
INTEGRATION AND -INTEGRATION IN A BANACH SPACE

BY

LARRY F. BENNETT

1. Introduction
It is known for real-valued functions/, g, and h defined on an interval [a, b]

that if f is bounded on [a, b] and if k (x) g[dh], then f f[dk] exists if and
only if fg[dh] exists, and if the two integrals exist, then they are equal (see
Hildebrandt [4, p. 53]). However, the situation for the integrals of functions
in a Banach space is somewhat different. Therefore, theorems such as 2.5,
2.6, and 2.7 presented by MacNerney [6] appear. This paper is devoted to
obtaining substitution theorems for a special form of integral in a Banach
space. A theory of integration of point-interval functions with values in a
Banach space is given which contains as special cases the integrals presented
by Gowurin [3], MacNerney [6], Bochner and Taylor [1], and Hille and Phillips
[5, pp. 62-67]. A substitution theorem, Theorem 3.5, is presented which con-
rains all of the substitution theorems given by Maclerney [6] as special cases.
In order to develop further substitutiontheorems, the concept of -integration
(not to be confused with the -property developed in [3]) is introduced to
generate additional substitution theorems as well as a special integration by
parts theorem involving three functions.

2. Notation and terminology
The notation introduced in this section will be employed without further

comment throughout the remainder of this paper. The symbol J will denote
the closed interval [a, b], while X, X., .-., X, and X will be Banach spaces.
The norm of an element x inX, X, ..., X, or X will be designated by writing
IJ x II. If D is any nonempty set and f is a function on D into X, then $ is
bounded on D if

]1/]1 sup{ II/(x)iI:wD} < +.
When it is convenient, the symbol I] f Jl will be replaced by Ii f II. If D is a
topological space and f is a function on D into X, then the continuity of f on
D is defined in the usual manner. Iff is a function from J into X, thenf is of
bounded variation on J if

V(f; J) V(f; a, b) sup ,, !t f(t,) f(t,_,)Ill < +,
where the indicated supremum is to be taken over all sets of the form

{a= to<h... <t,,--b}.
A product operator P from X_-t X into X is any multilinear function having the
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property that P (xl, x2, ..., Xn) =< Hill Xi I1" Such a functionP is clearly
continuous.

3. Integration in a Banach space and substitution theorems
A point-interval in J is any ordered pair of the form (r, T), where T is a

closed subinterval of J and r e T. Following McShane [7], a partition of J is
any collection r (x, X)} --1 of point-intervals (x, X) (x, [z_l, x]) in
Jsuchthata= z0, b xn, andx<= z+lfori= 0,1, ...,n- 1. Each of
the points x is termed an intermediate point of r and the points x are cut points
of . The norm of r is the number

II-- max-, (x- x_).

In denoting partitions, we will accept the convention that A [a_, a],
B [b_, 5], etc. Let P be the set of all partitions of J, and let Pt be the
set of all point-intervals in J. Define two relations, _> and _->, on P by requir-
ing >_ if r <- ’ and >- r if the set of cut points of contains
the set of cut points of . The ordered pair (P, >_ is a directed set.
A point-interval function on J into X is any function on Pt into X which has

the property that f (r, T) 0 if T is degenerate. A function S on P into X
is defined by setting S () S (f; r) ,f(I), where the indicated sum is
taken over all point-intervals in . The point-interval function f is integrable
over J or ff exists of lim,e S () exists as a limit with respect to the directed
set (P, >_), and in this case, the integral of f over J is the vector

f hme S (v). If a b, it follows from the definition that f 0.
We define f f f f. It is easy to show that f f exists if and" only if S
is Cauchy; that is, for each > 0 there is a i 0 such that e P (a 1, 2),
!11[[ < i and I1[[ < tiimplies IIS()- S()il < . However, the
following modification of the Cauchy condition is more useful.

THEOREM 3.1. Iff is a point-interval function on J into X, then f exists if
and only if for each > 0 there is a > 0 such that r eP, ’ < ,
e P, and r >- implies S (rl) S (r.)1] < .
Without making any additional assumptions, one can prove a great number

of results for integration of point-interval functions with values in a Banach
space which hold for integrals of so-called real-valued "interval functions".
Burkill [2] first considered the possibility of taking integrals of real-valued
interval functions, and a thorough treatment of this subject may be found in
Hildebrandt [4]. Corresponding theorems for integrals of point-interval func-
tions in a Banach space will be used in many cases without further comment.

