THE DYER-LASHOF ALGEBRA AND THE \wedge-ALGEBRA

BY
Edward B. Curtis

Introduction
The Dyer-Lashof algebra R is an algebra of operations which act on the homology of infinite loop spaces. The algebra Λ may be considered as an algebra of operations which act on the homotopy of simplical restricted Lie algebras. The purpose of this paper is to describe the relation between R and Λ. As an application, we use this relation, together with the Adams spectral sequence, to obtain information about possible spherical classes in $H_{*}\left(\Omega^{n} S^{n}\right)$.

For each integer $i \geq 0$, there is a Kudo-Araki operation Q^{i} which acts on the mod-2 homology of each infinite loop space. The Dyer-Lashof algebra R is the free associative algebra over Z_{2} generated by the Q^{i}, modulo the ideal of relations which hold in every infinite loop space. There are two types of relations: (1) Q^{i} is 0 when applied to a homology class of dimension greater than i, and
(2) Adem-type relations which hold among iterates of the Q 's. The structure of R is known from the work of Araki-Kudo, Browder, Dyer-Lashof, Madsen, May, and Nishida. The properties of R that we use are summarized in Section 1. In particular, certain iterates of the Q 's (those which are called allowable of nonnegative excess) form a basis for the vector space R. Let $\Omega^{\infty} S^{\infty}$ be the component containing the constant map of the space $\lim _{n} \Omega^{n} S^{n}$. The mod-2 homology of $\Omega^{\infty} S^{\infty}$ is a polynomial algebra with generators in 1-1 correspondence with the allowable basis elements of positive excess of R.

The algebra Λ is obtained (in [6]) as the homotopy of the free simplical restricted Lie algebra on one generator. Λ is shown to be the free associative algebra generated by certain elements λ_{i}, as $i=0,1,2, \ldots$, modulo an ideal which turns out to be the same as the ideal of Adem relations for R. Not only is the algebraic structure of R similar to that of Λ, but, as we shall show, the action of the Steerod algebra and higher operations on Λ is related to the differential ∂ on Λ.

For each space X, the (unstable) Adams spectral sequence $\left\{E_{r}(X)\right\}$, $r=1,2, \ldots$, is a sequence of differential groups, which, roughly speaking, goes from the homology of X to the homotopy of X. Here we use the methods of Bousfield and the author [5], (modifications of those of Massey-Peterson [12]), to obtain the Adams spectral sequence for $\Omega^{\infty} S^{\infty}$. The term $E_{1}\left(\Omega^{\infty} S^{\infty}\right)$, defined by means of $H_{*}\left(\Omega^{\infty} S^{\infty}\right)$ and Λ, is shown to be itself isomorphic to Λ. This isomorphism is not filtration preserving, nor differential respecting. The precise formulation of this isomorphism (Lemma (5.1)) is the basis of our calculations. We then show (in Sections 6 and 7) that, except for elements related

Received January 18, 1974.
either to the Hopf invariant, or to the Kervaire invariant, all of the elements of $E_{1}^{0, *}\left(\Omega^{\infty} S^{\infty}\right)$ have nonzero differentials, and so cannot persist to $E_{\infty}^{0, *}\left(\Omega^{\infty} S^{\infty}\right)$. Thus the group of spherical classes in $H_{*}\left(\Omega^{\infty} S^{\infty}\right)$ can consist at most of the Hopf classes in dimensions $1,3,7$, and (possibly) the Kervaire classes in dimensions $2\left(2^{n}-1\right)$ This includes the result of Browder [9] that dimensions other than $2\left(2^{n}-1\right)$ cannot contain a framed manifold, for such a manifold would, by the Pontrjagin-Thom construction and [16], give rise to a spherical class in $H_{*}\left(\Omega^{\infty} S^{\infty}\right)$.

All the vector spaces, modules, algebras, etc, are to be taken over the field Z_{2}. For a topological space $X, H_{*}(X)$ will denote the homology groups of X with Z_{2} Coefficients. Each space X is to have a base point, and ΩX stands for the space of loops in X starting and ending at the base point ΩX is an H-space, and $u \cdot v$ denotes the Pontrjagin product of u and v in $H_{*}(\Omega X)$.

The symbol $C(m, n)$ is the binomial coefficient $m!/ n!(m-n)$! reduced modulo 2 , with the usual conventions: $C(m, 0)=1$, and $C(m, n)=0$ if $m<n$ or $n<0$.

1. Homology operations

This section summarizes some of the results of [2], [8], [10], [11], [13], [14], [15], and establishes notation A space X is called an infinite loop space if there is a sequence of spaces $\left\{X_{k}\right\}, k \geq 0$, with $X=X_{0}$ and $X_{k}=\Omega X_{k+1}$ for each $k \geq 0$ If X is an infinite loop space, the Kudo-Araki operations

$$
Q^{i}: H_{q}(X) \rightarrow H_{q+i}(X)
$$

are defined for each integer $i \geq 0$. We let the operations act on the right in homology, and the index i refers to the dimension increase. These operations have the following properties.

$$
\begin{array}{ll}
(u) Q^{i}=0 & \text { if } \operatorname{dim}(u)>i \\
(u) Q^{i}=u^{2} & \text { if } \operatorname{dim}(u)=i \tag{1.1}
\end{array}
$$

(1.2) (Suspension). Let $\sigma: H_{*}(\Omega X) \rightarrow H_{*+1}(X)$ be the homology suspension homomorphism Then $\sigma\left((u) Q^{i}\right)=(\sigma(u)) Q^{i}$.
(1.3) (Co-product). Let $\psi: H_{*}(X) \rightarrow H_{*}(X) \otimes H_{*}(X)$ be the coproduct (induced from the diagonal map $\Delta: X \rightarrow X \times X)$, with

$$
\psi(u)=\sum_{j} u_{j}^{\prime} \otimes u_{j}^{\prime \prime}
$$

Then

$$
\psi\left((u) Q^{i}\right)=\sum_{j, 0 \leq k \leq i}\left(u_{j}^{\prime}\right) Q^{k} \otimes\left(u_{j}^{\prime \prime}\right) Q^{i-k}
$$

(1.4) (Adem relations). If $j<2 i$, then

$$
(u) Q^{i} Q^{j}=\sum_{m \geq 0} C(m-i-1,2 m-j)(u) Q^{m} Q^{i+1-m} .
$$

(1.5) (Nishida relations). Let the Steenrod algebra act on the right in homology, dual to its left action in cohomology; then

$$
\begin{align*}
(u) Q^{i} S q^{j}= & \sum_{m \geq 0} C(j-i, i-2 m)(u) S q^{m} Q^{i-j+m} \\
\text { (Cartan formula). } & (u \cdot v) Q^{i}=\sum_{0 \leq k \leq i}\left((u) Q^{k}\right) \cdot\left((v) Q^{i-k}\right) \tag{1.6}
\end{align*}
$$

The homology operations also satisfy formulas arising from the composition action of the space G (the set of homotopy equivalence of the sphere with itself) on infinite loop spaces, but these will not be needed in this paper.

For each sequence of nonnegative integers, $I=\left(i_{1}, i_{2}, \ldots, i_{s}\right)$, let Q^{I} be the iterated operation $(\cdot) Q^{I}=(\cdot) Q^{i_{1}} \cdots Q^{i_{s}}$. Then define

$$
\begin{aligned}
l(I) & =\text { length of } I=s \\
\operatorname{deg}(I) & =\text { degree of } I=i_{1}+\cdots+i_{s} \\
e(I) & =\text { excess of } I=i_{s}-\left(i_{1}+\cdots+i_{s-1}\right)
\end{aligned}
$$

We note that $e(I)=2 i_{s}-\operatorname{deg}(I)$. A sequence I is called allowable if $2 i_{j} \geq i_{j+1}$ for each $j=1,2, \ldots, s-1$.

