
ASSEMBLING COMPACT RIEMANN SURFACES
WITH GIVEN BOUNDARY CURVES AND

BRANCH POINTS ON THE SPHERE

BY

GEORGE K. FRANCIS

1. Introduction

The conformal structure of a Riemann surface is determined by any non-
constant meromorphic function on the surface. Every closed Riemann surface
may be presented as an n-sheeted covering of the Gaussian sphere branched
over w points a on the sphere !-2, p. 47-1. Over eighty years ago, A. Hurwitz

I1171 showed how to associate with such a covering a system of w permutations
H on n symbols whose product H1H2"’" H, is the identity and which generate
a transitive group on the n symbols. Draw w rays "i from the a to the common
reference point . Lifting the i to the surface decomposes it into a finite cell
complex with n faces covering the same slit region S2

i on the sphere.
The 2w edges cover the interiors of the arcs "i and n of the vertices, each of
degree w, lie over or. The remaining vertices, ij, of degrees tSij, 1,... ,w,
j 1,..., ki, lie over the ai. The permutation H has k cycles of lengths 6ii,
each permuting the faces incident to d, in cyclic order. The Euler characteristic
of the surface satisfies the so-called Hurwitz-Riemann relation Z 2n t,
where # nw k (ii- 1) is the branching number of the covering.
Note that the covering projection is locally tSi: in a deleted neighborhood of
aij. Conversely, given a system of Hurwitz permutations H for the points ai,
the surface may be reassembled by identifying edges of n polygonal cells of 2w
sides each according to the information contained in the H
A related but considerably more difficult problem is to develop an analogous

combinatorial characterization of bordered Riemann surfaces. For present
purposes, let a compact Riemann surface be a pair (M, F), where M is a compact,
connected topological 2-manifold with border tM, and Fa continuous map from
M to S2 which is locally at all but a finite number of so-called critical points
lying in M t3M. For each critical point p M there is a nonnegative integer
p(p) so that F is locally topologically equivalent to the complex power function
w z(p+ 1. (We shall discuss our terminology and justify the invocation of
Riemann’s name in Section 5.) Extend/t to vanish at noncritical points of M.
For q e S2, set p(q) t(F-l(q)), where/ is the obvious numerical measure
on the subsets of M induced by p. If t3M is empty we say that M is a closed
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surface. Otherwise M is said to be a bordered surface. If F has no critical points
we say that F is an immersion. Otherwise F is said to be a polymersion. A point
q Sz where # is positive is called a branchpoint with multiplicity p(q). The
branching number of F is # /(M). A polymersion of a closed surface is, of
course, a branched covering of the sphere. A surface that admits a polymersion
is necessarily orientable. We use a fixed orientation on Sz, orient M so that F
is sensepreserving and orient the finite number of border circles so that M lies
to their left. We shall abbreviate F[ OM by t3F. If q is the initial point of an
arc 2 in S2, p e F- l(q) and p is not a critical point of F, then the lift of2from p
is the maximal arc i in F-1(2) beginning at p and having no critical points on
its interior.
A cellulation of M is a decomposition of a compact surface M into a finite

number of vertices, edyes, andfaces (mutually disjoint open cells of dimensions
0, 1, 2) so that the closure of a cell is the union of the cell with its adherent lower
dimensional cells. The number of edges incident to a vertex, counted with
multiplicity, is the degree ofthe vertex. For example, {z }, (Izl 1, z },
{Izl < 1 } is a cellulation of the unit disc with one vertex of degree 2. The
cellulation is faithful to a polymersion F of M if all critical points of F lie on
vertices and F is 1:1 on each cell. It is nearly faithful if critical points lie on
vertices and faces and F is 1:1 on every face that carries no critical points.
Note that in a nearly faithful cellulation the degree of a critical vertex p is one
more than its multiplicity p(p). Thus we may erase a vertex of degree 1 and its
adherent edge (that is, include the point set carrying them in the adherent face,
and delete the vertex and edge from the cell structure). This erasure does not
affect the (nearly) faithful character of a cellulation. For a cellulation without
vertices of degree there is a (sensepreserving) parametrization of the closure
of each face by the closed unit disc, which is 1:1 on its interior and locally 1:1
on the boundary.
The problem to be solved is the following. Given finitely many points a and

oriented closed curves f on S2, determine all bordered surfaces M and poly-
mersions F of M branched over the at only and such that F OM parametrizes

theft. Our choice of definition requires that thef must be locally simple. If we
ignore the intended location and multiplicity of the branchpoints, we may appeal
to a result of Morse and Heins [16], who showed that there always exist poly-
mersions F from a plane region (genus zero) extending a finite collection of
closed sensed locally simple curves. Theirs remains the only fully general result
where no further assumption is made about the a priori position of the curves.
For reasons discussed in Section 5, we shall assume that the curves, and points
when specified, lie in "general position," a concept we shall make more precise
below. Now, the idea is simple enough. With Hurwitz, draw a set of rays from
the a to a common reference point oo and lying in "general position" with
respect to theft. Given the polymersion (F, M), lift the rays by F-1. This will
certainly decompose M faithfully for F, but we have no guarantee that the con-
nected complementary components of the one-skeleton are simply connected.
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For this purpose, sufficiently many additional rays are drawn, depending only
on the position of the curves f, not on the map F. An assemblale for F will
consist in a certain set of permutations on the crossings of the rays and curves
(a finite set by general position) and the poles (points in F-l(oo), also finite by
compactness). The assemblage determines a cellulation ofM faithful to F. The
genus of M, the branching number of F, in short, all topological invariants of F
are determined by the assemblage. That is, two polymersions, branched over
the same points on S2 and with the same boundary image, differ by a homeo-
morphism of their domains if and only if they have identical assemblages. Thus
we have a solution to the problem in the "generic" case. For particular cases,
particular methods would have to be developed.
The problem was more or less posed in this way by C. L6wner and H. Hopf

around 1948 [19]. Seventy years after Hurwitz, C. J. Titus [18-] gave the first
algorithm, based on the succession of nodes on a single normal curve f in RE

