INTEGRATION AND w-INTEGRATION IN A BANACH SPACE

BY
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1. Introduction

It is known for real-valued functions f, g, and % defined on an interval [a, b]
that if f is bounded on [a, b] and if k (z) = fﬁ g[dh], then fﬁ Sldk] exists if and
only if f.': Sgldh] exists, and if the two integrals exist, then they are equal (see
Hildebrandt [4, p. 53]). However, the situation for the integrals of functions
in a Banach space is somewhat different. Therefore, theorems such as 2.5,
2.6, and 2.7 presented by MacNerney [6] appear. This paper is devoted to
obtaining substitution theorems for a special form of integral in a Banach
space. A theory of integration of point-interval functions with values in a
Banach space is given which contains as special cases the integrals presented
by Gowurin [3], MacNerney [6], Bochner and Taylor [1], and Hille and Phillips
[5, pp. 62-67]. A substitution theorem, Theorem 3.5, is presented which con-
tains all of the substitution theorems given by MacNerney [6] as special cases.
In order to develop further substitution theorems, the concept of w-integration
(not to be confused with the w-property developed in [3]) is introduced to
generate additional substitution theorems as well as a special integration by
parts theorem involving three functions.

2, Notation and terminology

The notation introduced in this section will be employed without further
comment throughout the remainder of this paper. The symbol J will denote
the closed interval [a, b], while X3, X5, - - -, Xm, and X will be Banach spaces.
The norm of an element x in X;, X, - - -, X, or X will be designated by writing

lz||. If D is any nonempty set and f is a function on D into X, then f is
bounded on D if

| fllo =sup{ ] f(z)]:2zeD} < +oo.

When it is convenient, the symbol || f ||» will be replaced by || f|. IfDisa
topological space and f is a function on D into X, then the continuity of f on
D is defined in the usual manner. If fis a function from J into X, then f is of
bounded variation on J if

V(I J) = V(f;50,0) = sup {28 | f(6) — flta) |} < + oo,
where the indicated supremum is to be taken over all sets of the form
fa=t<t--<t.=0}
A product operator P from X7— X;into X is any multilinear function having the
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property that || P (1, 23, - -+, 2a) || £ [I71 || 2:||. Such a function P is clearly
continuous.

3. Integration in a Banach space and substitution theorems

A point-interval in J is any ordered pair of the form (r, T'), where T is a
closed subinterval of J and 7 ¢ T. Following McShane [7], a partition of J is
any collection = = { (x;, X;)}i=1 of point-intervals (x;, X:) = (xs, [®i, 2:]) in
J such that a = 2, b = @, and ¢; < @safori=0,1, ---;n — 1. Each of
the points x; is termed an intermediate point of 7 and the points x; are cut points
of w. The norm of = is the number

” m ” = mMaxj- (x; — i)

In denoting partitions, we will accept the convention that A; = [a;~, @,
B; = [b;, by, ete. Let P be the set of all partitions of J, and let Pt be the
set of all point-intervalsin J. Define two relations, > and =, on P by requir-
ing m = mif || m || = || 7| and m = . if the set of cut points of m; contains
the set of cut points of m,. The ordered pair (P, > ) is a directed set.

A point-interval function on J into X is any function on Pt into X which has
the property that f(r, T') = 0if T is degenerate. A function S on P into X
is defined by setting S(r) = S(f; ) = X 1er f(I), where the indicated sum is
taken over all point-intervals in . The point-interval function f is integrable
over J or [ ? f exists of lim,r S () exists as a limit with respect to the directed
set (P, >), and in this case, the infegral of f over J is the vector
[2f = lim, S(x). If a = b, it follows from the definition that [2f = 0
We define [3f = — f ®f. It is easy to show that f ® f exists if and only if S
is Cauchy; that is, for each ¢ > 0 there is a § > 0 such that 7, e P(a = 1, 2),
lm | < & and || m || < & implies || S(m) — S(m) || < e However, the
following modification of the Cauchy condition is more useful.

TuaeoreMm 3.1.  If f 1s a point-interval function on J into X, then ff.’ f exists if
and only if for each € > O there is a § = 8. > 0 such that m e P, || m | <,
w2 € P, and m, = m tmplies | S(m) — S(m) || < e

Without making any additional assumptions, one can prove a great number
of results for integration of point-interval functions with values in a Banach
space which hold for integrals of so-called real-valued “interval functions’.
Burkill [2] first considered the possibility of taking integrals of real-valued
interval functions, and a thorough treatment of this subject may be found in
Hildebrandt [4]. Corresponding theorems for integrals of point-interval func-
tions in a Banach space will be used in many cases without further comment.