The Dyer-Lashof algebra R is defined to be the quotient A / J where A is the free associative, not commutative, algebra over Z_{2} generated by $\left\{Q^{i}, i \geq 0\right\}$, and J is the homogeneous ideal generated by the relations

$$
\begin{array}{ll}
Q^{I} & \text { if excess }(I)<0 \\
Q^{i} Q^{j}-\sum_{m \geq 0} C(m-i-1,2 m-j) Q^{m} Q^{i+j-m} & \text { if } j>2 i
\end{array}
$$

That is, J is the ideal of relations satisfied by iterated operations applied to a homology class in any infinite loop space. The calculation in [10] of $H_{*}\left(\Omega^{\infty} S^{\infty}\right)$ shows that no further relations hold in general. The relations imply that R has a vector space basis $\left\{Q^{I}\right\}$, where I varies over all allowable sequences of excess ≥ 0.

2. The spaces $\Omega^{n} S^{n+k}$

Let $G_{*}(n)$ be the space of all continuous maps (of any degree, not necessarily basepoint preserving) of S^{n-1} to itself, with the compact-open topology. The evaluation $\operatorname{map} \phi: G_{*}(n) \rightarrow S^{n-1}$ is defined by $\phi(f)=f(p)$, where p is a fixed basepoint in S^{n-1}. Then ϕ is a fibration, and the fibre is $\left(\Omega^{n} S^{n}\right)_{*}$, the set of all basepoint preserving maps of S^{n-1} to itself (of any degree). There are inclusions $G_{*}(n) \subset G_{*}(n+1)$ for all n, and G_{*} is defined to be $\lim _{n} G_{*}(n)$. Similarly, $\left(\Omega^{\infty} S^{\infty}\right)_{*}=\lim _{n}\left(\Omega^{n} S^{n}\right)_{*}$. The inclusion $\left(\Omega^{\infty} S^{\infty}\right)_{*} \rightarrow G_{*}$ is a homotopy equivalence. Each map f of a sphere to itself has a degree, and for each integer j, let G_{j} (or $\left(\Omega^{\infty} S^{\infty}\right)_{j}$) be the subspace of G_{*} (respectively of $\left.\left(\Omega^{\infty} S^{\infty}\right)_{*}\right)$ of maps of degree j. Then each G_{j} and each $\left(\Omega^{\infty} S^{\infty}\right)_{j}$ is a component of G_{*} or of $\left(\Omega^{\infty} S^{\infty}\right)_{*}$
and they all have the same homotopy type. We denote the component G_{1} by $S G$, and the component $\left(\Omega^{\infty} S^{\infty}\right)_{0}$ by $\Omega^{\infty} S^{\infty}$.

The space $\left(\Omega^{\infty} S^{\infty}\right)_{*}$ is an infinite loop space, taking as the k th space $X_{k}=\lim _{n} \Omega^{n} S^{n+k}$. The homology class of a point in the component $\left(\Omega^{\infty} S^{\infty}\right)_{j}$ will be called [j]. The class [0] is the unit for the Pontrjagin algebra $H_{*}\left(\left(\Omega^{\infty} S^{\infty}\right)_{*}\right)$. In general, multiplication by [j] sends $H_{*}\left(\left(\Omega^{\infty} S^{\infty}\right)_{k}\right)$ isomorphically onto $H_{*}\left(\left(\Omega^{\infty} S^{\infty}\right)_{k+j}\right)$. For $i>0$, the operation Q^{i} yields 0 when applied to [0], but not when applied to the other [$j]$. The result of Dyer-Lashof ([10]) is that

$$
\left.H_{*}\left(\Omega^{\infty} S^{\infty}\right) \cong P\left([1] Q^{i_{1}} \cdot[-2]\right) Q^{i_{2}} \cdots Q^{i} q\right)
$$

where $I=\left(i_{1}, \ldots, i_{q}\right)$ varies over all allowable sequences of excess ≥ 1, and $P(\cdots)$ stands for the polynomial algebra on the stated generators.

The space $S G$ has the same homotopy type as $\Omega^{\infty} S^{\infty}$, hence

$$
H_{*}(S G) \cong H_{*}\left(\Omega^{\infty} S^{\infty}\right)
$$

even as coalgebras over the Steenrod algebra. With composition as multiplication, $H_{*}(S G)$ has a different ring structure and a different action by the DyerLashof algebra ([14], [11]), but we do not need these here.

3. Unstable A-coalgebras

As in [5], let $M A$ be the category of right A-modules, and $C A$ the category of right homology A-coalgebras, where A is the mod-2 Steenrod algebra. That is, M in $M A$ is to be a non-negatively graded vector space with a right A action: for $x \in M_{n},(x) S q^{i} \in M_{n-1}$ with $(x) S q^{i}=0$ if $2 i>n . C$ in $C A$ is to be simultaneously an unstable right A-module and a connected, cocommutative coalgebra, where the structures are compatible as follows. The comultiplication of C satisfies a Cartan formula and the square root map $\sqrt{ } \cdot$ of C (the dual of the squaring map for algebras) satisfies

$$
\sqrt{ } \cdot=(\cdot) S q^{n}: C_{2 n} \rightarrow C_{n}
$$

For example, if X is any connected space, $H_{*}(X)$ is in $C A$, and depends only on the homotopy type of X.

For each M in $M A$ with $M_{0}=0$, let $U_{*}(M)$ in $C A$ be the free unstable right A-coalgebra generated by $M ; U_{*}(M)$ may be defined by a universal mapping property. If M is of finite type, then $U_{*}(M)$ is dual to $U\left(M^{*}\right)$, the free unstable (left) A-algebra generated by M^{*} (see [17; p. 29]).

Let $M\left(\Omega^{\infty} S^{\infty}\right)$ be the vector space with basis the symbols $\left\{x_{0}(I)\right\}$, as $I=\left(i_{1}, \ldots, i_{q}\right)$ varies over all allowable sequences of excess ≥ 0 and degree >0; put $\operatorname{dim} x_{0}(I)=$ degree (I). The Dyer-Lashof algebra and the Steenrod algebra are to act on $M\left(\Omega^{\infty} S^{\infty}\right)$ by the formulas (1.4) and (1.5). Specifically,

$$
x_{0}\left(i_{1}, \ldots, i_{q}\right) Q^{i}= \begin{cases}x_{0}\left(i_{1}, \ldots, i_{q}, i\right), & i \geq \operatorname{deg}(I) \\ 0, & i<\operatorname{deg}(I)\end{cases}
$$

with the convention that the Adem relations are to hold. That is, if $2 i_{q}<i$, then

$$
\begin{aligned}
& x_{0}\left(i_{1}, \ldots, i_{q}, i\right) \\
& \quad=\sum_{m} C\left(m-i_{q}-1,2 m-i_{q}\right)\left(x_{0}\left(i_{1}, \ldots, i_{q-1}, m, i+i_{q}-m\right)\right)
\end{aligned}
$$

Also,

$$
x_{0}\left(i_{1}, \ldots, i_{q}\right) S q^{i}=\sum_{m} C\left(i-i_{q}, i_{q}-2 m\right) x_{0}\left(i_{1}, \ldots, i_{q-1}\right) S q^{m} Q^{i-i} q^{+m}
$$

This defines the action of the $S q^{i}$ on $M\left(\Omega^{\infty} S^{\infty}\right)$ inductively by length; thereby $M\left(\Omega^{\infty} S^{\infty}\right)$ is in $M A$, and $U_{*}\left(M\left(\Omega^{\infty} S^{\infty}\right)\right)$ is in $C A$.

Proposition (3.1). As members of $C A, H_{*}\left(\Omega^{\infty} S^{\infty}\right) \cong U_{*}\left(M\left(\Omega^{\infty} S^{\infty}\right)\right)$.
Proof. As asserted in Section 2, $H_{*}\left(\Omega^{\infty} S^{\infty}\right)$ is a polynomial algebras with generators

$$
\left\{\left([1] Q^{i_{1}} \cdot[-2]\right) Q^{i_{2}} \cdots Q^{i_{q}}\right\}
$$

where $I=\left(i_{1}, \ldots, i_{q}\right)$ varies over all allowable sequences of excess ≥ 1. Thus $H_{*}\left(\Omega^{\infty} S^{\infty}\right)$ has a simple system of generators of the same form except that now the $I=\left(i_{1}, \ldots, i_{q}\right)$ vary over all allowable sequences of excess ≥ 0. Let

$$
\alpha: H_{*}\left(\Omega^{\infty} S^{\infty}\right) \rightarrow M\left(\Omega^{\infty} S^{\infty}\right)
$$

be the homomorphism defined by

$$
\alpha\left(\left([1] Q^{i_{1}} \cdot[-2]\right) Q^{i_{2}} \cdots Q^{i_{q}}\right)=x_{0}\left(i_{1}, \ldots, i_{q}\right)
$$

for the simple generators, and $\alpha(y)=0$ when y is a product of two or more distinct simple generators. From the universality of $U_{*}(\cdot)$, we obtain a homomorphism

$$
\tilde{\alpha}: H_{*}\left(\Omega^{\infty} S^{\infty}\right) \rightarrow U_{*}\left(M\left(\Omega^{\infty} S^{\infty}\right)\right)
$$

It follows from Madsen's calculations that $\tilde{\alpha}$ is an isomorphism ([11, Proposition 4.13], see also [13]).