(its Gauss-Whitney-Titus intersection sequence), which determines whether or
notfextends to a polymersion F of the disc D2 to R2. In this form, Titus solved
Picard’s problem of determining when a closed polygonal curve is the boundary
image of a holomorphic map of the upper half plane. In the following decade
rapid progress was made on other special cases for M, notably on the possible
location and multiplicity ofbranchpoints [13], [15]. S. J. Blank [3] constructed
the first assemblage (in the above sense) for F an immersion (no branchpoints)
ofDE to RE. M. L. Marx rl4] developed this method for polymersions ofD2 to
R2. [4] deals with immersions of DE to ,2. K. Bailey I-l] found assemblages
for immersions in R2 of surfaces of arbitrary genus but one border circle. S.
Troyer [20] did the same for surfaces of arbitrary border, but of genus zero. A
general solution synthesizing these methods was announced in [6]. However,
several stimulating conversations with W. Magnus [12] in 1973, who suggested
the connection with Hurwitz’ paper, led to the present simplification in the
definition of an assemblage. While our exposition is selfcontained, it owes
much to its predecessors and the reader is encouraged to consult these earlier
papers, especially for the many examples and detailed examination of special
cases. The author acknowledges the helpful correspondence with his anony-
mous referee, the valuable stylistic advice of his editor, and many illuminating
discussions with W. Abikoff concerning conformal structures.

2. Normal curves, rayings and assembling permutations

By an (oriented) curve on a surface we shall mean an equivalence class of
continuous functions from a real interval or the unit circle to the surface such
that two representatives differ by a (sense-preserving) homeomorphism of their
domains. By a parametrizationf(s) offwe shall mean a particular choice repre-
senting f. Let f be a finite family of oriented, closed, locally simple curves in
R2 S2 {o0 ) considered as an immersion of a finite set of oriented circles.
A point q R2 is a node [-8] offiff-(q) {p, P2}, Pl # P2, and there are
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arcs 2 (homeomorphs of a closed interval) centered on pi so that bothf(2i) are
simple, f(21) c f(22) {q} and f(2l) separates the exiting from the entering
semiarc off(,2). That is, f literally crosses itself once in a neighborhood of q.
This is Morse’s [16] C-version of Whitney’s [21] C-notion of a normal
crossing. That is, iff is a C-immersion (the curves admit regular parameters)
then the two tangent vectors at a node are independent. If every point q R2

on f (i.e., f passes through q) is either a node or a simple point (i.e., card
f-X(q) 1) we callfa normalfamily of curves.

Let f(s) be an immersion of the unit circle in R2. Then there exists a con-
tinuous (for example, constant) function 0 < e(s) < n/4 so thatfl Is, s + e(s)]
is 1:1 for each s. Set

Af(s) f(s + e(s)) f(s)/lf(s + e(s)) f(s)l.

The Hopf degree of this map is independent of the choice of parameter s and
gauge e(s). We shall call it the turniny number z(f) off For any continuous
deformationf O.e.,f,(s) is continuous in r, s) through immersions, z is constant,
provided some gauge e(r, s) remains bounded away from 0 over the range of r.

This number was called the "amplitude" of f by Gauss [8], the "angular
order" by Morse [16]. In the regular case, where Af(s) df(s)/ds, it has been
called the "tangent or normal winding or rotation number or index" by other
authors since. We extend this turning number over several curves by addition.
Now let q be a node of a curve familyfin the plane, and letf denote the curve
family obtained fromf by cuttin9 through q [8]. That is, we exchange the two
exiting subarcs offat q. It is not difficult to convince oneself that the turning
number is the same for both f and f. Now, if every node of a normal curve
family is cut through, Gauss observed that the new curve familyf* consists of
a finite collection of mutually noncrossing closed oriented Jordan curves, and
that z(f) z(f*) is the algebraic sum of their orientations. We shall call these
curves the Gaussian circles off. They are also known as "Seifert circuits" in
knot theory.

Let be a finite family of rays on S2 concurrent at a point . That is, is
an embedding (1:1 continuous map) of a finite set of closed radii of a disc into
S2, with center going to . We call any such a rayin9 for a normal curve
family f provided they lie in general position. That is, if x f(s) (t) is a
common point off and , then x , x is not a node off, x is not the initial
point of the ray through x, and the two arcs consisting off, restricted to small
intervals about s, t, cross in the sense used above to define the nodes off. Let
X(f, ) denote the set of these crossings offand . Any raying offis sufficient
for our purposes provided there is at least one crossing on each member curve
off, and at least one crossing on each Gaussian circle inf which is negatively
oriented in the plane S2 { }.

It will prove notationally convenient to express geometric objects ort S2 in
terms of the crossings. For x X(f, ), x is to be the ray through x with
initialpoint a, andfx is to be the closed curve in the familyfthat passes through
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x. Iff, f, let Ix, y]fdenote that so called section off, which runs from x to
y on the closed oriented curve fx. A section off may, of course, intersect itself
at nodes. We agree that Ix, x]f fx. If x y, x 4: y, let Ix, y] denote the
so called segment of , which is the subarc of x, oriented from x to y.
Among the permutations on X X(f, ), let S denote the successor permuta-

tion that takes each crossing x into the next succeeding crossing xs onf in the
sense off. Note that if xs x (fx is crossed only once by ), then Ix, xS]f
f. Each crossing has a positive (negative) sign iff crosses from the right to the
left side of oriented to (respectively, vice versa). By a pair on X we shall
mean a transposition (xy) that exchanges two crossings of opposite sign but
on the same ray, with the negative crossing separating the positive crossing
from the initial point. We frequently write a pair as (2x), where is the negative
partner. By a fan (XlX2 Xn) n >_ 2, we shall mean a cyclic permutation of
positive crossings sharing the same ray. An assembling permutation P on X is a
product of disjoint pairs and fans. If there are no fans in P, we frequently call
P a pairing. Thus the crossings on a single ray are invariant under P, and
crossings not appearing in a pair or fan of P are left fixed.
An assembling permutation P on X X(f, ) serves to rearrange the sections

off and segments of into a new (not necessarily normal) family fe of closed
oriented curves. It also serves to define a cellular 2-manifold Me. Let R SP
be the product of the two given permutations. That is

(*) ify xsandz yethenz xR.
It is convenient to use our labeling by elements of X. Thus, if Q is a permutation
of X, let Q denote that (unique) cycle of Q wherein x occurs (i.e., which moves
or fixes x).