If fis a function on J into X, then two point-interval functions are generated
in a natural way by the function f. This is accomplished by thinking of
f(r, T) = f(s) and df (r, T) = f(t) — f(s) for each point-interval (r, T') =
(r, [s, t]) in J. If g is an integrable point-interval function from J into X,
then [ g will denote the point-interval function on J into X defined by setting
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([ 9) ) = J& g for each point-interval I = (r, [s, #]) in J. For simplicity,
J 19 will be used to denote (f 9)T). If Pis a product operator on X7y X;
into X and f; is a point-interval function on J into X; (# = 1,2, - -+, m), then
P(fy, +++, fn) will be used to denote the point-interval function on J into X
which is defined by setting

P(fy, - fm)T) = P(H), - -+, fn(I))

for each point-interval I in J.
The following theorem is a generalization of Theorem 2.2 in [6].

TuEOREM 3.2. Suppose that P is a product operator on Xi= X; into X, f; is
a bounded point-interval function on J into X; (1 = ¢ = m — 1), h is a function
of bounded variation on J into Xm, and F = P(fy, « -+, fmo, dh). If [o F exists
and ¢ = [[i= || f: ||, then

@) || [SF | = ¢V (h; J) and the function [ F is of bounded variation on J,
and

(b) the function f a F is continuous if h is continuous.

An easily established integration by parts theorem is given below.

TureoreM 3.3. Suppose that f and g are functions on J into X, and X, respec-
tively and P 1s a product operator on Xy X X, into X. Then P(f, dg) is inte-
grable if and only if P(df, g) s integrable, and if the two integrals exist, then

b b
[ urG, ) = Paason = [ PG, ap).

An existence theorem is given below. If m > 2, then it appears that the
continuity requirement for f» in part (b) may not be dropped in general.
However, for m = 2, Theorems 3.3 and 3.4 (a) show that fﬁ P (dfy, f) exists if
f1is continuous and f; is of bounded variation on J.

TurorEM 3.4. Suppose that P is a product operator on X5y X; into X and
fi is a function on J into X; (1 < ¢ £ m). Let F = P(fy, -+, fma, Ofm).
Then [3 F exists if either

(@) fiiscontinuousforti = 1,2, ---, m — 1 and fn ts of bounded variation, or

(b) i s of bounded variation for i = 1,2, ---,m — 1 and fn ¥s continuous
and of bounded variation.

Since the proof of part (a) is not difficult and is similar to the usual proof
given for the case m = 2, only the proof for part (b) is presented here. For
eacht=1,2,---,m — 1, set

c=JI{Ifil:1<jsm—1,j#4 and c¢=maxfc:lSi<m—1}.

Let € > 0 be given and choose £* > 0 such that £*c{ ) 1t V(fi; J)} < e
Choose 8§ = 8. > 0 in such a way that (s, t)ela, b, |8 — t]| < ¢
implies V (fm; 8,t) < €*. If m = { (14, T:)}i=1 and m = { (o;; 8;)} 71 are two
partitions of J such that || 7y || < §, 2 = m, and for each 2, {S;;, Sj;41, + -+, Sji}

'
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is the set of S’s contained in 7';, then
| S(my; F) — S(m; F) || S e 200, 25050 ¢V (s To) V(fms S5)

= ¢ 2 ta 2iei V(fi; TV (fms Ti)
< ce® (20T V(fi; )
<e

Hence, by Theorem 3.1, fﬁ F exists.
Part (a) of the substitution theorem given below contains Theorems 2.5,
2.6, and 2.7 of MacNerney [6] as special cases, while part (b) is essentially new.

THEOREM 3.5. Suppose that Py is a product operator on X34 X; into X, P,
is a product operator on Xien,+1 X; into Xa,, fi s a function on J into X; (1 =
1 S m — 1), g; 18 a bounded point-interval function on J into X; (my + 1 £
t £ m — 1), and h is a function of bounded variation on J into X .. Suppose
that

T = P2(g"1+1"'7 gm—, dh)

isintegrableon J. SetF = Py(fy, + -+ ) fay—1, T) and G = Py(fy, +++, far1, | T).
If [3 F exists and either

(a) each f; is continuous, or

(b) each f; is of bounded variation and h is continuous, then G s integrable on
Jand [3F = [3G.

The proof for part (b) will be given, while the proof for part (a) is similar.
By Theorem 3.2, the function fﬁ T is continuous and of bounded variation on
J and hence [} G exists by Theorem 3.4 (b).

Set

o = (I ll g¢ | ) (maxi2y {(TL 11 551125 # 4})-
Let ¢ > 0 be given, and choose £* > 0 such that £*¢{>_ 13 V (fi; J)} < e
Since h is continuous on J there is a § > 0 such that |t — s| < &
implies V(k; s, t) < €*. Let = = {(;, T:)}7= be any partition of J with
=] <8 andfori = 1,2, ---,n,let K; be the point-interval function on 7'
into X defined by setting

Ki(I) = Pi(fi(ts), - -+ 5 faya (), T(I))

for each point-interval I in T;. Then,
L]

f:F = 20 f':l F=230 f:-: (F —K) + 2 ta K;

ti—1

t§

-3 f (F — Ki) + 8(G; =),
ti-1

and

) (F — Ki)

Thus, the result follows.

