UNIFORM SPLINE INTERPOLATION OPERATORS IN L,

BY
FraNkLIN RicHARDS'

1. Let m > 1 and n > 2 be positive integers. Define the class §8*" of
cardinal splines of degree 2m — 1 to be those functions S satisfying

(i) Sisa polynomial of degree at most 2m — 1 on each of the intervals

) [, ¢+ 1,4 =0, &1, £2, ---
() SeC™?(—cw, »)

If in addition

@) S+ n)=8@) al z

we say S is a periodic spline and denote this class by $»*. Let I,(n) be the
space of real n-tuples possessing the norm

Iyl = (Ctalw:l?)'?, 1<p<w
= maXigi<a | ¥i |, p = .

Then the periodic spline interpolation operator £ :1,(n) - L0, n] is
defined by letting £2™y be that unique element of 82" satisfying

£3tmy(") = Yi 1=1,2 .-+,

Similarly if (y;)i=— is in I,, the class of doubly infinite real p — summable
sequences, then the cardinal spline interpolation operator

™l — Ly(—o, ®)

is defined by letting £*™y be that unique element of 8™ n L, (— «, « ) which
satisfies

@) =y, T=0,%1,£2 ...

The problem of calculating the norms of these operators for p = « was
first posed by Schurer and Cheney [6], who obtained

TeEOREM 1 (Schurer and Cheney). LetB = 2 + +/3. Then
l€hllo=1+36-8E+1)76@-1)7, n = 2k
®) =1+§6 -E+E* +8TE -1, n=2k-1,
I &le = (1+3v3)/4
Solutions were later obtained by Schurer [5] for m = 3 and Richards (1] for
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arbitrary m. The case p = 1 was investigated by the author [2], who estab-
lished the following:

THEOREM 2, Leét o = 2 — +/3. Then

3+ 3

I €l = 8

[v3 — (9 V3 — 15)a*™

+ (73 = 12)a™ (1 — *)* n = 2k,

[v3 — (7 v/3 — 12)a™]

(4)

_3+ 3
3

1+ YT, =2k 4+ 1,
| 0= @+ v3)/2

The case p = 2 will be solved in this paper. The contrast with the previous
results is striking.

THEOREM 3.
®) | €% |l = 1.
More precisely
(6) €yl <yl yebn)
and equality holds in (6) if and only if y; = constant.
THEOREM 4.
) e lh=1,
and
®) eyl <Nyl yeb
The author wishes to thank Mr. D. Stegenga for several helpful comments
and suggestions.
2. Before proceeding with the proofs of the theorems, we must first discuss
some preliminary results found in [4]. Let

Mi@) =1, |z|<4%
=0, ‘xl>%

and define the central B-spline of order k, M} (), to be the k-fold convolution
of My (x) with itself:

) Mi(z) = My My% - My(z) (k times).

My (z) is a cardinal spline of degree k& — 1 having support on [—%/2, k/2] and
is a symmetric function. In addition, the Fourier transform of Mj(x) is
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easily computed to be

(10) [ m@e iz = o),

where

(11) ¥ (t) = ((2/¢) sin 3t)"
Proof of Theorem 3. Define

(12) M2m(m) = Z:L—-eo Mon(z 4+ wn).

Schoenberg [3] has shown that the functions Mym (¢ — 1), Mam(z — 2), -+,
My (xz — n) form a basis for 83". Hence if £y = S, there exist reals
Cly Coy * Cn SllCh that

@13) S@) = Dimi¢i Mom(z — 1)

and thus

(14) Yo = 8G@) = 2ja Mam(@ — flejy  t=1,2,+--,n
Inverting this non-singular system and using matrix notation we obtain
(15) c=Qy Q7 = M)

Upon squaring both sides of (13) and then integrating, we get

16) Jermylf = [ (S ds = Tta Tia Ageies = o A0),
where

7)  Ay= fo Mon(s — ) Mam(@ — §)dz, 4,5 =1,2, -+ ,n.
Since M, is symmetric, (15) and (16) imply

(18) | £ 112 = supyyi,= (y, 2AQy).

But A, and therefore QAQ, is also symmetric. Thus if p(2AQ2) denotes the
spectral radius of QAQ, then

(19) | €115 = p(QAR).