We also need to consider the homology of the various spaces $\Omega^{n} S^{n+k}$. For each $n \geq 1, k \geq 0$, let $M\left(\Omega^{n} S^{n+k}\right)$ be the vector space with basis $\left\{x_{k}(I)\right\}$, as $I=\left(i_{1}, \ldots, i_{q}\right)$ varies over all allowable sequences of excess $\geq k$, and with $i_{1}<n+k$. For $k=0$, we are considering the component $\left(\Omega^{n} S^{n}\right)_{0}$, so the empty sequence is to be excluded from $M\left(\Omega^{n} S^{n}\right)$. The Dyer-Lashof algebra and the Steenrod algebra act on $M\left(\Omega^{n} S^{n+k}\right)$ by the formulas (1.4) and (1.5), taking into account that $\operatorname{dim}\left(x_{k}\right)=k$, and that $\Omega^{n} S^{n+k}$ is only an H^{n-1}-space. In these cases, $H^{*}\left(\Omega^{n} S^{n+k}\right)$ is not a polynomial algebra: for $k \geq 1$, it is an exterior algebra, while for $k=0$, it is a truncated polynomial algebra. A result of Araki-Kudo asserts that for $n \geq 1, k \geq 1, H_{*}\left(\Omega^{n} S^{n+k}\right) \cong P\left(x_{k} Q^{I}\right)$ as $I=$ $\left(i_{1}, \ldots, i_{q}\right)$ over all allowable sequences of excess $\geq k$ and with $i_{1}<n+k$. Again Madsen's calculations show the following ([11], [13]).

Proposition (3.2). As members of $C A, H_{*}\left(\Omega^{n} S^{n+k}\right) \cong U_{*}\left(M\left(\Omega^{n} S^{n+k}\right)\right)$.
We next consider the James map ([18; p. 21]), $h: \Omega S^{n+k+1} \rightarrow \Omega S^{2 n+2 k+1}$. The fiber of h (localized at the prime 2) is S^{n+k}. Thus, after looping n times, there is a fibration (at the prime 2):

$$
\Omega^{n} S^{n+k} \longrightarrow \Omega^{n+1} S^{n+k+1} \xrightarrow{\Omega^{n h}} \Omega^{n+1} S^{2 n+2 k+1} .
$$

This corresponds to a short exact sequence in $M A$,

$$
\begin{equation*}
0 \rightarrow M\left(\Omega^{n} S^{n+k}\right) \xrightarrow{t} M\left(\Omega^{n+1} S^{n+k+1}\right) \xrightarrow{\eta} M\left(\Omega^{n+1} S^{2 n+2 k+1}\right) \rightarrow 0 \tag{3.3}
\end{equation*}
$$

where l is the natural inclusion, and

$$
\eta\left(x_{k}(I)\right)= \begin{cases}x_{2 k+n}\left(i_{2}, \ldots, i_{q}\right) & \text { if } I=\left(k+n, i_{2}, \ldots, i_{q}\right) \\ 0 & \text { otherwise }\end{cases}
$$

To verify that $\Omega^{n} h$ induces η in homology, observe that h is not a loop map, and that $h_{*}: H_{*}\left(\Omega S^{n+k+1}\right) \rightarrow H_{*}\left(\Omega S^{2 n+2 k+1}\right)$ does not commute the homology operations. Instead (as in [18]),

$$
\begin{aligned}
h_{*}\left(x_{n+k}\right) & =0 \\
h_{*}\left(x_{n+k} Q^{n+k} Q^{2(n+k)} \cdots Q^{2 q(n+k)}\right) & =x_{2(n+k)} Q^{2(n+k)} \cdots Q^{2 q(n+k)}
\end{aligned}
$$

Then $\Omega^{n} h$ is an H^{n-1}-map, and $\left(\Omega^{n} h\right)_{*}=\eta$ on $M\left(\Omega^{n+1} S^{n+k+1}\right)$.

4. The Unstable Adams spectral sequence

In [6], (see also [5]), there is constructed for each space X, a spectral sequence $\left\{E_{r}^{s, t}(X)\right\}, r=1,2, \ldots$, with the following properties.
(1) For a connected nilpotent space X, the $E_{r}(X)$ converge to $\pi_{*}(X)$ modulo the subgroup of elements of odd order. This convergence is valid when X is an H-space, in particular, for the space $\Omega^{\infty} S^{\infty}$.
(2) $E_{2}^{s, t}(X) \cong \operatorname{Ext}_{c}^{s, t}\left(Z_{2}, H_{*}(X)\right)$.
(3) The Hurewicz homomorphism (reduced mod 2) factors as the composite

$$
\pi_{t}(X) \rightarrow E_{\infty}^{0, t}(X) \subset \cdots \subset E_{2}^{0, t}(X) \subset H_{t}(X)
$$

We shall be dealing with spaces X for which $H_{*}(X) \cong U_{*}(M)$. In this situation, a theorem of Massey and Peterson ([12]) asserts that

$$
E_{2}^{s, t}(X) \cong \operatorname{Ext}_{M A}^{s, t}\left(Z_{2}, M\right)
$$

We retain the notation of [5], where it is further shown that Ext ${ }_{M A}^{s, t}\left(Z_{2}, M\right)$ may be calculated as the homology of a complex which we shall describe shortly.

First the algebra Λ is defined to be the free associative, not commutative, algebra with unit, which has
(i) for each integer $i \geq 0$, a generator λ_{i} of degree i;
(ii) for each pair of integers $i \geq 0, m \geq 0$, a relation

$$
\lambda_{i} \lambda_{2 i+1+m}=\sum_{j \geq 0} C(m-1-j, j) \lambda_{i+m-j} \lambda_{2 i+1+j} ;
$$

(iii) a differential $\partial, \partial\left(\lambda_{i}\right)=\sum_{j \geq 1} C(i-j, j) \lambda_{i-j} \lambda_{j-1}$.

For each M in $M A$, let ($M \hat{\otimes} \Lambda, \delta$) be the chain complex as follows. $M \hat{\otimes} \Lambda$ is the subspace of $M \otimes \Lambda$ spanned by $x_{k} \otimes \lambda_{I}$ where $x_{k} \in M_{k}$ and $I=\left(i_{1}, \ldots, i_{s}\right)$ is allowable with $i_{1}<k$ (or I is empty). The differential δ on $M \hat{\otimes} \Lambda$ is defined by

$$
\delta\left(x \otimes \lambda_{I}\right)=x \otimes\left(\partial \lambda_{I}\right)+\sum_{j \geq 0}(x) S q^{j} \otimes \lambda_{j-1} \lambda_{I} .
$$

As the relations in Λ are homogeneous,

$$
\Lambda=\oplus_{s \geq 0} \Lambda^{s}, \quad M \hat{\otimes} \Lambda=\oplus_{s \geq 0} M \hat{\otimes} \Lambda^{s} .
$$

The term $x_{k} \otimes \lambda_{I}$ is given bi-degree (s, t), where $s=$ length (I), and $t=$ $s+k+$ degree (I). Theorem (3.3) of [5] asserts that if $H_{*}(X) \cong U_{*}(M)$ then,

$$
E_{2}^{s, t}(X) \cong H^{s, t}(M \hat{\otimes} \Lambda) .
$$

In particular,

$$
E_{2}^{s, t}\left(\Omega^{n} S^{n+k}\right) \cong H^{s, t}\left(M\left(\Omega^{n} S^{n+k}\right) \hat{\otimes} \Lambda\right) .
$$

Passing to the homology of the sequence (3.3), we obtain for each $n \geq 0, k \geq 1$, a long exact sequence

$$
\begin{align*}
\cdots & \longrightarrow E_{2}^{s, t}\left(\Omega^{n} S^{n+k}\right) \xrightarrow{\iota_{*}} E_{2}^{s, t}\left(\Omega^{n+1} S^{n+k+1}\right) \\
& \xrightarrow{n_{*}} E_{2}^{s, t}\left(\Omega^{n+1} S^{2 n+2 k+1}\right) \xrightarrow{o} E_{2}^{s+1, t}\left(\Omega^{n} S^{n+k}\right) \longrightarrow \cdots \tag{4.2}
\end{align*}
$$

which is a form of the EHP sequence at the E_{2}-level.