<ee®* (D V(Sfi )} < e
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4, w-integration in a Banach space

Let f be a point-interval function on J into X. The sum oscillation of f on
J will be defined as the extended real number

w(8f; J) = 8upery,my | Sy m) — S, m2) |,

where the supremum is taken over all partitions = and = of J. If w(Sf; J)
is real, then a point-interval function w(Sf) on J into R may be defined by
setting w (Sf)(r, T) = w(Sf; T') for each point-interval (r, T') in J. The
point-interval function f will be termed w-iniegrable on J if « (Sf; J) is finite
and [?w(Sf) = 0. It is easy to show that if f is w-integrable on J, then f is
integrable on J and f is w-integrable on each closed subinterval of J. If X is
the set R of real numbers with its usual topology, then f is integrable if and
only if f is w-integrable (see [4], p. 30). Using this fact, it can be demonstrated
that a similar theorem holds if X is a finite dimensional inner product space.
The author conjectures that integrability and w-integrability are not equiva-
lent in general Banach spaces, but leaves this as an open question.

The following theorem is proven in esgentially the same way as the case when
X is equal to R.

TreoreM 4.1.  Suppose that f is a point-interval function on J into X. If
f s w-integrable on J, then for each € > O there is a § = &, > 0 such that for any
partition # = {I}iz of J, || 7| < & implies

i=1 j;‘f — (1) | <e&
In particular, if for each I = (r, [s,t]) e Pt, we set L(I) = ¢t — s, it follows that
limy(ry»0 j;f - fI)|| = 0.

In order to establish the existence of a large class of functions which are
w-integrable, the next result is included. The proof is omitted since it is
fairly simple.

TavorEM 4.2. If P is a product operator on X; X X, into X, f s a continuous
function on J into X, and g is a function of bounded variation on J into X,, then
P(f, dg) 7s w-integrable on J.

A larger class of w-integrable functions is obtained by means of the next
theorem and its corollary.

TurorEM 4.3. If P 1s a product operator on X1 X X, into X and f; is a func-
tion on J into X; (¢ = 1, 2), then P (f1, df2) is w-integrable on J if and only if
P (dfy, f2) 18 w-integrable on J.
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IfI=l[c,d & [a,b]land 71 = { (i, Ts)}i=1 and m = { (0, S;)}j=1 are any
two partitions of [c, d], then set 20 = ¢, Tuya = d, Xn41 = tn, Yo = €, Ym+r = d,
Ymi1 = d, Ty = Tg and Xi = tia (1 = 7 § n), and Y; = 0j and Yi = 8j-1 (1 =
j = m). Now form partitions 1 = { (x;, X:)}22% and m = { (v;, Y;)}7=% of
[c, d]. Then
| S(P(dfy, f2); m1) — SP@Afy, f2); m2) ||

= | S Uy df); m) — SP (s, dfa); m) | < w(SP(h, dfe); I,

so that w (SP(dfy, f2; I) = w(SP(fi, df2); I). A similar argument shows that
the reverse inequality holds and therefore equality must hold. The conclusion
of the theorem follows directly from this.

CoroLLARY. If P is a product operator on X1 X X, into X, if f1 is a con-
tinuous function on J into X1, and if fa is a function of bounded variation on J
into X, then P (dfy, f2) is w-tntegrable on J.

The corollary stated above is a direct consequence of Theorems 4.2 and 4.3.

THEOREM 4.4. Suppose that P is a product operator on Xy X; into X and f;
18 a point-interval function on J into X; (¢ = 1,2, ---,m). If fi is bounded
fori=1,2,---,m — 1 and if fm s w-integrable on J, then the point-interval
Sfunction

F = P(.fl) v ‘,fm-—l,fm)
18 integrable if and only if

G=Pf, ,fn, ffm)
18 integrable. If either integral exists, then the two integrals are equal.

If r is any partition of J, then

| Sree P = S GO 5 AL 151 { e 1D = [ 5]}

Theorem 4.1 guarantees that the right hand member in the above tends to
Oas |« || —0.

TueoreM 4.5. With the hypothesis of Theorem 4.4, F is w-integrable if and
only if G ©s w-integrable. In this case, the integrals of F and G are equal.