Iff is a function on J into X, then two point-interval functions are generated
in a natural way by the function f. This is accomplished by thinking of
f(r, T) =/(r) and df(r, T) f(t) f(s) for each point-interval (r, T)
(r, Is, t]) in J. If g is an integrable point-interval function from J into X,
then f g will denote the point-interval function on J into X defined by setting
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(f g) (I) f g for each point-interval I (r, [s, t]) in J. For simplicity,
fig will be used to denote (f g)(I). If P is a product operator on X--1 X
into X andf is a point-interval function on J into X (i 1, 2, ..., m ), then
P (fl, "-, fro) will be used to denote the point-interval function on J into X
which is defined by setting

P(fl, ...,f,)(I) P(f(I), ...,f,(I))

for each point-interval I in J.
The following theorem is a generalization of Theorem 2.2 in [6].
THEOREM 3.2. Suppose that P is a product operator on X-I X into X, f is

a bounded point-interval function on J into X (1 <- i <-_ m 1 ), h is a function
of bounded variation on J into X,, and F P (f, ..., f_, dh ). If f F exists
and c II,"_ f [I, then

(a) li f f ]]

_
cV(h; J) and the function f f is of bounded variation on J,

and
(b) the function f F is continuous if h is continuous.

An easily established integration by parts theorem is given below.

THEOREM 3.3. Suppose that f and g are functions on J intoX andX respec-
tively and P is a product operator on XI X X. into X. Then P (f, dg is inte-
grable if and only if P (dr, g) is integrable, and if the two integrals exist, then

f [dP(f, g) P(df,g)] P(f, dg).

An existence theorem is given below. If m > 2, then it appears that the
continuity requirement for f in part (b) may not be dropped in general.
However, for m 2, Theorems 3.3 and 3.4 (a) show that f P (df, f) exists if
f is continuous and $3 is of bounded variation on J.

THEOREM 3.4. Suppose that P is a product operator on X- X into X and
f is a function on J into X (1 <- i <= rn). Let F P (f, ..., fm-, dr,,,).
Then F exists if either

(a) f is continuousfor i 1, 2, ..., 1 andf is of bounded variation, or
(b) f is of bounded variation for i 1, 2, ..., rn 1 and f,,, is continuous

and of bounded variation.

Since the proof of part (a) is not difficult and is similar to the usual proof
given for the case m 2, only the proof for part (b) is presented here. For
each i 1, 2, ..., m 1, set

c,-- IX{[[h[[:l <_j_<_m- 1,j i} and c-- max{c,:l-im-- 1}.

Let e > 0 be given and choose e* > 0 such that e’c{ ’_-- V (f; J)} <
Choose i e > 0 in such a way that (s, t)[a,
implies V(f; s, t) < e*. If rl (r, T)}% and r (a; S)} are two
partitions of J such that [[ [[ < 8,

_
, and for each i, S., S,+, ...,
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is the set of S’s contained in T, then

Hence, by Theorem 3.1, f F exists.
Part (a) of the substitution theorem given below contains Theorems 2.5,

2.6, and 2.7 of MacNerney [6] as special cases, while part (b) is essentially new.

THEOREM 3.5. Suppose that P is a product operator onXX into X, P
is a product operator onX+X into X,,, f is a function on J into X (1
i <- n 1), g is a bounded point-interval function on J into X (n 1 <-
i

_
n 1 ), and h is a function of bounded variation on J into X. Suppose

that
T P(g,+..., g,,_, dh)

is integrable on J. Set F P (f, ..., f,_, T) and G P(f, ..., f,,_, T).
If F exists and either

(a) each f is continuous, or
(b) eachf is of bounded variation and h is continuous, then G is integrable on

The proof for part (b) will be given, while the proof for part (a) is similar.
By Theorem 3.2, the function T is continuous and of bounded variation on
J and hence f G exists by Theorem 3.4 (b).
Set

m--I

Let e > 0 be given, and choose e* > 0 such that
Since h is continuous on J there is a 6 > 0 such that It
implies V(h; s, t) < e*. Let r (t, T)}, be any partition of J with

II r I! < 6, and for i 1, 2, ..., n, let K be the point-interval function on
into X defined by setting

K,(I) P(f,(t,), ...,f.,_,(t,), T(I))
for each point-interval I in T. Then,

and

" (F K,) < ce* {z.,= V(f; J)} < e.
-1

Thus, the result follows.