First, each cycle of R, say R, determines a "section" Ix, xR]fe of the member
curvef offe as follows. In the notation (*), there are three cases to consider,
depending on whether Py is the trivial cycle (y), the pair (yz), or a fan (yz...).
In the first case, set Ix, zIfe= Ix, y]f; in the second case, set Ix, zIfe
Ix, y]f + [y,z], where + stands for concatenation; in the third case,
Ix, z]fe Ix, y]f + [y, a]o + [a, z]. Note that in the last case the sec-
tion l-x, xa]fe is not an immersed interval because it is not locally 1" at the
ray initial a at the end of the "slit" along

Next, to each cycle Rx of R associate a (positively oriented closed) disc D,:
Label distinct points on the border cOD by letters in R and interpolate points
corresponding to crossings and ray-initials in the (cyclic) order encountered by
the closed curve fe. Now assemble the Dx by identifying certain edges and
vertices (the edge identification is, as usual, in the contrary sense). A hat dis-
tinguishes the point on Me from its namesake. Note that under our labeling,
R R so that Dx D, x,z related as in (*). If Py is a pair, identify
[.9, ]OD with [, .PLODr If P is a fan, identify [)9, c,]OD with [y,
and [, ]OD with [, ay]ODy. The example below should settle these ideas.
Thus Me is a compact, oriented cellular 2-manifold and it is connected pre-

cisely if S and P generate a group that is transitive on X. A practical way of
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FIGURE

checking this condition is to write S as a disjoint product of its cycles and
connect all letters in S that occur in the same cycle of P. If this process connects
up all cycles of S, we shall say that P is transitive on S. Note that M, has p
border circles where p is the number of cycles in S. p is also the number of
curves in f, by the first condition for the sufficiency the raying . The number (
of cycles in R SP is also the number of faces (2-cells) of Mp. If P has m
cycles and card (X) n then it is not difficult to check directly that Mp has
Euler characteristic Z ( + m n. We shall, however, obtain this as part
of our inductive arguments later.
For each fan, say Px, of P there is an interior vertex ttx. Since its adherent

edges (its star) all end on the border vertices corresponding to the crossings
enumerated by P in clockwise cyclic order about x, the degree of x equals
the length of Px. Note that in the event that there are two distinct fans Px and
Py permuting crossings on the same ray, ax ay, the vertices , y are distinct.
For each pair, say (xy), of P there is one interior edge connecting to j). It is
clear that we can define a "polymersion" F of a neighborhood U, of the one-
skeleton of M, so that/ 0M, fand with critical points the vertices tx for
which Px is a fan of P. The real problem is to determine those additional
properties of P necessary and sufficient for Fe to be extended over the faces, so
as to be l:l on each face.

Example. Letfbe Titus’ pretzel curve [17], [19]. See Figure 1. Its turn-
ing number z is 0 because fe (second frame, the corners have been smooth-
ed for visibility) has two negative and two positive Gaussian circles. A
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convenient, sufficient raying consist of three rays (3rd frame, is out of the
picture). Label the crossings and the ray initial as shown. Crossings , are
negative, b, c are positive. The successor permutation is S (xcyb). If we
take P (x)(y)(bc), with two pairs and one fan of length 2, then the resultant
R (c)(xby) has two cycles (( 2). The two curves offP are drawn next,
with the doubly covered "slit" ab pulled apart for visibility (only the essential
points are labeled). If we assemble the two discs (same part of the figure) as
prescribed, we obtain the surface M (last frame, the hats are omitted) which is
a torus with a disc removed. Thusfextends to a polymersion F of M into the
plane with a single simple branchpoint at a (#(F) 1).

2. Assemblages for polymersions into R 2

PROPOSITION 1. Iff is a single normal curve with turning number z and z is a

sufficient raying with no negative crossings, then there is a polymersion F with
branching number # from a disc M to the plane RE S2 (oo } such that
OF=land# z 1.

Proof Using different methods, and in general, many more rays than
required under the two conditions of sufficiency, Marx first obtained this result
in [-14]. We use induction on the number N of nodes off. If N 0, thenf is
simple. The first condition of sufficiency and the absence of negative crossings
guarantees thatf is positively oriented in R2. By the plane separation theorem
for closed Jordan curves, the bounded complementary component of f is a
topological disc and the identity map F on its closure M is the required poly-
mersion. Since F is a homeomorphism, # 0, and since f is a positively
oriented closed Jordan curve, z 1.
For N positive, choose a node q off adherent to the unbounded comple-

mentary component off. By the second condition of sufficiency and the absence
of negative crossings, all Gaussian circles are positive, in particular the two
through q. Hence lies to the right of both subarcs offcrossing at q. Cutting
through q only, produces two normal curves f, 1, 2, each of which has
fewer than N nodes. By induction, we have polymersions F of discs Mi into
the plane with t3F f and/ z 1. Select a point a to the left of both
subarcs offthrough q connected to q by an arc aq which meetsfonly at q. Lift
aq to arcs aq on Mi where q 0M. Using the conventional model for map-
ping the unit disc under w 2

