcup_{i=1}^k N_{\partial H_i}(D_i)) \cong H_2 \cup (\bigcup_{i=k+1}^n N_{\partial H_i}(D_i)) \) is a solid torus of genus \(n \) with \((n - k) \) handles of index 2 attached and \(\text{Cl} \left(H_1 - \bigcup_{i=1}^n N_{\partial H_i}(D_i) \right) \) is a 3-cell meeting this in a 2-cell on their common boundary. Hence,

\[
M \cong H_2 \cup (\bigcup_{i=1}^n N_{\partial H_i}(D_i)) \cong H_2 \cup (\bigcup_{i=k+1}^n N_{H_i}(D_i)).
\]

Corollary. If \(M \) is a compact, orientable 3-manifold with connected, non-empty boundary, then \(HG(M) \leq SD(M) \).

Theorem 2. Let \(M \) be a compact, orientable 3-manifold with connected, non-empty boundary of genus \(k \). Suppose \(M = H \cup N(D_1) \cup \cdots \cup N(D_{n-k}) \) is an \(H \)-splitting for \(M \) of genus \(n \). Then \(M \) has a \(D \)-splitting of genus \(n \).

Proof. If \(n - k = 0 \), the result is trivial, so assume \(n - k \geq 1 \). Let

\[
S = \text{Cl} \left(\partial H - \bigcup_{i=1}^{n-k} N(D_i) \right).
\]

Then \(S \) is an orientable surface of genus \(k \) with \(2(n - k) \) boundary components, say \(\alpha_1, \beta_1, \ldots, \alpha_{n-k}, \beta_{n-k} \) where \(\alpha_i \cup \beta_i \subseteq \partial N(D_i) \) for \(i = 1, \ldots, n - k \).

Now we choose simple, properly embedded, pairwise disjoint arcs \(\gamma_1, \ldots, \gamma_n \) in \(S \) so that each \(\gamma_i \) joins some \(\alpha_i \) to \(\beta_i \) and \(T' = \text{Cl} \left(S - \bigcup_{i=1}^n N_{\partial \partial H_i}(\gamma_i) \right) \) is connected. Now \(\chi(S) = 2 - 2n \) and \(\chi(T') = 2 - 2n + n = 2 - n \). This may be done so that \(T' \) has \(n \) boundary components and is a surface of genus \(0 \). Now, as indicated in Figure 1, choose properly embedded, pairwise disjoint arcs \(\delta_1, \ldots, \delta_{n-k+1} \) in \(T' \) so that each \(\delta_i \) joins some \(\gamma_j \) to \(\gamma_r \) \((j \neq r)\) and \(T = \text{Cl} \left(T' - \bigcup_{i=1}^{n-k} N_{\partial \partial H_i}(\delta_i) \right) \) is connected. Then \(T \) is a disk with \(k \) holes and the inclusion induced homomorphism \(\mu \ast : \pi_1(T) \to \pi_1(S) \) is an injection.

Now we assume that the inclusion induced homomorphism \(\nu \ast : \pi_1(S) \to \pi_1(H) \) is an injection. Then \(\nu \ast \mu \ast : \pi_1(T) \to \pi_1(H) \) is an injection. Let \(H_1 = \left(\bigcup_{i=1}^{n-k} N(D_i) \right) \cup \left(\bigcup_{i=1}^n N_H(\gamma_i) \right) \cup \left(\bigcup_{i=1}^{n-k} N_H(\delta_i) \right) \)
where
\[
\left(\bigcup_{i=1}^{n} N_{H}(\gamma_{i}) \right) \cup \left(\bigcup_{i=1}^{n-k} N_{H}(\delta_{i}) \right) \cap S = \left(\bigcup_{i=1}^{n} N_{S}(\gamma_{i}) \right) \cup \left(\bigcup_{i=1}^{n-k} N_{T}(\delta_{i}) \right).
\]

Let \(H_{2} = \text{Cl}(H - H_{1}) \). Then \(H_{1} \) and \(H_{2} \) are solid tori of genus \(n \) and \(M = H_{1} \cup H_{2} \).

