M-PROJECTIVE AND STRONGLY M-PROJECTIVE MODULES

BY

K. Varadarajan

Introduction

Given a module M over a ring R, G. Azumaya [1] introduced the dual notions of M-projective and M-injective modules. These concepts have actually led M. S. Shrikhande to a study of hereditary and cohereditary modules [5]. More recently Azumaya, Mbuntum and the present author obtained necessary and sufficient conditions for the direct sum $\bigoplus_{\sigma \in J} A_{\sigma}$ of a family of modules to be M-injective [2]. While R-injective modules are the same as injective modules over R, the class of R-projective modules in the sense of Azumaya in general is larger than the class of projective R-modules. In this paper we introduce the notion of a strongly M-projective module and the associated notion of a strong M-projective cover. Next we investigate strong M-projective covers. We show that if every module possesses a strong M-projective cover then $R/\mathfrak{A}(M)$ is (left) perfect, where $\mathfrak{A}(M)$ is the annihilator of M. If $R/\mathfrak{A}(M)$ is perfect, we show that every R-module A with $t_M(A) = 0$ possesses a strong M-projective cover, where

$$t_M(A) = \{x \in A \mid f(x) = 0 \text{ for all } f \in \text{Hom}(A, M)\}.$$

Another application of the ideas here is the result that if $\mathfrak{A}(M) = 0$, then an R-module B is strongly M-projective iff B is projective. In particular if R is (left) perfect and $\mathfrak{A}(M) = 0$, then an R-module B is M-projective iff B is actually projective. Since $\mathfrak{A}(R) = 0$, we can regard this result as a generalization of the "known" result that when R is perfect an R-module is R-projective iff it is projective. It will be interesting to characterise the rings with the property that R-projective modules are the same as the projective modules over R.

1. Preliminaries

Throughout this paper R denotes a ring with $1 \neq 0$, R-mod the category of unital left modules. All the modules we deal with are unital left modules. M denotes a fixed object in R-mod. We recall briefly the concepts of M-projective and M-injective modules introduced by G. Azumaya and state two results due to him [1].

Definition 1.1. A module P is called M-projective if given any epimorphism $\phi: M \to N$ and any $f: P \to N$, there exists a $g: P \to M$ such that $\phi \circ g = f$.

Received July 2, 1975.

\[1\] Research done while the author was partially supported by a NRC grant.

507
An M-injective module is defined dually.

DEFINITION 1.2. An epimorphism $\psi: A \to B$ is called an M-epimorphism if there exists a map $h: A \to M$ such that $\ker \psi \cap \ker h = 0$.

M-monomorphisms are defined dually.

PROPOSITION 1.3. [1] Let $P \in R$-mod. Then the following statements are equivalent.

1. P is M-projective.
2. Given any M-epimorphism $\psi: A \to B$ and any $f: P \to B$, there exists a $g: P \to A$ such that $\psi \circ g = f$.
3. Every M-epimorphism onto P splits.

The dual of this proposition characterises M-injective modules.

DEFINITION 1.4. $C_p(M)$ is the class of all M-projective modules, $C_i(M)$ is the class of all M-injective modules. For any $A \in R$-mod,

$$C^p(A) = \{ M \in R$-mod $| A$ is M-projective $\}$$

and

$$C^i(A) = \{ M \in R$-mod $| A$ is M-injective $\}$$

PROPOSITION 1.5. [1] (1) $C_p(M)$ is closed under the formation of direct sums and direct summands.

2. $C_i(M)$ is closed under the formation of direct products and direct factors.

3. $C^p(A)$ is closed under submodules, homomorphic images and formation of finite direct sums. If A has a projective cover, $C^p(A)$ is closed under the formation of arbitrary direct products (and hence arbitrary direct sums as well).

4. $C^i(A)$ is closed under submodules, homomorphic images and arbitrary direct sums.

In this paper the term R-projective module will be used to denote a module which is R-projective in the sense of Definition 1.1. As has already been pointed out in [2] the class of R-projective modules in general is larger than the class of projective R-modules.

LEMMA 1.6. Let $A \in C_p(M)$, $K \subseteq A$ and $i: K \to A$ the inclusion. If

$$i^*: \text{Hom}(A, M) \to \text{Hom}(K, M)$$

is the zero map then $A/K \in C_p(M)$.

Proof. Write B for A/K and let $\eta: A \to B$ denote the canonical quotient map. Let $\phi: M \to N$ be any epimorphism and $f: B \to N$ any map. Since $A \in C_p(M)$, there exists a map $g: A \to M$ such that $\phi \circ g = f \circ \eta$. Now, $g \circ i = i^*(g) = 0$.

Hence g induces a map $\bar{g}: B \to M$ satisfying $\bar{g} \circ \eta = g$. It is clear that $\phi \circ \bar{g} = f$.

Recall that an epimorphism $\alpha: A \to B$ is called minimal if $\text{Ker} \, \alpha$ is small in A.

LEMMA 1.7. Any minimal M-epimorphism \(\alpha: A \to B \) with \(B \in C_p(M) \) is an isomorphism.

Proof. By (3) of Proposition 1.3, \(\alpha \) splits. Thus \(\ker \alpha \) is a direct summand of \(A \). Since \(\ker \alpha \) is small in \(A \) we see that \(\ker \alpha = 0 \).

LEMMA 1.8. Let

\[0 \to K \xrightarrow{i} A \xrightarrow{\phi} B \to 0 \]

be exact with \(i(K) \) small in \(A \). If \(B \in C_p(M) \), then \(i^*: \text{Hom}(A,M) \to \text{Hom}(K,M) \) is the zero map.