5. The complex $M \hat{\otimes} \wedge$

Let $M\left(\Omega^{\infty} S^{\infty}\right)$ be the vector space as defined in Section 3, and Λ the algebra of Section 4 , with $\bar{\Lambda}$ the ideal of positive dimensional members of Λ. There is an isomorphism $\theta: M\left(\Omega^{\infty} S^{\infty}\right) \hat{\otimes} \Lambda \cong \bar{\Lambda}$ defined by

$$
\theta\left(\left(x_{0}\right) I^{\prime} \otimes \lambda_{I^{\prime \prime}}\right)=\lambda_{I^{\prime}} \lambda_{I^{\prime \prime}} .
$$

To see that θ is an isomorphism, observe that for each allowable sequence $I=\left(i_{1}, \ldots, i_{s}\right)$ there is a unique index q for which the sequences $I^{\prime}=\left(i_{1}, \ldots, i_{q}\right)$ and $I^{\prime \prime}=\left(i_{q+1}, \ldots, i_{s}\right)$ satisfy excess $\left(I^{\prime}\right) \geq 0$ and $i_{q+1}<\operatorname{degree}\left(I^{\prime}\right)$. We write $I=\left(I^{\prime} \mid I^{\prime \prime}\right)$ to indicate this decomposition.
The isomorphism θ is not filtration preserving, as the filtration degree of $x_{0}\left(I^{\prime}\right) \oplus \lambda_{I^{\prime \prime}}$ is length ($I^{\prime \prime}$), while the filtration degree of $\lambda_{I^{\prime}} \lambda_{I^{\prime \prime}}$ is length $\left(I^{\prime}, I^{\prime \prime}\right)$. Nor does θ commute with the differentials. However, the differentials δ of $M\left(\Omega^{\infty} S^{\infty}\right) \hat{\otimes} \Lambda$ and ∂ of Λ are related as follows.

Lemma (5.1). Let $I=\left(i_{1}, \ldots, i_{s}\right)$ be allowable with $I=\left(I^{\prime} \mid I^{\prime \prime}\right)$. Suppose that

$$
\partial \lambda_{I}=\sum \alpha_{J} \lambda_{J}, \quad \alpha_{J} \in Z_{2}
$$

where the J vary over allowable sequences of length $s+1$. Then

$$
\delta\left(\left(x_{0}\right) I^{\prime} \otimes \lambda_{I^{\prime \prime}}\right)=\sum^{*} \alpha_{J} x_{0}\left(J^{\prime}\right) \otimes \lambda_{J^{\prime \prime}}
$$

where the sum Σ^{*} is taken over those allowable sequences $J=\left(J^{\prime} \mid J^{\prime \prime}\right)$ for which length $\left(J^{\prime \prime}\right)=$ length $\left(I^{\prime \prime}\right)+1$.

Proof. Consider first the special case where I is allowable of excess ≥ 0; that is, $I=I^{\prime}$ and $I^{\prime \prime}$ is empty. Suppose $\partial \lambda_{I}=\sum \alpha_{J} \lambda_{J}$. We shall show by induction on length (I) that

$$
\begin{equation*}
\delta\left(x_{0}(I)\right)=\sum^{*} \alpha_{J} x_{0}\left(J^{\prime}\right) \otimes \lambda_{J^{\prime \prime}} \tag{5.2}
\end{equation*}
$$

where the sum Σ^{*} is taken for those $J=\left(J^{\prime} \mid J^{\prime \prime}\right)$, with length $\left(J^{\prime \prime}\right)=1$. Observe that this is equivalent to the assertion that for each positive integer j, $x_{0}(I) S q^{j}=\sum \alpha_{J} x_{0}\left(J^{\prime}\right)$ the sum taken for those $J=\left(J^{\prime} \mid J^{\prime \prime}\right)$ for which $J^{\prime \prime}=(j-1)$.

For length $(I)=1$, the sequence I is merely (i). Then

$$
\begin{aligned}
\delta\left(x_{0}(i)\right) & =\sum_{j \geq 1}\left(x_{0}(i)\right) S q^{j} \otimes \lambda_{j-1} \\
& =\sum_{j \geq 1} C(i-j, j) x_{0}(i-j) \otimes \lambda_{j-1}
\end{aligned}
$$

by the Nishida relations which define the action of the $S q^{j}$ on $M\left(\Omega^{\infty} S^{\infty}\right)$. As the expression for ∂ is given by (Section 4, (iii)), the formula (5.2) is valid for length 1.

Assume inductively that (5.2) is valid for lengths $<s$, and let $I=\left(i_{1}, \ldots, i_{s}\right)$ be allowable of excess ≥ 0, and of length s. Then

$$
\begin{aligned}
\delta\left(x_{0}(I)\right)= & \sum_{j \geq 1} x_{0}(I) S q^{j} \otimes \lambda_{j-1} \\
= & \sum_{j \geq 1} \sum_{m \geq 0} C\left(i_{s}-j, j-2 m\right) x_{0}\left(i_{1}, \ldots, i_{s-1}\right) S q^{m} Q^{i_{s}-j+m} \otimes \lambda_{j-1} \\
= & \sum_{j \geq 1} C\left(i_{s}-j, j\right) x_{0}\left(i_{1}, \ldots, i_{s-1}, i_{s-j}\right) \otimes \lambda_{j-1} \\
& +\sum_{j \geq 1} \sum_{m \geq 1} C\left(i_{s}-j, j-2 m\right) x_{0}\left(i_{1}, \ldots, i_{s-1}\right) S q^{m} Q^{i_{s}-j+m} \otimes \lambda_{j-1}
\end{aligned}
$$

Suppose now that

$$
\begin{aligned}
\partial\left(\lambda_{i_{1}} \cdots \lambda_{i_{s-1}}\right) & =\sum \alpha_{K} \lambda_{K} \\
& =\sum_{K^{\prime \prime}=m-1} \alpha_{K} \lambda_{K^{\prime}} \lambda_{m-1}+\sum_{K^{\prime \prime} \neq m-1} \alpha_{K} \lambda_{K^{\prime}} \lambda_{K^{\prime \prime}}
\end{aligned}
$$

where the first sum is taken for those $K \neq\left(K^{\prime} \mid K^{\prime \prime}\right)$ with $K^{\prime \prime}=m-1$, and the second sum is taken for $K^{\prime \prime} \neq m-1$. The inductive assumption asserts that

$$
x_{0}\left(i_{1}, \ldots, i_{s-1}\right) S q^{m}=\sum_{K^{\prime \prime}=m-1} \alpha_{K} x_{0}\left(K^{\prime}\right)
$$

The expression for $\delta\left(x_{0}(I)\right)$ becomes

$$
\begin{aligned}
\delta\left(x_{0}(I)\right)= & \sum_{j \geq 1} C\left(i_{s}-j, j\right) x_{0}\left(i_{1}, \ldots, i_{s-1}, i_{s-j}\right) \otimes \lambda_{j-1} \\
& +\sum_{j \geq 1} \sum_{m \geq 1} \sum_{K^{\prime \prime}=m-1} C\left(i_{s}-j, j-2 m\right) \alpha_{K} x_{0}\left(K^{\prime}, i_{s-j+m}\right) \otimes \lambda_{j-1}
\end{aligned}
$$

Also,

$$
\begin{aligned}
\partial\left(\lambda_{I}\right) & =\lambda_{i_{1}} \cdots \lambda_{i_{s-1}}\left(\partial \lambda_{i_{s}}\right)+\partial\left(\lambda_{i_{1}} \cdots \lambda_{i_{s-1}}\right) \lambda_{i_{s}} \\
& =\sum_{j \geq 1} C\left(i_{s}-j, s_{j}\right) \lambda_{i_{1}} \cdots \lambda_{i_{s-1}} \lambda_{i_{s}-j} \lambda_{j-1} \\
& =\sum \alpha_{K} \lambda_{K^{\prime}}, \lambda_{K^{\prime \prime}} \lambda_{i_{s}} .
\end{aligned}
$$

We next show that to obtain the expression for $\delta\left(x_{0}(I)\right)$, we must delete from this sum those K for which length $\left(K^{\prime \prime}\right)>1$, and that the expression for $\delta\left(x_{0}(I)\right)$ then becomes the sum Σ^{*} of (5.2). For this, we make use of the following, which is easily established inductively by length.