Ks
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4. -integration in a Banach space

Let / be a point-interval function on J into X. The sum oscillation of / on
J will be defined as the extended real number

co(Sf; J) sup(,,.)]l S (f, rl) S (f, .)

where the supremum is taken over all partitions 1 and r. of J. If (S]; J)
is real, then a point-interval function (Sf) on J into R may be defined by
setting o(Sf)(r, T) (Sf; T) for each point-interval (r, T) in J. The
point-interval function f will be termed -integrable on J if (Sf; J) is finite
and f (Sf) O. It is easy to show that if f is -integrable on J, then $ is
integrable on J and f is -integrable on each closed subinterval of J. If X is
the set R of real numbers with its usual topology, then f is integrable if and
only iff is -integrable (see [4], p. 30). Using this fact, it can be demonstrated
that a similar theorem holds if X is a finite dimensional inner product space.
The author conjectures that integrability and -integrability are not equiva-
lent in general Banach spaces, but leaves this as an open question.
The following theorem is proven in essentially the same way as the case when

X is equal to R.

THEOREM 4.1. Suppose that f is a point-interval function on J into X. If
J is o-integrable on J, then for each e > 0 there is a o > 0 such that for any
partition r {I,}1 of J, I! < implies

In particular, if for each I (r, [s, t] e Pt, we set (I) s, it follows that

lim(z)0

In order to establish the existence of a large class of functions which are
-integrable, the next result is included. The proof is omitted since it is
fairly simple.

THEOREM 4.2. IfP is a product operator on XI X X2 into X, f is a continuous
function on J into X, and g is a function of bounded variation on J into X, then
P (], dg) is o-integrable on J.

A larger class of -integrable functions is obtained by means of the next
theorem and its corollary.

THEOREM 4.3. IfP is a product operator on X X X. into X andf is a func-
tion on J into X (i 1, 2), then P (f, df2) is -integrable on J if and only if
P (df, f) is -integrable on J.
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If I [c, d] ___C [a, b] and rl (ri, Ti)}-i and r2 (a., S’)}-1 are any
two partitions of [c, d], then set x0 c, x,+l d, x,+l t,, y0 c, ym+ d,
,m+ d, x r andx ti_ (1 -< i -< n), and y a.and + s+_ (1 <-

}7+: ofj -< m). Now form partitions (x, X)}_+ and r. (,., Y.) ._
[c, d]. Then

s (P (dfl, f); rc S (P (df, f,); r,)

S(P(fl, df,); rl) S(P(f, df2); r’,)II <-- oo(SP(f, df); I),

so that (SP(df,f; I) <= (SP(f, df,); I). A similar argument shows that
the reverse inequality holds and therefore equality must hold. The conclusion
of the theorem follows directly from this.

COROLLARY. If P is a product operator on X X X2 into X, if fl is a con-
tinuous function on J into X, and iff is a function of bounded variation on J
into X, then P (df, f) is o-integrable on J.

The corollary stated above is a direct consequence of Theorems 4.2 and 4.3.

TItEOREM 4.4. Suppose that P is a product operator on X-_ X into X andf
is a point-interval function on J into Xi (i 1, 2, ..., m ). If f is bounded
for i 1, 2, ..., m 1 and if f is o-integrable on J, then the point-interval
function

F P(f, ...,f,,_,f,)
is integrable if and only if

e P(fl," ",f,-, f
is integrable. If either integral exists, then the two integrals are equal.

If is any partition of J, then

II
Theorem 4.1 guarantees that the right hand member in the above tends to
o as -* o.
THEOREM 4.5. With the hypothesis of Theorem 4.4, F is -integrable if and

only if G is -integrable. In this case, the integrals of F and G are equal.