2 (middle row of Figure 2) we join the Mi into a
disc M (top row) and so obtain the polymersion F which has one additional
simple branchpoint (#(a) 1) at a (bottom row). Since OF f, / ktl +
2 + and z z + z2, the induction step is complete. [-]

Before proceeding to the next proposition we define a topological and a com-
binatorial tool. Let z be a raying for a normal familyfwith crossings X. By a
normal neighborhood T of we shall mean a sense preserving homeomorph of
the polar (r, 0)-plane (.the origin corresponds to oz and a finite number of radial
segments correspond to the rays of ) such that T meetsf only along a system
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FIGURE 2

of card (X) simple (open) arcs. These should correspond to disjoint (open) arcs
of circles centered at the origin in the model (r, 0)-plane. Let (rx, 0x) correspond
to the crossing x e X. There is a positive e, such that for x : y, ]r ry] and
IOx Oyl exceed e. Thus 0 becomes a local parameter alongf and r along
near x. Note that at a positive crossing x, 0 turns clockwise at 0. On occasion
we shall also use the Cartesian (r, 0)-plane as a model when the discussion does
not involve

Let Q be a permutation on a finite set X considered as the disjoint product of
its cycles written as words on the letters of X separated by parentheses. By an
expansion of Q we shall mean a permutation Q’ on a finite set x’ containing x
as a proper subset such that Q is obtained from Q’ by deleting those letters in
Q’ belonging to X’ X. We further require that every cycle of Q’ contains at
least one letter of x so that both permutations have the same number of cycles
on their respective domains (trivial cycles are included in this count). On
occasion we shall also consider Q a permutation on X’ which leaves the
members of X’ X pointwise fixed.

PROPOSITION 2. Let f be a normal family of p curves with turning number
Let be a sufficient raying with v negative crossings in X(f, ). Let P be a pairing
which is transitive on the successor permutation S and let R SP have cycles.
If P consists of exactly v pairs, then there is a polymersion F with branching
number lfrom the connected surface M Me ofgenus y into the plane such that
OF fand

(3.1)

(3.2)

Moreover, the cellulation on M is nearly faithful to F.

Proof. We use induction on the number of negative crossings v. We see
that if there are none, P is the identity, R S and ( p. Transitivity of P
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FIGURE 3

and sufficiency of 0 require that S be a single cycle. So p and Proposition
applies. (3.1) reduces to t 1, and (3.2) follows from the fact that a disc
has genus zero. The cellulation is trivially nearly faithful.

For v positive, let x be an ultimate negative crossing. That is, any crossing on
Ix, oo], other than x, is positive. By our hypothesis on P, there is one such,
namely y xe. Consider the family of closed oriented curves obtained fromf
by replacing sections Ix, xS]fby Ix, y] + [y, yS]fand [y, yS]fby [y, x] +
Ix, xS]f. This family is not normal, the arcs Ix, y]e and [y, x]e occupy the
same pointset. We normalize (in a normal neighborhood of e with respect tof)
to produce the normal family f’, i.e., retract the curves slightly away from the
ray. See the successive pictures on the Cartesian (r, 0)-plane in Figure 3.
For combinatorial reasons it is convenient to relabel the ray through x, y by

Co, and assign the labels x, y to points on f’ as shown. Draw two new rays,
ex, er, .so as to crossf’ at x, y as shown and which run parallel to eo to oo. Note
that since the original x was an ultimate negative crossing, all crossings of the
new rays withf’ are positive, including the new x and y. Consequently, the set
X’(f’, ’), where 0( is e augmented by e and e, has one fewer negative crossings
than X(f, e). Let us check that e’ is sufficient for f’. The first condition of
sufficiency is guaranteed by our drawing the two new rays. However, all new
nodes onf’, i.e., those that are not already nodes off, correspond, one on each
side, to the crossings of eo with f between the old x, y. Since these were all
positive, every Gaussian circle off’ that passes through one of these nodes is
positive. Thus any negative Gaussian circle off’ is a negative Gaussian circle
offand is already crossed by e.
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Consider the relation between the permutation So S(xy) on X X(f, )
and the successor permutation S’ off’ in X’ X’(f’, ’). Each cycle of S’ is
obtained by taking a cycle of So and, possibly, inserting a few of the new
crossings. Every new crossing is so inserted in some cycle of So. Thus S’ is an
expansion of So. Regard the permutation P’ (xy)P as acting on X’. It is a
pairing, with one fewer pairs than P. The resultant R’ S’P’ is an expansion
of R SP, and so the cycle numbers ’ and are equal. Each cycle of R’
expands a corresponding cycle of R.
While P’ has as many pairs as there are negative crossings in X’, it need not

be transitive on S’. However, the familyf’ consists in at most two subfamilies,
f’i, 1, 2, with successor permutations S, so that S’ SS, P’ PP, and
Pi’ is transitive on Si’. Here we may apply induction, since v’ v + v2’
v 1. Thus M’ Me, has at most two components, and F’ is a polymersion
of M’ into the plane with t3F’ f’. Note that since , % carry no negative
crossings of X’, they play no part" in the cell structure on M’, which, by induc-
tion is nearly faithful. Since z’ z + l, we obtain (3.1) as soon as we can
embed M’ in a connected (oriented) surface M and extend F’ to F on M with
c3F f so as to introduce no new branching. Attach a rectangular strip to
M’ which embeds in RE so as to fill the rectangular strip marked by dashed
lines in the figure. Since the Euler characteristics are related as ;t’ Z + and
;t 2 2V p for a connected (compact, oriented) surface, we have (3.2).
The attachment to M’ is made along disjoint interior subarcs of border edges
of M’. (It could be the same edge if M’ is already connected.) Subdivide the
bridging strip by the lift o ofo via F- 1. Erase the two subarcs in t3M’ (leaving
their endpoints, of course), to obtain the cellulation Me for M. The face(s) of
M’ adherent to the deleted subarcs have been enlarged slightly and F’ has been
extended so as to be l’l on the additions. So the critical points of F and F’
coincide. Moreover, it is clear from our construction that if F’ is l’l on one
of these faces in M’ then F is l’l on its enlargement. Hence Me is faithful to
F. 7q

Observe that if we eliminate’( from (3.1-2) we obtain a Hurwitz-Riemann
relation for polymersions into the plane"

(3.3) Z z- p or 2 + p 2V + p + z.