Sublemma (5.3). Let $K=\left(k_{1}, \ldots, k_{s}\right)$ be allowable, and $i>2 k_{s}$. Suppose that $\lambda_{K} \lambda_{i}=\sum \lambda_{J} \lambda_{J}$, J allowable, $\lambda_{J} \in Z_{2}$. Let $K=\left(K^{\prime} \mid K^{\prime \prime}\right)$, and each $J=$ $\left(J^{\prime} \mid J^{\prime \prime}\right)$. Then for those J with $l\left(J^{\prime \prime}\right)<l\left(K^{\prime \prime}\right), \lambda_{J}$ must be 0 .

By means of this sublemma, the expression for $\partial\left(\lambda_{I}\right)$ becomes

$$
\begin{aligned}
\partial\left(\lambda_{I}\right)= & \sum_{j \geq 1} C\left(i_{s}-j, s_{j}\right) \lambda_{i_{1}} \cdots \lambda_{i_{s-1}} \lambda_{i_{s-j}} \lambda_{j-1} \\
& +\sum_{m \geq 1} \sum_{K^{\prime \prime}=m-1} \alpha_{K} \lambda_{K^{\prime}} \lambda_{m-1} \lambda_{i_{s}}+\sum_{l\left(K^{\prime \prime}\right)>1} \alpha_{K} \lambda_{K^{\prime}} \lambda_{K^{\prime \prime}} \lambda_{i_{s}} \\
= & \sum_{j \geq 1} C\left(i_{s}-j, j\right) \lambda_{i_{1}} \cdots \lambda_{i_{s-1}} \lambda_{i_{s-j}} \lambda_{j-1} \\
& +\sum_{m \geq 1} \sum_{K^{\prime \prime}=m-1} \sum_{j \geq 0} C\left(i_{s}-j, j-2 m\right) \alpha_{K} \lambda_{K} \lambda_{i_{s}-j+m} \lambda_{j-1}+\sum_{l\left(K^{\prime \prime}\right)>1} \cdots .
\end{aligned}
$$

Thus the formula (5.2) has been established for the special case when $l\left(I^{\prime \prime}\right)=0$. The general case follows easily by further use of the sublemma.

Continuation. Let $M\left(\Omega^{n} S^{n+k}\right)$ be the vector space as described in Section 3. Let $\Lambda(n+k)$ be the subspace of Λ spanned by allowable $\lambda_{I}=\lambda_{i_{1}} \cdots \lambda_{i_{s}}$ with $i_{1}<n+k$. (Thus $\Lambda(n+k) \cong E_{1}\left(S^{n+k}\right)$ as in [4; (5.4)].) There is an isomorphism

$$
\theta: M\left(\Omega^{n} S^{n+k}\right) \hat{\otimes} \Lambda \cong \Lambda(n+k)
$$

where $\theta\left(x_{k}\left(I^{\prime}\right) \otimes \lambda_{I^{\prime \prime}}\right)=\lambda_{I^{\prime}} \lambda_{I^{\prime \prime}}$. As before, to see that θ is an isomorphism,
observe that for each allowable sequence $I=\left(i_{1}, \ldots, i_{s}\right)$, there is a unique index q for which the sequences

$$
I^{\prime}=\left(i_{1}, \ldots, i_{q}\right) \quad \text { and } \quad I^{\prime \prime}=\left(i_{q+1}, \ldots, i_{s}\right)
$$

satisfy excess $\left(I^{\prime}\right) \geq k$ and $i_{q+1}<k+\operatorname{deg}\left(I^{\prime}\right)$. We write $I=\left(\left.I^{\prime}\right|_{k} I^{\prime \prime}\right)$ to stand for this decomposition.

Lemma (5.4). Let I be allowable with $I=\left(\left.I^{\prime}\right|_{k} I^{\prime \prime}\right)$. Suppose that $\partial \lambda_{I}=$ $\sum \alpha_{J} \lambda_{J}$, J allowable, $\alpha_{J} \in Z_{2}$. Then in $M\left(\Omega^{n} S^{n+k}\right) \hat{\otimes} \Lambda$,

$$
\delta\left(x_{k}\left(I^{\prime}\right) \otimes \lambda_{I^{\prime \prime}}\right)=\sum^{*} \alpha_{J} x_{k}\left(J^{\prime}\right) \otimes \lambda_{J^{\prime \prime}}
$$

where the sum Σ^{*} is taken for those allowable sequences $J=\left(\left.J^{\prime}\right|_{k} J^{\prime \prime}\right)$ for which length $\left(J^{\prime \prime}\right)=$ length $\left(I^{\prime \prime}\right)+1$.

The proof is similar to the proof of (5.1).

6. Calculations in $E_{2}\left(\Omega^{n} S^{n+k}\right)$

The results of Section 5 show that $E_{2}\left(\Omega^{n} S^{n+k}\right)$ may be calculated as the homology of the complex $M\left(\Omega^{n} S^{n+k}\right) \widehat{\otimes} \Lambda$. We shall use (5.1), (5.4), and the EHP sequence (4.2) inductively to calculate $E_{2}^{0, *}\left(\Omega^{n} S^{n+k}\right)$, and also to make some partial calculations of $E_{2}^{1, *}\left(\Omega^{n} S^{n+k}\right)$ and $E_{2}^{2, *}\left(\Omega^{n} S^{n+k}\right)$.

To simplify notation, the term $x_{k}\left(Q^{I^{\prime}}\right) \otimes \lambda_{I^{\prime \prime}}$ will sometimes be written as $x_{k}\left(I^{\prime}\right) \otimes\left(I^{\prime \prime}\right)$, or $x_{k}(I)$, where $I=\left(\left.I^{\prime}\right|_{k} I^{\prime \prime}\right)$. For such a term, let the width be the length of I^{\prime}, and the filtration degree be the length of $I^{\prime \prime}$. As the differential preserves the width, the homology of the complex becomes tri-graded; we consider elements homogeneous in width, filtration, and dimension. The basis $\left\{x_{k}\left(I^{\prime}\right) \otimes I^{\prime \prime}\right\}$ is ordered according to the sequences $I=\left(I^{\prime}, I^{\prime \prime}\right)$, lexicographically from the left. If

$$
x=\sum \alpha_{I} x_{k}\left(\left.I^{\prime}\right|_{k} I^{\prime \prime}\right)
$$

where the $I=\left(\left.I^{\prime}\right|_{k} I^{\prime \prime}\right)$ vary over allowable sequences (of a fixed length), and the $\alpha_{I} \in Z_{2}$, then the greatest term for which $\alpha_{I} \neq 0$ is called the leading term of x, and the other terms are called lower terms.