To prove this result, suppose that G is -integrable on J. Set
a 1-I-l[Ifll. Let e > 0 be given, and choose e* > 0 such that
(2a 1 )e* < e. By Theorem 4.1, there is a i > 0 such that r II < implies

Choose such a small enough so that ,r < i implies S((SG); r) < e*.
If I (r, T) (r, Is, t]) is a point-interval in J with It s < 3, and if
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rl and r2 are partitions of T, then,

<- a K,,I fr f -f(K)II q- o(SG; T)+a f(K) ff
Let (r, T)}_ {I}_ be a partition of J th < , and let
and be partitions of T (1 i n). Then, using the inequality above,
it follows that

+
< e*(2a + 1)

so that

_
(SF)(I) e. Since > 0 was arbitrary, E is -integrable

on J. A sitar proof may be employed to show that if F is -integrable on J,
then so is G. The equality of the integrals follows from Theorem 4.4.

THEOREM 4.6. Suppose that P is a product operator on X X X into X,
P is a product operator on X X Xinto X, a fi is a function on J
into X (i 1, 2, 3). If

(a) fafa are of bounded variation on Jaf is continuousa ofboued
variation on J, or

(b) fa fa are continuous on J and f is of boued variation on J,
then P, P(df, f and P (f, P (df, f are -integrable on J a

P(f,, P(dy f) P, Pz(dfz, :,)

Only the proof of (a) ll be provided since the proof of (b) is silar.
Sincef is continuous and of bonded variation on J, it follows by Theorem 4.2
that P (df, fa) is -integrable on J and the function P (df, f) is continuous
on J. By Theorems 4.2 and 4.5,

P, f P(df, f and P, (, Pz (df, f
are -integrable and the integrals of these two point-interval functions are
equal.

m--2EOaE 4.7. Let P be a product operator on X_ X into X, let P be a
product operator on X_ X X into X_, a let f be a bnded point-interval
function on J into X for i 1, 2, ..., m 3. Let f be a function on J into
X_a let g be a function on J into X. If P (f, dg) is -integrable and if

P (f, f, P(df g a Px (, f, dP(f g
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are integrable on J, then P1 (fl, ", f-8, P (f dg is integrable on J and

f. P(f, gP(% g))

f P(f P,(df, g) ) + P(fx, ..., Y,-s, P(f, dg) ).

Theorem 4.3 together with the fact that P2, dg) is -integmble shows that
P (dr, g) is -integrble. Also, dP2, g) is clearly -teable. Using
Theorem 4.4, Theorem 3.3, nd Theorem 4.4 in tn, it follows that

is integrable and

"", f_.,P(f, dP(f, g) ) P,(f, P,(df, g) )

J P,(, ...,_, dP( ) P(d], ) )

,..., [i’( ])P,( ._, d.. dP(y, ) P(d% )

P,(, ...,:._,, a, P,( da)

b

P,(, ..., :._,, P,( da)).

EOaEM 4.8. Let Px be a product operator on X X X into Xa let P be
a pruct operator on X X X into X. Suppose that f is a edfunction on
J into X, g is a function on J into X, a h is a function on J into X. If
P(g, dh) is -ingrable on J a i F Px, Pz(g, dh) ) a F
P (dr, P (g, h)) are integr&le on J, then F P, Pz (dg, h)) is ingrable on
J a

P(I(), P(O(), h() ))!’ h + +
ApNying heorems 4.4 and a.a, we hae

F P (s), d, P(g, dh)
(4.)

[. P, (s), d, P(a(s),h(s)) P(@, h)

The existence of the ave integrM together th the estence of the tegral

F P (dr, P. (g, h) )
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(and hence of ] P1 (f, dP (g, h) ) ) insures that

fbPl (f(s), d, [f: P(dg, h)l)
exists. ButP (g, dh) -integrable on J implies by Theorem 4.3 that P. (dg, h)
is -integrable on J and hence by an application of Theorem 4.4, ] F, exists
and equals fPl(f(s), d,[]P(dg, h)]). Then by (4.1,) and Theorem 4.7,
the result follows.
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