This formula, for the case that 0, follows from the central formula of
Morse and Heins [16, p. 67]. If v + z, hence # 0, then F is an immer-
sion, and the cellulation is faithful (in particular, the immersion is 1:1 on each
cell). In this case, (3.3) becomes Haefliger’s formula, proved in [10] for the case
that F and M are smooth. Let us briefly sketch that (3.3) is indeed a necessary
condition also for continuous immersions into the plane.

PROPOSITION 3. If F is an immersion of a compact, bordered surface M into
the plane then the turnint7 number z off dF equals the Euler characteristic Z
of M.
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Proof To compute z we must orient f, so that for a neighborhood U of
p OM on which F is 1:1, F(U OM) lies to the left offl U c OM. Since
both , z are additive, we assume that M is connected. Consider an arc joining
two border points through the interior of M that does not disconnect M. Let
M’ be the surface obtained by performing the associated Riemann cut and F’
the immersion of M’ into the plane which factors into the immersion of M’ in
M followed by F. Since f’= OF’ makes four additional pairwise supple-
mentary turns, z’ + 1. Since )’ ;t + 1, the difference ;t’ z’ ;t
is constant under the finitely many Riemann cuts required to reduce the surface
to a disc.
So let M be a disc (Z 1) with polar coordinates (r, 0), 0 _< r < 1, and F a

(sense preserving) immersion of M into RE. As r - 0, the restrictions f, of F
to circles of radius r deform f fl into a continuous succession of oriented,
locally simple, closed curves such that for each sufficiently small interval
r

_
r _< r2, fr is simple on arcs of length e > 0. So z(f) is locally constant

on 0 < r _< 1. Since F is locally l" on M, there is some small r > 0, so that
f, is a positively oriented closed Jordan curve in the plane. Here z 1. [-]

Let us call an assembling permutation on. X(f, ) effective if it has exactly as
many pairs as there are negative crossings. (By definition it cannot have more.)
Consider an immersion F of a compact, connected, bordered surface M so that
F(M) does not contain some point, say , on S2. We take R2 to be S2 { },
as usual. Finally, assume also that t3F f is a normal family of curves. Let
be a sufficient raying for f. For each negative crossing x e 2"(f, ), the lift of
Ix, 3from the unique point e F- l(x) c M, must terminate at some border
point j) where y is a positive crossing. Thus F uniquely determines an effective
pairing P. To establish that the effective, transitive pairings on X(f, ) for
which v + z constitute the assemblages for all such immersions, it remains
to demonstrate the following.

PROPOSITION 4. Let Fbe an immersion in R2 ofa compact connected, bordered
surface M so thatf dF is a normalfamily ofp curves of turning number z. Let

be a sufficient raying for f with v negative crossings in X(f, ). Let S be the
successor permutation induced byfand P the effective pairing induced by F. Then
P is transitive on S and there is a (sense-preserving) homeomorphism H: Me - M,
so that F, F H, where (Me, F,) is the cellular pair constructed in Section 2.

Proof. We use induction on v. For v 0 we first apply Proposition to
each of the p member curves off to see that z _> p. By Proposition 3, 2
2 + p + z > 2( + p) > 2. Hencep z land 0. Thus M is a disc

andfa closed Jordan curve. (For, iffwere not simple, by normality there would
be a node. Through each node pass two distinct Gaussian circles, which are
positive by assumption that v 0 and that is sufficient. Hence, by Gauss’
observation, z > 2.) Although P is the identity, S is already transitive, since it
consists of a single cycle. Hence P, S generate a transitive group. Me is the
closure of the bounded component of the complement offand Fv is the identity.
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Finally, F is 1" 1, being an immersion of the disc in the plane with border
mapping to a Jordan curve. Set H F-1.
For v > 0, let x be an ultimate negative crossing, and let y xe, which is

determined by F. Let us denote by 2 the arc on M over Ix, y]a to distinguish it
from o in Me. Since F is an immersion, its restriction to some neighborhood
U of 2 is a homeomorphism. Let T be a sufficiently narrow normal neighbor-
hood of a so that F(U) covers the relevant portion of T about Ix, y]. Proceed
with the modification described in the proof of Proposition 2, thereby obtain
the subsurface M’ of M. (M’ could have two components.) Apply induction
to F’= F IM’ (or its two components F) to obtain a homeomorphism
H’" Me, M’ so that Fe, F’o H’. On F,I(F(U) c T)set H F-1 Fe.
For a point p in the domain of H and in Me,, we see that

H(p) F- l(Fe,(p)) F- I(F’ H’(p)) (F-1 f)H’(p) H’(p).

So we may extend H to the rest of Me by H’. Since M is connected and Me is
cellular, P is transitive on S. [--]
Now let P be an arbitrary assembling permutation on X(f, ). Let the partial

branching number z be the branching number of/ve as defined on Me at the end
of Section 2. That is, z equals the total number of crossings occurring in all fans
of P minus the number of fans. We have a generalization of Proposition 2.

PROPOSITION 5. Under the hypotheses of Proposition 2, except that P now is
an assembling permutation with partial branching number z, the same conclusions
hoM except that in the formulas (3.1-2) z is to be added to the right-hand sides.