Facts about Λ. (6.1). Let i and j be nonnegative integers, with dyadic expansions $i=\sum_{v} a_{v} 2^{v}, j=\sum b_{v} 2^{v}$ respectively. The binomial coefficient $C(i, j)=$ $i!/ j!(i-j)!$ satisfies

$$
C(i, j) \equiv \prod_{v \geq 0} C\left(a_{v}, b_{v}\right) \quad \bmod 2
$$

and is nonzero $\bmod 2$ if and only if $a_{v} \geq b_{v}$ for all v.
For $i=\sum_{v \geq 0} a_{v} 2^{v}$, let $\rho(=\rho(i))$ be the least index v for which $a_{v}=0$. Then $i=2^{\rho}-1+2^{\rho+1} N$. For any j, the binomial coefficient $C(i-j, j) \bmod 2$ can be nonzero only if $j \equiv-1 \bmod 2^{\rho(i)}$. Thus for the element $\lambda(i)=\lambda_{i}$ in Λ, its differential, given by (Section 4, (iii)), is a sum of terms of the form
($i-2^{\rho} n, 2^{\rho} n-1$), and the leading term is $\left(i-2^{\rho}, 2^{\rho}-1\right)$, unless $i=2^{\rho}-1$, in which case $\partial(i)=0$.

The relations of (4.1) imply that if $\left(i_{1}, \ldots, i_{q}\right)$ is a sequence of nonnegative integers with $i_{j} \equiv-1 \bmod 2^{\theta}$, for each $j=1,2, \ldots, q$, then the allowable expression for $\partial\left(i_{1}, \ldots, i_{q}\right)$ is a sum of terms (m_{1}, \ldots, m_{q}) with also $m_{j} \equiv-1$ $\bmod 2^{\theta}$ for each $j=1,2, \ldots, q$. Similarly, the allowable expression for $\partial\left(i_{1}, \ldots, i_{q}\right)$ will be a sum of terms $\left(k_{1}, \ldots, k_{q+1}\right)$, with $k_{j} \equiv-1 \bmod 2^{\theta}$, for each $j=1,2, \ldots, q+1$.

We notice that if $I=\left(i_{1}, \ldots, i_{q}\right)$ is an allowable sequence of excess ≥ 0, then the allowable expression for $\partial(I)$ will be a sum of terms $\left(k_{1}, \ldots, k_{q+1}\right)$, each of negative excess, and with excess $\left(k_{1}, \ldots, k_{q}\right) \leq \operatorname{excess}\left(i_{1}, \ldots, i_{q}\right)$.

Lemma (6.2). Let $I=\left(i_{1}, \ldots, i_{q}\right)$ be an allowable sequence of excess ≥ 0 which also satisfies $2 i_{j}-i_{j+1}<2^{\rho\left(i_{j}\right)}$ for each $j=1,2, \ldots, q-1$. Then the allowable expression for $\partial(I)$ is a sum of sequences $\left(k_{1}, \ldots, k_{q}, k_{q+1}\right)$, each of which satisfies

$$
\operatorname{excess}\left(k_{1}, \ldots, k_{q}\right) \leq \operatorname{excess}\left(i_{1}, \ldots, i_{q}\right)-2^{\rho\left(i_{q}\right)}
$$

Proof. It is sufficient to show that $\left(\partial i_{1}, i_{2}, \ldots, i_{q}\right)$ is a sum of such sequences, and this will be done by induction on the length q. For $q=1$, it is true because the leading term of $\partial(i)$ is $\left(i-2^{\rho(i)}, 2^{\rho(i)}-1\right)$. Assume inductively the above statement for lengths $\leq q-1$, and let $\left(i_{1}, \ldots, i_{q}\right)$ satisfy the hypotheses. The hypotheses imply that $\rho\left(i_{1}\right) \geq \rho\left(i_{2}\right) \geq \cdots \geq \rho\left(i_{q}\right)$. The inductive assumption implies that the allowable expression for $\left(\partial i_{1}, i_{2}, \ldots, i_{q-1}\right)$ is a sum of sequences $\left(m_{1}, \ldots, m_{q}\right)$, each of which satisfies excess $\left(m_{1}, \ldots, m_{q-1}\right) \leq$ excess $\left(i_{1}, \ldots\right.$, $\left.i_{q-1}\right)-2^{\rho\left(i_{q-1}\right)}$.

From this, it follows that

$$
2 m_{q-1}<2 i_{q-1}-2^{\rho\left(i_{q-1}\right)}-m_{q}
$$

and hence, using the hypothesis that $2 i_{q-1}-i_{q}<2^{\rho\left(i_{q-1}\right)}$, we find that

$$
2 m_{q-1}<i_{q}-m_{q}-1 .
$$

Let (m_{q}, i_{q}) be expressed as a sum of allowable sequences of the form $\left(n_{q}, n_{q+1}\right)$. Then each n_{q} must be of the form $i_{q}-m_{q}-1-2^{\rho\left(i_{q}\right)} t$, with $t \geq 0$. Thus the allowable expression for ($m_{1}, \ldots, m_{q-1}, n_{q}, n_{q+1}$) is either 0 , or is a sum of sequences $\left(k_{1}, \ldots, k_{q+1}\right)$, with $k_{q} \leq i_{q}-m_{q}-1-2^{\rho\left(i_{q}\right)}$. Hence excess $\left(k_{1}, \ldots, k_{q}\right) \leq \operatorname{excess}\left(i_{1}, \ldots, i_{q}\right)-2^{\rho\left(i_{q}\right)}$, and the lemma is proven.

Theorem (6.3). A basis for $E_{2}^{0, *}\left(\Omega^{n} S^{n+k}\right)$ consists of those $x_{k}\left(i_{1}, \ldots, i_{q}\right)$ which satisfy
(1) $k \leq i_{1}<n+k$,
(2) $0 \leq e(I)-k<2^{\rho\left(i_{q}\right)}$,
(3) $0 \leq 2 i_{j}-i_{j+1}<2^{\rho\left(i_{j}\right)}$ for $j=1,2, \ldots, q-1$.

Proof. By induction on the width q. For $q=1$, we are dealing with elements of the form $x_{k}(i)$, with $k \leq i<n+k$. Then

$$
\delta\left(x_{k}(i)\right)=x_{k}\left(i-2^{\rho(i)}, 2^{\rho(i)}-1\right)+\text { lower terms. }
$$

Thus $x_{k}(i)$ is a cycle if and only if $i-2^{\rho(i)}<k$; that is, if and only if $i-k<2^{\rho(i)}$.

Assume inductively the theorem for widths $q-1$. Consider the EHP sequence (4.2), with n decreased by 1 :

$$
\begin{aligned}
& 0 E_{2}^{0, *}\left(\Omega^{n-1} S^{n+k-1}\right) \xrightarrow{\iota_{*}} E_{2}^{0, *}\left(\Omega^{n} S^{n+k}\right) \\
& \xrightarrow{\eta_{*}} E_{2}^{0, *}\left(\Omega^{n} S^{2 n+2 k-1}\right) \xrightarrow{\partial} E_{2}^{1, *}\left(\Omega^{n-1} S^{n+k-1}\right) \longrightarrow \cdots .
\end{aligned}
$$

The set of elements $x_{k}\left(i_{1}, \ldots, i_{q}\right)$ which satisfy (1), (2), (3) for $i_{1}<n+k-1$ form a basis of $E_{2}^{0, *}\left(\Omega^{n-1} S^{n+k-1}\right)$ inductively on $n-1$, and are mapped monomorphically by i_{*}. To this set we must adjoin a basis for $\eta_{*}^{-1}(\operatorname{ker} \partial)$. Let $x=x_{k+i}\left(i_{2}, \ldots, i_{q}\right)$ be a basis element of $E_{2}^{0, *}\left(\Omega^{n} S^{2 i+1}\right)$, where $i=i_{1}=$ $n+k-1$. Then

$$
\partial x=x_{k}\left(\partial i, i_{2}, \ldots, i_{q}\right)
$$

If $2 i-i_{2}<2^{\rho(i)}$, then Lemma (6.2) and the inductive assumption imply that each nonzero term in ∂x has filtration ≥ 2; hence $\partial x=0$ in $E_{2}^{0, *}\left(\Omega^{n-1} S^{n+k-1}\right)$. Take $\eta_{*}^{-1}(x)$ to be $x_{k}\left(i_{1}, \ldots, i_{q}\right.$), which satisfies (1), (2), (3) as desired. On the other hand, as $x=x_{k+i}\left(i_{2}, \ldots, i_{q}\right)$ varies over the basis of $E_{2}^{0, *}\left(\Omega^{n} S^{i+1}\right)$, with $2 i-i_{2} \geq 2^{\rho(i)}$, the leading terms of ∂x, namely

$$
x_{k}\left(i-2^{\rho(i)}, i_{2}-2^{\rho(i)}, \ldots, i_{q}-2^{\rho(i)+q-2}\right) \otimes\left(2^{\rho(i)+q-1}-1\right)
$$

are nonzero and distinct, even as n varies. Thus no sum of such x can be in ker ∂, which shows that a basis of $E_{2}^{0, *}\left(\Omega^{n} S^{n+k}\right)$ is as described.