To prove this result, suppose that G is w-integrable on J. Set
a = J[73 | fi]. Let € > 0 be given, and choose £* > 0 such that
(2a 4+ 1)&* < e&. By Theorem 4.1, there is a § > 0 such that || = || < § implies

S | D) = [ 1

Choose such a & small enough so that || = | < & implies S (w(SG); v) < &
IfI= (r,T) = (1, s, t]) is a point-interval in J with |t — s| < 3, and if

*
< e
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m and m; are partitions of 7', then,
| S(F; m) — S(F; m)||

§ aZKerl f fm —f(K) f(K) - f f{
K K
Let # = { (i, Ti)}i=a = {I:}i=1 be a partitionof J with || = || < 4, and let

and 7 be partitions of T; (1 = 72 £ n). Then, using the inequality above,
it follows that

‘ + w(SG, T) +a Exerg

2ot | S(F; ma) — S(F;mi) ||

< a{Z?-l Sera | 1K) = [ 1o

+ S(w(SG); w)
< £%(2a + 1)
<e¢

+ Tt T | ) = [

so that Y 7 w(SF)(I;) < &. Since ¢ > 0 was arbitrary, F' is w-integrable
onJ. A similar proof may be employed to show that if F is w-integrable on J,
then so is G. The equality of the integrals follows from Theorem 4.4.

TaeorEM 4.6. Suppose that P, is a product operator on X, X X; into Xy,
P, is a product operator on Xy X Xy into X, and f; is a function on J
mto X; (¢ =1,2,3). If

(a) fiand fs are of bounded variation on J and f. is continuous and of bounded
variation on J, or

(b) fiand f5 are continuous on J and f2 is of bounded variation on J,
then Py(fi, Py (dfs, f3)) and Pi(fy, | Py(dfs, f)) are w-integrable on J and

[ B a0 = [ B2 (5 | B0,

Only the proof of (a) will be provided since the proof of (b) is similar.
Since f; is continuous and of bounded variation on J, it follows by Theorem 4.2
that P, (dfs, f3) is w-integrable on J and the function [3 P, (dfs, f3) is continuous
on J. By Theorems 4.2 and 4.5,

Pi(fy, [ P:(dfe, fs)) and Pi(fy, P2(dfs, f3))

are w-integrable and the integrals of these two point-interval functions are
equal.

TaEOREM 4.7. Let Py be a product operator on X7 X, into X, let Py be a
product operator on Xm—y X Xm tnto Xm—, and let f; be a bounded point-interval
function on J into X; for ¢ = 1,2, --+,m — 3. Let f be a function on J into
Xy and let g be a function on J into X If Py(f, dg) is w-integrable and if

Pi(fy, -+, fmes, P2(df, g)) and Pi(fy, -+, fms, dP:(f, g))
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are integrable on J, then P1(f1, - - -, fm—s, P2(f, dg)) s integrable on J and
[ P+ o P D)
= [ P s, P 00) 4 [ Py e, Pl )
Theorem 4.3 together with the fact that P, (f, dg) is w-integrable shows that

P;(df, g) is w-integrable. Also, dP:(f, g) is clearly w-integrable. Using
Theorem 4.4, Theorem 3.3, and Theorem 4.4 in turn, it follows that

Pl(fl’ t 'afm—ay Pﬁ(f, dg))
is integrable and

[ Pty fuea, aPuCS, ) = f Pi(fi, -+ » fmss Pldl, )
- f Pi(fi, -+, fmes, APo(f, 9) — Pa(df, g))

= j;b Pi(fi, s fmsy da [j: <sz(f, g) — Pu(df, 0)])

=-_fPl(fl,---,f,,._g,d,[[Pz(f,dg)]>

b
B -/; Pi(f1, -+, fm—s, Pa(£, dg))-

TraeorREM 4.8. Let Py be a product operator on Xy X X, into X and let P, be
a product operator on X5 X X, into Xs. Suppose that f is a bounded function on
J into X, g 18 a function on J into X3, and h is a function on J into X, If
Py(g, dh) is w-integrable on J and if F1 = Pi(f, P:(g, dh)) and F, =
Py (df, P2(g, h)) are integrable on J, then Fs = Py (f, Py(dg, h)) is integrable on
J and

b d b
ORI ONIONT = [ R f i+ f Fy.

Applying Theorems 4.4 and 3.3, we have

[r=["r on [ [ P, dh)])
- P, (f<s>, d [Pz<g<s>,h<s>) ~ [ Puas, h)]),

The existence of the above integral together with the existence of the integral

(4.1)

j;b F, = L” Py (df, P:(g, b))
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(and hence of [4 Py(f, dP:(g, h))) insures that

[ (o[ [ i)

exists. But P:(g, dh) w-integrable on J implies by Theorem 4.3 that P, (dg, )
is w-integrable on J and hence by an application of Theorem 4.4, [3 F; exists

and equals [3 Pi(f(s), d[[2 P2(dg, h)]). Then by (4.1) and Theorem 4.7,
the result follows.
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