Proof We use induction on z. For n 0, we have Proposition 2 itself.
For n > 0, let Po (xl’"x,), n > 2, be a fan of P permuting positive cross-
ings on ray o with initial point ao. Let f" be a normal closed curve (with n
nodes), located in the complementary component of f containing ao, which
winds n times clockwise about ao and which crosses the ray o at n new negative
crossings in the succession S" (1"’" ,). See Figure 4. (For precision, take
f" as the image of a suitably situated and negatively oriented closed Jordan
curve about the origin under w ao + z".) Note that a is still sufficient for
the normal curve familyf’ consisting offandf". f’ has p’ p + curves of
turning number z’ z n such that S’ SS" is its successor permutation
on X’ X w {1,..., ,}.
The permutation P’ (2lx)"" (2,x,)PaP is an assembling permutation

for f’ with one fewer fans and n additional pairs. Thus n’ n n + and
v’= v + n. Algebraically"

R’ S’P’

s(,.-. .)(,x,)(x)... (.x.)(x.x._ ... xOP
S(lxl)(2zx2)’" (2,x,)P

SP(lX2)(2x)...
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FIGURE 4

Hence R’ is an expansion of R and (’ (. Apply induction to f’ and P’,
where f’ BF’, and F’ is the cellular polymersion on M’ Me,. Attach a
disc D to M’ along the border circle corresponding to f". The disc is to be
mapped by the extension F off’ across D so as to have a single critical point of
multiplicity n over ao. (The figure shows the case n 3, hats have been
omitted and the dashed curves are the "counterimages" off" in M’ u2 D, for
reference.) Thus/t /t’ + n 1. We check that

(/t n + 1) (v + n) + (z n) + (r n + 1).

Whence the generalization of (3.1) goes through the induction step. The genus
is unchanged and we have

2=2+(v+n)-(p+ 1)-+(-n+ ),

whence the second formula goes through. Note that we do get a nearly faithful
cellulation on M for F simply by erasing the edges on ctD. Since M is connected,
P is transitive on S. [-]

Observe that/ > t and if equality holds then all branching occurs on the
interior vertices on Me. Hence ( v + r if and only if the cellulation is faithful
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tO F. Now suppose that F is a given polymersion in S2 which does not cover the
sphere and which is branched over al,..., aw. We shall require that f cOF
and the a lie in general position, i.e.,f is a normal family of curves not passing
through any of the ai. We then can choose a sufficient raying ct forf such that
each a is the initial point of some ray, and the reference point 6 F(M). Let
to be a critical preimage of some branchpoint ao of F, i.e., #lao) n > 1.
There are n distinct lifts of [ao, o3] emanating from o and these arcs terminate
at n points on tgM where xj is a positive crossing. Let Po (xl... xn)
permute the x clockwise. This is a fan of the effective assembling permutation
P uniquely determined by F. (The pairs are obtained as before.) Under these
circumstances the analogous generalization ofProposition 4 is essentially obvious.

PROPOSITION 6. Under the hypotheses of Proposition 4, except that F is a
polymersion as described above, and P is the associated assembling permutation,
the same conclusion holds.

Proof. Induction on #. For / 0 we have Proposition 4. For / > 0
choose a critical point o of F and a chart (U, h) centered at o so that
F h-l(z) ao + z restricted to h(U). Choose a clockwise oriented closed
Jordan curve enclosing a disc D in h(U) so that F h-(tD) is the curvefused
in the proof of Proposition 5. (The reader familiar with function theory will
recognize that our construction is the topological analog of choosing a local
parameter z at o.) The rest of the proof proceeds in straightforward analogy
to that of Proposition 4. [--]

Before proceeding with the fully general case, let us pause for a review. Given
the normal curve family f and the intended set of branch points Ao in the
complement off, to determine all polymersions F extending the data (f, .40) we
choose any convenient but sufficient raying with the set .4 of initial points
containing .40. ("Convenient" means few crossings and a visually or com-
binatorially practical placement of the rays.) As we have seen, the F without
poles (i.e., o3 F(M)) are in 1:1 correspondence with the assembling permuta-
tions P on X(f, ) that have four properties: P and S generate a transitive
group, P has a maximal number of pairs (effective), R SP has a maximal
number of cycles ( v + z or/ 7t), and the fans of P only permute cross-
ings on rays initiating in Ao. We now see the meaning of the L6wner-Titus
conjecture [19] concerning curves of nonnegative circulation. (The circulation
about a point q not onfis the sum of the degrees of

S SX:s --, f(s) q/lf(s) q I,
over the membersf off.) If the circulation about each point in R2 off is non-
negative it is always possible to obtain an effective pairing. If the closure of the
set of positive circulation is connected, it is always possible to find enough fans,
if needed, to make the assembling permutation transitive. Hence f necessarily
extends to some polymersion into the plane. This was the approach followed
in this author’s first proof of the conjecture [5]. The short proof based on the
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construction used in Proposition (applied only to a single normal curve for
simplicity) appeared in [7], [9]. But the associated cellulation of the domain of
F is only nearly faithful. With some effort (drawing more rays from selected
complementary components off), one can in principle search for and find an
assemblage for which ( v / z as well, and thus obtain a faithful cellulation
for F. Efficient ways of constructing assemblages for this problem (i.e., given
f only, no also Ao) are yet to be developed.

Unlike polymersions (into S2, of course) of closed surfaces, for which the
minimum number of faces of a faithful cellulation of the surface is given by the
degree of the map, polymersions of bordered surfaces do not have a constant
topological degree. A second unsolved problem is to determine the minimum
number of faces a faithful cellulation, however obtained, can have, and then to
construct it. It can be shown that an upper bound for this number equals the
number of positive Gaussian circles off, computed in any plane R2 S2 (O0)
in whichf has nonnegative circulation.