Remark (6.4). If $x_{0}\left(i_{1}, \ldots, i_{q}\right)$ is a basis element of $E_{2}^{0, t}\left(\Omega^{n} S^{n}\right)$ of dimension $t=i_{1}+\cdots+i_{q}$, there is a family of elements of the form

$$
x_{0}\left(i_{1}, \ldots, i_{q}, t, 2 t, \ldots, 2^{m} t\right)
$$

each in $E_{0}^{0,2^{m+1}}\left(\Omega^{n} S^{n}\right)$. Some typical generators of these families are $x_{0}(1)$ (the rest of the family is $\left.x_{0}(1,1), x_{0}(1,1,2), x_{0}(1,1,2,4), \ldots\right), x_{0}(3), x_{0}(7), \ldots$, $x_{0}\left(2^{\theta}-1\right), \ldots, x_{0}(3,5,9), x_{0}(7,9,17), x_{0}(7,11,19), x_{0}(5,9,17,33,65), \ldots$, $x_{0}(15,27,51,99,195), \ldots$

Proposition (6.5). Let $x=x_{0}\left(i_{1}, \ldots, i_{q}\right)$ be a basis element of $E_{2}^{0, *}\left(\Omega^{n} S^{n}\right)$ which has none of the following forms:
(1) $x_{0}\left(2^{\theta}-1\right)$,
(2) $x_{0}\left(2^{\theta}-1,2^{\theta}-1\right)$,
(3) $x_{0}\left(i_{1}, \ldots, i_{q}\right)$, where excess $=0$, and i_{q} is even.

Then there is a nonzero class $y \in E_{2}^{2, *}\left(\Omega^{n} S^{n}\right)$, with $d^{2} x=y$.

Proof. For $x=x_{0}\left(i_{1}, \ldots, i_{q}\right)$, consider its ancestors in the EHP-sequence. Namely, for each $j=1,2, \ldots, q-1$, let $z^{(j)}=x_{k}\left(i_{j}, \ldots, i_{q}\right)$, where $k=$ $i_{1}+\cdots+i_{q-1}$. We shall show inductively on the width $(q-j+1)$, that if x has not one of the excluded forms, then $d^{2} z^{(j)}=y^{(j)}$ is a nonzero class in $E_{2,}^{2, *}\left(\Omega^{n} S^{n}\right)$.

For width one, we are dealing with $z^{(q)}=x_{k}(i)$, where $i_{q}=i$ is of the form $2^{\rho}-1+2^{\rho+1} N$, and $k \leq i<k+n$. The element $y=x_{k} \otimes \partial(i)$ in $E_{1, k+i+1}^{2,1}\left(\Omega^{n} S^{n+k}\right)$ is a d^{1}-cycle which is not a d^{1}-boundary because $E^{1, k+i+1}\left(\Omega^{n} S^{n+k}\right)$ contains no terms of width zero (the candidate $x_{k} \otimes \lambda_{i}$ is not present as $k \leq i$; indeed, $x_{k} Q^{i}$ appears as the homology class under consideration). We consider the EHP-sequence

$$
\cdots \pi_{2 i}\left(\Omega S^{2 i+1}\right) \xrightarrow{P} \pi_{2 i-1}\left(S^{i}\right) \xrightarrow{E} \pi_{2 i-1}\left(\Omega S^{i+1}\right) \xrightarrow{H} \cdots .
$$

The Whitehead product $\left\langle x_{i}, x_{i}\right\rangle$ in $\pi_{2 i-1}\left(S^{i}\right)$ is represented by $x_{i} \otimes\left(\partial \lambda_{i}\right)$ in $E_{2}^{2, *}\left(S^{i}\right)$, as in [7, p. 198]. As the Whitehead product suspends to zero in $\pi_{2 i-1}\left(\Omega S^{i+1}\right)$, we must have

$$
d^{2}\left(x_{i} Q^{i}\right)=x_{i} \otimes\left(\partial \lambda_{i}\right)
$$

in $E_{2}^{*, *}\left(\Omega S^{i+1}\right)$. After looping $i-k$ times, we must also have

$$
d^{2}\left(x_{k} Q^{i}\right)=x_{k} \otimes\left(\partial \lambda_{i}\right)+\text { lower terms }
$$

which is nonzero in $E_{2}^{*, *}\left(\Omega^{i-k+1} S^{i+1}\right)$.
Assume inductively for widths $\leq q-j+1$, that if $z^{(j)}=x_{k}\left(i_{j}, \ldots, i_{q}\right)$ is a basis element of $E_{2}^{0, *}\left(\Omega^{n} S^{n+k}\right)$ not of the excluded forms, then

$$
d^{2} z^{(j)}=x_{k}\left(i_{j}, \ldots, i_{q-1}\right) \otimes\left(\partial i_{q}\right)+\text { lower terms }
$$

is a nonzero class $y^{(j)}$ in $E_{2}^{2, *}\left(\Omega^{n} S^{n+k}\right)$. Let

$$
z^{(j-1)}=x_{k-i}\left(i, i_{j}, \ldots, i_{q}\right)
$$

be a basis element of $E_{2}^{0, *}\left(\Omega^{2 i+1-k} S^{i+1}\right)$, with $\eta_{*}\left(z^{(j-1)}\right)=z^{(j)}$ in the homomorphism

$$
\eta_{*}: E_{2}^{0, *}\left(\Omega^{2 i+1-k} S^{i+1}\right) \rightarrow E_{2}^{0, *}\left(\Omega^{2 i+1-k} S^{2 i+1}\right)
$$

As η_{*} commutes with the differentials,

$$
d^{2} z^{(j-1)}=x_{k}\left(i, i_{j}, \ldots, i_{q}\right) \otimes\left(\partial i_{q}\right)+\text { lower terms } \pi
$$

which is some nonzero element $y^{(j-1)}$ in $E_{2}^{2, *}\left(\Omega^{2 i+1-k} S^{i+1}\right)$. It is straightforward to verify that $y^{(j-1)}$ does not suspend to zero in any of the

$$
E_{2}^{2, *}\left(\Omega^{n} S^{n+k-i}\right)
$$

for $n \geq 2 i+1-k$, and the proposition is proved.

7. Spherical classes in $H_{*}\left(\Omega^{\infty} S^{\infty}\right)$

From the discussion of Section 4, we see that $E_{\infty}^{0, t}(X)$ is isomorphic to the group of spherical classes in $H_{*}\left(X ; Z_{2}\right)$. Recall our notation

$$
x_{0}\left(i_{1}, \ldots, i_{q}\right)=\left([1] Q^{i_{1}} \cdot[-2]\right) Q^{i_{2}} \cdots Q^{i_{q}}
$$

in $H_{*}\left(\Omega^{\infty} S^{\infty}\right)$.
Theorem (7.1). The only possibilities for spherical classes in $H_{*}\left(\Omega^{\infty} S^{\infty} ; Z_{2}\right)$ are $x_{0}(1), x_{0}(3), x_{0}\left(2^{n}-1\right)$, and $x_{0}\left(2^{n}-1,2^{n}-1\right)$ for $n=1,2,3, \ldots$

The proof will be completed at the end of this section.
Remark. This recovers Browder's result [9] that dimensions other than $2\left(2^{n}-1\right)$ cannot contain a framed manifold of Kervaire invariant one, because such a manifold would, by the Pontrjagin-Thom construction, give rise to a spherical class in $H_{*}(S G) \cong H_{*}\left(\Omega^{\infty} S^{\infty}\right)$, which would be nonzero [16]. The classes $x_{0}\left(2^{n}-1,2^{n}-1\right)$ plus decomposables are spherical if and only if there is a manifold of Kervaire invariant one in dimension $2\left(2^{n}-1\right)$. This is the case in dimensions $2,6,14,30$, and 62 (Barrat-Mahowald). The remaining dimensions $2\left(2^{n}-1\right), n \geq 6$, are undecided.