Since the pair \((H_{2}, H_{2} \cap \partial M) \) is homeomorphic to \((H, T) \), we have that \(\pi_{1}(H_{2} \cap \partial M) \) injects into \(\pi_{1}(H_{2}) \). Now

\[
H_{1} \cap \partial M = \left(\bigcup_{i=1}^{n-k} (D_{i} \times \{-1, 1\}) \right) \cup \left(\bigcup_{i=1}^{n} N_{S}(\gamma_{i}) \right) \cup \left(\bigcup_{i=1}^{n-k} N_{T}(\delta_{i}) \right)
\]
is connected, has \(k + 1 \) boundary components and \(\chi(H_{1} \cap \partial M) = 2 - (k + 1) \).

Hence, \(H_{1} \cap \partial M \) is a disk with \(k \) holes. By the construction of \(H_{1} \) we also have that the inclusion induced homomorphism \(\pi_{1}(H_{1} \cap \partial M) \rightarrow \pi_{1}(H_{1}) \) is injective. Hence, \(M \) has a \(D \)-splitting of genus \(n \).

If \(\nu^{*} : \pi_{1}(S) \rightarrow \pi_{1}(H) \) is not injective, we find by Dehn's lemma [5] and the loop theorem [4] a simple closed curve \(J \) in \(S \) that does not contract in \(S \) but bounds a disk \(E \) in \(H \). Cutting along \(E \), either we separate \(M \) into manifolds \(M_{1} \) and \(M_{2} \) with \(H \)-splittings of genuses \(n_{1}, n_{2} \) (both > 0) so that \(n_{1} + n_{2} = n \) or we remove a handle of index 1 from \(M \) to get a manifold \(M_{1} \) with an \(H \)-splitting of genus \(n - 1 \).
Now by [2], if $H_1 \cup H_2$ is a D-splitting for M_i, any disk or pair of disks in ∂M_i can by an isotopy be assumed to meet $H_j \cap \partial M_i$ in a disk for $j = 1, 2$. Hence, by induction on n and the fact that the theorem is trivial if $n = 1$, we are finished. □

Corollary. If M is a compact, orientable 3-manifold with connected, non-empty boundary, then $DG(M) \leq HG(M)$.

We now give a partial converse to Theorem 1.

Proposition 3. Let M be a compact, orientable 3-manifold with connected, nonempty boundary of genus k. Let $M = H \cup N(D_1) \cup \cdots \cup N(D_{n-k})$ be an H-splitting for M of genus n. Suppose K is a surface of genus 0 with $k + 1$ boundary components in $\partial H - \bigcup N(D_i)$. Further assume that the inclusion induced map $\pi_1(K) \rightarrow \pi_1(H)$ is an injection onto a free factor of $\pi_1(H)$ and that

$$
\partial H - (K \cup N(D_1) \cup \cdots \cup N(D_{n-k}))
$$

is connected. Then M has an SD-splitting of genus n.

Proof. Let H' be a solid torus of genus n as in Figure 2. For each $i = 1, \ldots, n - k$, let J_i be a simple closed curve in $N(D_i) \cap H$ so that $N(D_i) \cap H = N_{\partial H}(J_i)$. Then there is a homeomorphism $h : \partial H' - \text{Int } A' \rightarrow \partial H - \text{Int } K$ such that $h(\partial E_i) = J_i$ for $i = 1, \ldots, n - k$.

Let $M' = H \cup h H'$. Then this gives an SD-splitting of M' of genus n. However, H' collapses to $(\partial H' - \text{Int } A') \cup E_1 \cup \cdots \cup E_{n-k}$ and so M' collapses to $H \cup E_1 \cup \cdots \cup E_{n-k}$. Hence M' is homeomorphic to M. □

Corollary. Let $M = H \cup N(D)$ where H is a solid torus of genus 2 and
\[\partial M \text{ is connected. Suppose } K \text{ is a simple closed curve in } \partial H = N(D) \text{ which represents a primitive element for } \pi_1(H). \text{ Then } M \text{ has an } SD\text{-splitting of genus 2.} \]

Proof. If \(\partial H = (N(D) \cup K) \) is not connected, then \(K \) and one component of \(\partial N(D) \cap \partial H \) cobound an annulus. Hence, \(\partial N(D) \cap \partial H \) represents a primitive element of \(\pi_1(H) \) and we may choose a new curve \(K' \) which represents a complementary primitive element. Therefore we may assume that \(\partial H = (N(D) \cup K) \) is connected and Proposition 3 may be applied.

The author thanks Professor John Hempel for pointing out Proposition 3.

References

University of Southwestern Louisiana

Lafayette, Louisiana