4. Polymersion to S 2

Let F be a polymersion of M to S2 with branchpoints ai, 1,..., w, such
that f- OF is a normal curve family not passing through the ai. Let be a
sufficient raying for f with reference point o0 and let A be the set of rn initial
points of the rays. We assume that the a belong to A so that F is not branched
over o0 and m >_ w. The fl card F- (o0) points in F- (o0) are called the
poles of F. Let B be an abstract set of fl elements, and let F-1(oo) be labeled
by B" b B is assigned to pole . For a A, the lift of [a, o0] from F- X(a)
(or of Ix, oo] from 92 F-(x) c OM, if x is a negative crossing in X
X(f, )) may now terminate at a pole. (Indeed, for a closed surface, this is
invariably the case.) Let Ub be a neighborhood of F-(o0), separating
from the closed subset F-(A w F(OM)) so that F[ Ub is a homeomorphism.
In a normal neighborhood of choose fl concentric discs Db about the origin
in the (r, 0)-plane, so that their homeomorphs in S2 (also denoted by Db) lie
in ( F(Ub). Let g be the family of fl disjoint simple closed curves gb, where 9b
is OD oriented clockwise about o0, i.e., counterclockwise in RE S2 {oo }.
Then M*= M- F-1 (Int Db) is a connected surface of characteristic
)* X fl, F* F] M* is a polymersion of M* to R2 andf* OF* is the
normal family of p* p + fl curves f w g, of turning number z* z + fl in
R2. Note that is still sufficient for f*. All mfl new crossings in X*
X(f*, ) are positive and separate the crossings in X from o0.

Applying our theory to F*, we obtain the effective assembling permutation
P* on X*, which is transitive on the successor permutation S* so that R*
S’P* has ( v + z* v + z + fl cycles. The branching number of F*
equals that of P*, i.e.,/ n*. Thus we obtain the Hurwitz-Riemann relation
for polymersions to S2"

(4.1) ;t z- / + 2fl or 2 + # 2fl + 27 + p + z.
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It is clear how to obtain a surface Mn from M,, by attaching fl discs (each
radially subdivided into m sectors) to 0M,, along (F H*)-l(g), and how to
extend the polymersion F,, to Fn, and the homeomorphism H* to H, so that
Fn H F. (To obtain a faithful cellulation on Mn with ( faces, we must
erase the superfluous edges corresponding to the gb. As usual we erase the vert-
ices of degree and their adherent edges.) The only remaining problem is to
give meaning to the symbol H which is independent of the choice of g and the
associated labeling of X*. Note that for each b e B the successor permutation
of gb, S* X(gb, ), is a labeled copy of the same cyclic permutation K on A
that cycles the rays clockwise about oo. For each a e A, P* X(f*, .) is a
labeled copy of a permutation H. on X. + B (disjoint union of X. X(f, e.)
and B). Thus the entire information, modulo a choice of g and labeling of X*,
contained on S* and P* is contained in the permutations S on X, K on A, and
the m permutations H. on X. + B. That is, under identification of X* with
X + A x B, we may recover S*, P* as follows. (To avoid unprintable symbols,
we write xP for xe.) For x X, set xS* xS and xP* xH, where a a,
and for (a, b) e A x B, set (a, b)S* (aK, b) and (a, b)P* (a, bH,) or just
bH, if this is in X,. Since S and K are fixed for given f and , we shall call
H {H,: a e A} an assembling system for X(f, ) of degree fl at . (For
/3 0, the product of the H, is just an assembling permutation.) It is clear
what the adjectives "effective" and "transitive" should mean for an assembling
system in terms of the associated S*, P* on X*.

Let us describe the cell structure on Mn more explicitly. (We drop the sub-
script H.) For x X we have the border vertices V (x) , on c3M. For each
fan , of H, we have an interior vertex V (,), which is critical for F, and which
has degree equal to the length of the cycle tI),. For/3 > 0 and b e B, there is an
interior vertex V(b), which is a pole of F. (Those of degree may be erased
later.) For each x e X, there is the oriented border edge EO(x) between V (x)
and V(xS) on 0M. Let F-() denote the network of arcs on M. For
each a A we have the following interior edges. For ff X, a negative crossing,
we have the edge E(ff) on IV(if), V(ffH,)]a. For a positive x e X which
occurs in a fan (I), of Ha we have E(x) on IV ((I)a), V (x)]. For (a, b) e A x B,
with b, occurring in some fan Oa of Ha, we have the edge E(a, b) on IV ((1)a),
V (b)]&. For each of the ( cycles in R* S’P* there is one face. For these it is
convenient to use the labeling C(u) for R,*, where u e X* X + A x B. Note
that at each vertex V, P* defines a clockwise cyclic permutation of the adherent
faces that takes C(u) to C(uP*). Once we erase the interior vertices of degree
and their adherent edges, we can use the cycles R,* to describe the boundary
curve on OC(u) very nicely.

Thus, as the reader may check, we have proved the following.

THEOREM. Let f be a normal family of p curves on S2. Let be a sufficient
rayinyforfwith reference point and set A ofinitial points. Let z be the turning
number off in R2 S2 { } and X(f, ) have v negative crossings in it.
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Let H {Ha: a A} be an assembling system for X(f, ) of degree , with
associated permutations S*, P* on X*. Let rc be the partial branching number of
P* and R* S’P* have cycles. If S*, P* generate a transitive group on X*
and P* has v pairs, then there is a compact, connected, bordered (if p > 0),
cellular surface Mn ofgenus , and a polymersion Fn ofM to Sz with f OFn
and with branching number l where

(4.2)

and

(4.3) 2,=2 + v- p + rc .
Moreover, the cellulation on Mn is nearly faithful to Fn.
only if

It is faithful if and

(4.4) v + z + fl or l re.

Conversely, let F be a polymersion of a compact, connected surface M to S2

with OF -f, with fl poles and branched over a subset Ao of A. Let H be the
effective assembling system of degree fl induced by F and S*, P*, R* S’P*
the associated permutations on X*. Then P* is transitive on S*, (4.4) holds,
and only those H have fans for which a Ao. Moreover, there is a homeo-
morphism Hfrom Mn to M so that Fn F H.