Towers. An element α in $E_{r}^{s, t}(X)$ is said to generate a tower if the elements $\alpha \lambda_{0}^{n}$ are nonzero for all $n \geq 0$, and α is not of the form $\beta \lambda_{0}$. The set $\left\{\alpha \lambda_{0}^{n}, n \geq 0\right\}$ is called a tower.

Proposition (7.2). The only towers in $E_{2}^{s, t}\left(\Omega^{\infty} S^{\infty}\right)$ occur in dimensions congruent to -1 or to 0 modulo 4.

Proof. We use the method of [3] to locate the towers in $\operatorname{Ext}_{M A}\left(Z_{2}, M\right)$, for $M=M\left(\Omega^{\infty} S^{\infty}\right)$. The tower detector is the complex

$$
\begin{aligned}
& T^{s}(M)= \begin{cases}M \otimes \lambda_{0}^{s}, & s=0,1 \\
M \otimes \lambda_{0}^{s} \oplus M_{2 k} \otimes \lambda_{2 k-1} \lambda_{0}^{s-1}, & s \geq 2 .\end{cases} \\
& \delta\left(x \otimes \lambda_{0}^{s}\right)= \begin{cases}x S q^{1} \otimes \lambda_{0}^{s+1}+x S q^{2 k} \otimes \lambda_{2 k-1} \lambda_{0}^{s} & \text { for } x \in M_{4 k}, s \geq 1 \\
x S q^{1} \otimes \lambda_{0}^{s+1} & \text { otherwise. }\end{cases} \\
& \delta\left(x \otimes \lambda_{2 k-1} \lambda_{0}^{s}\right)=0 .
\end{aligned}
$$

The allowable monomial basis of Λ gives a projection of complexes

$$
\gamma: M \hat{\otimes} \Lambda \rightarrow T(M) .
$$

In [3], it is shown that $(\operatorname{ker} \gamma, \delta)$ is a chain complex whose homology has no towers, so the towers in $H^{*}(M \widehat{\otimes} \Lambda)$ correspond to those in $H^{*}(T(M))$.

To find the towers in $E_{2}\left(\Omega^{\infty} S^{\infty}\right)$, we consider $T\left(M\left(\Omega^{\infty} S^{\infty}\right)\right)$. If $\left(i_{1}, \ldots, i_{q}\right)$ is allowable of excess ≥ 0, and i_{q} is odd, then $\left(i_{1}, \ldots, i_{q+1}\right)$ is also allowable and $\delta\left(x_{0}\left(i_{1}, \ldots, i_{q+1}\right) \otimes \lambda_{0}^{s}\right)=x_{0}\left(i_{1}, \ldots, i_{q}\right) \otimes \lambda_{0}^{s+1}+$ possibly another term.

Thus when i_{q} is odd, neither $x_{0}\left(i_{1}, \ldots, i_{q}\right)$ nor $x_{0}\left(i_{1}, \ldots, i_{q+1}\right)$ generate towers. The remaining elements of filtration zero are the $x_{0}\left(i_{1}, \ldots, i_{q}\right)$ with excess 0 , and i_{q} even, which must have dimension $\equiv 0 \bmod 4$. In filtration one, we have elements $y_{2 k} \otimes \lambda_{2 k-1}$ for $y_{2 k} \in M\left(\Omega^{\infty} S^{\infty}\right)_{2 k}$ which occur in dimensions $\equiv-1 \bmod 4$. In particular, the elements $x_{0}\left(i_{1}, \ldots, i_{q}\right)$ described in (6.3) generate towers if $i_{q-1}=i_{1}+\cdots+i_{q-2}$ and $2 i_{q-1}=i_{q}$, and not otherwise.

For each $n \geq 1$, the groups $E_{\infty}^{s, t}\left(\Omega^{\infty} S^{\infty}\right)$, with $s+t=n$, are finite, and only finitely many are nonzero; they are the quotients of a filtration of $\pi_{n}(S)$, the stable n-stem. As only a tower can kill another tower by a differential d^{r}, the towers of $E_{2}\left(\Omega^{\infty} S^{\infty}\right)$ must be paired by the differentials. Thus, each tower generator α of dimension $4 k$ and filtration 0 , must have a differential $d^{r} \alpha=\beta \neq 0$. In particular, the elements

$$
x_{0}\left(2^{n}-1,2^{n}-1, \ldots, 2^{q}\left(2^{n}-1\right)\right)
$$

for $q \geq 1$, do not persist to $E_{\infty}\left(\Omega^{\infty} S^{\infty}\right)$. The elements $x_{0}\left(2^{n}-1\right), n \geq 4$ are shown not to be spherical by Adams [1]. After excluding the elements accounted for by (6.5), this leaves for possible spherical classes in $H_{*}\left(\Omega^{\infty} S^{\infty}\right)$ only the Hopf classes $x_{0}(1), x_{0}(3), x_{0}(7)$, and the classes $x_{0}\left(2^{n}-1,2^{n}-1\right)$, for $n=1,2, \ldots$

References

1. J. F. Adams, On the structure and applications of the Steenrod algebra, Comment. Math Helv., vol. 32 (1958), pp. 180-214.
2. S. Araki and T. Kudo, Topology of H_{n}-spaces and H-squaring operations, Mem. Fac. Sci. Kyushu Univ. Ser. A., vol. 10 (1956), pp. 85-120.
3. A. K. Bousfield, A vanishing theorem for the unstable Adams spectral sequence, Topology, vol. 9 (1970), pp. 337-344.
4. A. K. Bousfield, E. B. Curtis, D. M. Kan, D. G. Quillen, D. L. Rector, and J. W. Schlesinger, The mod-p lower central series and the Adams spectral sequence, Topology, vol. 5 (1966), pp. 331-342.
5. A. K. Bousfield and E. B. Curtis, A spectral sequence for the homotopy of nice spaces, Trans. Amer. Math. Soc., vol. 151 (1970), pp. 457-479.
6. A. K. Bousfield and D. M. Kan, The homotopy spectral sequence of a space with coefficients in a ring, Topology, vol. 11 (1972), pp. 79-106.
7. E. B. Curtis, Simplicial homotopy theory, Advances in Math., vol. 6 (1971), pp. 107-209.
8. W. Browder, Homology operations and loop spaces, Illinois J. Math., vol. 4 (1960), pp. 347-357.
9. W. Browder, The Kervaire invariant of framed manifolds and its generalizations, Ann. of Math., vol. 90 (1969), pp. 157-186.
10. E. Dyer and R. Lashof, Homology of iterated loop spaces, Amer. J. Math., vol. 84 (1962), pp. 35-88.
11. I. Madsen, On the action of the Dyer-Lashof algebra in $H_{*}(G)$ and $H_{*}(G / T o p)$,
12. W. Massey and F. Peterson, The mod-2 chomology structure of certain fibre spaces, Mem. Amer. Math. Soc., no. 74 (1967).
13. J. P. May, Homology operations in infinite loop spaces, Proc. Summer Inst. on Algebraic Topology, Univ. of Wisconsin, Amer. Math. Society, 1970.
14. R. J. Milgram, The mod- 2 spherical characteristic classes, Ann. of Math., vol. 92 (1970), pp. 238-261.
15. G. Nishida, Cohomology operations in iterated loop spaces, Proc. Japan Acad., vol. 44 (1968), pp. 104-109.
16. C. P. Rourke and D. Sullivan, On the Kervaire obstruction, Ann. of Math., vol. 94 (1971), pp. 297-413.
17. N. E. Steenrod and D. B. A. Epstein, Cohomology operations, Ann. of Math. Studies, No. 50, Princeton Univ. Press, Princeton, N.J., 1962.
18. H. Toda, Composition methods in homotopy groups of spheres, Ann. of Math. Studies, no. 49, Princeton Univ. Press, Princeton, N.J., 1962.

University of Washington
Seattle, Washington