We shall now compute the eigenvalues and corresponding eigenvectors of
the relevant matrices. )
Because Men (x) has period n, Mzn (¢ — j)i j=1 is the circulant matrix

Mym = C(M2m(0), Mym(1), -+, Mam(m — 1),
oo Mom(n —m + 1), -+, Mym(n — 1)).
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For the time being let us assume that
(20) n 2> 4m

and thus each of the functions Mam ( + 1), v = 0, =1, =2, - - - has disjoint

support. Then by recalling (12) and the fact that M,.(x) has support on
[—m, m], we see that

M2m(”:) = M2m(7:),

.

=0,1,...’m—-1,
= 0, T=Mmy, e, N —m,
=M2m(i_n),

.
I

n—m++1,---,n—1
Hence

Mim = C(Mam(0), M2n(1), - -+ , Mom(m — 1),
0,:--,0, Mam(—m + 1), -++ , Man(—1))
Thus if we define the function ¢, by
(22) er(0) = Do Mi(v)e”
and let

@1)

0; = 2mj/n, j=0,1,.--,n—1,

then M3, has eigenvalues g2 (0;) and corresponding eigenvectors

(23) vi=(1’3i’£§)""£;"_l): j=01,.--,n—1,
where &; = €% is an n-th root of unity. Therefore Q has eigenvalues
(P2m (85))7".

To handle A, we first note that the condition (20) ensures that any one
“hump”’ of Mam (z — ¢) will “hit”’ at most one other “hump” of Mym(x — 7).
Then since (see [4, p. 177])

(24) [ Mon@ ~ )Man(a@ — §) = MinGi — )
and using the periodicity of M (2), it easily follows that
(25) Aij = Mm@ — j), =1+ ,n

Thus A has eigenvalues ¢um (6;).
These results show that QAQ has eigenvalues oum(0;)/¢3m(0;) and cor-

responding eigenvectors v;, j = 0,1, -+, n — 1.
It will now be shown that
(26) oum (0)/03m(0) < 1

with equality bolding in (26) if and only if § = 0 (mod 2x). This will



520 FRANKLIN RICHARDS

establish Theorem 3, as the supremum in (18) will be attained only when y
is some multiple of vy = (1,1, ---,1).
Schoenberg [4] has shown that

27) er(8) = D im—w Y1 (0 + 2m3).
Since y2m () > 0, we have

0

Oim (0) = D i D jemmco Yam (0 + 2% Wam (0 + 277)
> Yo Vim(0 + 270) = oun(8).
This proves (26). Note that we get equality in (28) only if 6 = 0 (mod 27),
since otherwise Yom (6 + 27¢) > 0 for all <.
‘We make the observation that the condition (20) may be discarded, since
if n < 4m, the data (y;)7=1 and £y may be extended periodically to [0, rn],

where r is some integer such that rn > 4m. Theorem 3 may now be applied
on [0, rn]. HE

Proof of Theorem 4. For yely, let £™y = 8. Then there exist reals
¢, t =0, £1, £2, ... such that

(29) S) = Z?;..» ¢ Mam(x — 7).

Proceeding as before we obtain

(28)

(30) | &y |z = [: (8()) dr = 2w 2w Nijcic; = (¢, Ac),

where

Nij = .[w Mzm(x - ’&)Mzm(w —J)dz = Myn(i — .7)7

(31)

i,j =0, £1, £2, ---
and
(32) Yi= Dogmo Mam (G — §)es, 4 =0, %1, £2, --- .

Since ¢2m(8) > 0, we may invert the sequence convolution transformation
(32) to get

(33) ¢ = 2w — j)ys
where
(34) 2w (#)e”’ = (em(8))™

and by the Wiener-Lévy theorem
2ole@)| < .



UNIFORM SPLINE INTERPOLATION OPERATORS 521

Thus
(35) | €™y llz = (¥, whwy).

But then using the correspondence

W)rm—e = §(0) = 2wy €™,
from Parseval’s identity it follows that

m 10 _ o 0am 2\ _ L [T 0an(6)
o) el - (05 a) - £ [ g

Theorem 4 is an immediate consequence of (26) and (36).
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