Suppose F is an immersion, then in the induced effective, transitive assembling
system He {Ha: a A } each Ha is a pairing on Xa + B, and we may simplify
matters as follows. Let us define a wheel on X(f, ) to be a cyclic W on negative
crossings in X, each of which lies on a distinct ray and so that the cycle K on A
is an expansion of W acting on A. Recall that S* SK* where K* is the
product of fl distinct copies of K. We state, without proof, that there is a unique
permutation P on X with fl wheels (counting fixed negative crossings too) and
pairs on X such that K’P* is an expansion of P under the adjunction of A x B
to X. Furthermore, R* S’P* is an expansion of R SP. Thus R has the
same number of cycles as R*.

Conversely, if P is a product of (disjoint) pairs and/3 wheels on X(f, ), such
that R SP has v + z + fl cycles, and S, P generate a transitive group on X,
then there is a unique transitive, effective assembling system so related to P.
However, rayings are not very efficient means for constructing assemblages for
immersions of bordered surfaces to $2; in general there are too many crossings
to consider. In a forthcoming study we shall develop better assemblages for
immersions in connection with a similar combinatorial classification of proper,
stable maps of surfaces to S2 and R2. The above assertions will constitute a
special case there.

In conclusion, we return to Hurwitz’ original case of an n-sheeted branched
covering (M, F) of S2 with w branchpoints. Here n fl card (fl), w
card (A), Ha is an arbitrary permutation on B for each a e A, and K is a cyclic
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permutation of A. Further, our associated permutations S*, P*, and R* S’P*
onX* A x Bsatisfy

(*) (a, b)S* (aK, b), (a, b)P* (a, bHa), (a, b)R* (aK, bH,,r).

From this it follows that S*, P* are transitive on B (recall that K is transitive on
A) Iterating R*, we notice that the length 2(a, b) of the cycle R* must satisfy(a, b)

2(a, b) >_ w (w is the order of K). Since R* acts on nw elements and has cycles,
we have nw >_ w or n _> . Thus equality (4.4), n fl , holds if and only
if each (a, b) w which is equivalent, by (*), to Hurwitz’ condition

HaKHaKz’’" HaK, 1.

5. Discussion

Hurwitz’ tacit identification of a closed Riemann surface with a branched
covering (M, F) of S2 induced by a meromorphic function is historically valid.
Our use of Riemann’s name in connection with our generalization to bordered
surfaces is no more frivolous, since Riemann is a totem in many disciplines,
including combinatorial topology. A polymersion F of a surface M, as we have
defined it, induces a conformal structure on M in terms of which F becomes a
meromorphic function. There is no question here of classifying conformal
structures on bordered surfaces by means of assemblages. While it is true that
two polymersions that have the same assemblage (with reference to the same
set of curves and branchpoints) induce conformally equivalent structures, the
converse is false. Milnor’s paisley curves I-3, 6] admit many different assem-
blages for immersions of the disc into the plane. Which assemblages belong to
the same conformal class is still to be solved. What we have classified by
assemblages is the polymersions that induce the structures.
Our placing of the curves in general position with respect to the intended

branchpoints and with respect to themselves (normality) deserves a brief ex-
planation. A local power map which is not critical on the border points of its
domain is what Morse [ 16] called an "interior" map satisfying his first boundary
condition. (We have avoided the term "interior" because it more often means
just "open." By Stoilow’s theorem, it is an open and light map that is a local
power map.) Permitting branchpoints to lie on the curves leads to a more com-
plicated Hurwitz-Riemann relation and to more complicated assemblages.
Consider, for example, the restrictions of the meromorphic map w (z 2 i)/
(z 2 + i) to the (compactified) quadrant on the one hand and to the union of
the first three quadrants on the other. Both domains are topological discs, both
maps are locally 1:1 on the interior and 1:1 on the border, which is mapped to
the unit circle in both cases. To obtain a faithful cellulation for the second map,
however, the domain has to be subdivided so that each sector is a face.

It is difficult to say anything about the bounding possibilities of a nonnormal
curve. Consider the figure eight in Rz, but oriented so as to have turning
number 1, not 0. That is, the double point is not a node, but a "tangency."
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There is no polymersion of a surface to R2 whose border maps to this curve.
By remaining in the C-context, we have departed from the tradition established
in the studies cited in the introduction, except for [16], all of which assume the
given curve(s)f to be C1-regular. While this regularity condition simplifies the
discussion of nodes and turning numbers, it complicates modifications by
"cutting and pasting" because one has forever to "smooth corners." Further,
the polymersions extending regular curves should locally be smooth (i.e., the
Jacobian vanishes only at critical points over branchpoints). For this one has
to use versions of the smooth Schoenflies theorem.
On the other hand, in CO locally simple closed curves do not constitute an

open subset, even in the Frechet topology used by Morse. (Witness the de-
formation that smoothly shrinks one loop of the smooth figure eight, through a
cusp, to a simple curve.) Using supplementary smooth arguments, our results
hold also for smooth normal curves and polymersions. For this reason we have
retained the "smooth" term "immersion," and coined the neologism "poly-
mersion" to recall the "polynomial" structure at branch points. Since our
maps of bordered surfaces do not have constant "degree" (even counting multi-
plicity), we avoided calling our maps "branched coverings."

There are three directions one could go from here. The first is to develop
assemblages for polymersions whose target is a surface of characteristic :t < 1.
The second is to investigate further the "surgery" on polymersions, which is
expressed in multiplying the successor permutations of a sufficiently rayed
normal family of curves in R2, by successive pairs and fans. The third is to
observe how suitable deformations of curves from one general position into
another is reflected in "morphisms" between their assemblages.
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