Proof. Let \(f \in \text{Hom}(A,M) \). Writing \(L \) for \(K \cap \ker f \) we get an exact sequence

\[0 \to K/L \xrightarrow{i} A/L \xrightarrow{\phi} B \to 0 \]

where \(i \) and \(\phi \) are induced by \(i \) and \(\phi \) respectively. If \(\overline{f}: A/L \to M \) is induced by \(f \), it is clear that \(\ker \overline{f} \cap \ker \phi = 0 \). Thus \(\overline{\phi}: A/L \to B \) is an M-epimorphism. Moreover \(i(K/L) \) is small in \(A/L \). Lemma 1.7 now implies that \(\overline{\phi} \) is an isomorphism and hence \(K/L = 0 \). Thus, \(L = K \) and \(i^*(f) = f \circ i = f/K = 0 \).

2. Strongly M-projective modules

Given any set \(J \) and any \(A \in R\text{-mod} \), we write \(A^J \) for the direct product \(\prod_{\alpha \in J} A_\alpha \) and \(A^{(J)} \) for the direct sum \(\oplus_{\alpha \in J} A_\alpha \), where \(A_\alpha = A \) for each \(\alpha \in J \). The annihilator of \(A \) will be denoted by \(\mathcal{A}(A) \).

DEFINITION 2.1 A module \(A \) is called strongly M-projective if \(A \in C_p(M^J) \) for every indexing set \(J \).

Trivially every projective module is strongly M-projective for every \(M \in R\text{-mod} \). From the second half of (3) of Proposition 1.5 we get the following as an immediate consequence.

LEMMA 2.2 Let \(A \in C_p(M) \). If \(A \) possesses a projective cover, then \(A \) is strongly M-projective.

DEFINITION 2.3. A submodule \(K \) of \(A \) is said to be M-independent in \(A \) if given any \(x \neq 0 \) in \(K \), there exists an \(f \in \text{Hom}(A,M) \) such that \(f(x) \neq 0 \).

If \(K = 0 \), the condition stated in Definition 2.3 is emptyly satisfied. Also if \(L \subset K \subset B \subset A \) and \(K \) is M-independent in \(A \), then trivially \(L \) is seen to be M-independent in \(B \).

DEFINITION 2.4. A homomorphism \(f: A \to B \) is called M-independent if \(\ker f \) is M-independent in \(A \).

LEMMA 2.5. Let \(\phi: A \to B \) be an M-independent epimorphism and \(L = \ker \phi \). Then \(\phi \) is an \(M^L \)-epimorphism.
Proof. For any $x \neq 0$ in L let $f_x: A \to M$ be such that $f_x(x) \neq 0$. Let $f_0: A \to M$ be the zero map. Let $h: A \to M^L$ be defined by $h(a) = (f_x(a))_{x \in L}$. Then $\ker h \cap \ker \phi = 0$.

For any $A \in R$-mod, let $t_M(A) = \{ x \in A \mid f(x) = 0 \text{ for all } f \in \text{Hom}(A, M) \}$. Then $t_M(R) = \mathfrak{M}(M)$. It is clear that A is M-independent in itself if and only if $t_M(A) = 0$.

Definition 2.6. An object $A \in R$-mod is called M-independent if $t_M(A) = 0$.

Remark 2.7. (a) Given $x \in A$ with $x \notin t_M(A)$, there exists an $f: A \to M$ with $f(x) \neq 0$. Since $f/t_M(A) = 0$, we get an induced map $\tilde{f}: A/t_M(A) \to M$. Clearly $\tilde{f}(x + t_M(A)) \neq 0$. Thus $A/t_M(A)$ is M-independent in itself. In other words $t_M(A/t_M(A)) = 0$. For any $g: A \to B$ it is clear that $g(t_M(A)) \subseteq t_M(B)$. Thus t_M is a radical on R-mod in the sense of Bo-Stenström [6, Chap 1]. However, t_M is neither left exact, nor idempotent. For instance consider $t = t_{Z_p}$ on Z-mod, where $Z_p = Z/pZ$. Then $t(Z) = pZ$, $t(pZ) = p^2Z$. Thus

$$t(Z) \cap pZ = pZ \neq p^2Z = t(pZ).$$

Also $t(t(Z)) = p^2Z \neq t(Z)$. This is just to impress upon the reader that M-projectivity and M-injectivity can not in general be “subsumed” under “torsion theories”.

(b) When M is injective t_M is the radical associated to a hereditary torsion theory on R-mod.

It is easily seen that every $A \in R$-mod is M-projective iff M is semi-simple iff every $A \in R$-mod is M-injective. The next theorem gives conditions under which every $A \in R$-mod is strongly M-projective.

Theorem 2.8. The following statements are equivalent.

1. Every R-module is strongly M-projective.
2. Every cyclic R-module is strongly M-projective.
3. $R/\mathfrak{M}(M)$ is a semisimple Artinian ring.
4. M^J is a semisimple R-module for every indexing set J.

Proof: (1) \Rightarrow (2) is trivial.

(2) \Rightarrow (3). Any left ideal of $R/\mathfrak{M}(M)$ is of the form $I/\mathfrak{M}(M)$ with I a left ideal of R satisfying $I \supseteq \mathfrak{M}(M)$. Let $\eta: R/\mathfrak{M}(M) \to R/I$ denote the quotient map. Then $\ker \eta = I/\mathfrak{M}(M)$. Since $R/\mathfrak{M}(M)$ is M-independent in itself it follows that $I/\mathfrak{M}(M)$ is M-independent in $R/\mathfrak{M}(M)$. If we write K for $I/\mathfrak{M}(M)$, from Lemma 2.5 it follows that η is an M^K-epimorphism. Assumption (2) implies that $R/I \in C_s(M^K)$. An application of (3), Proposition 1.3 shows that $\eta: R/\mathfrak{M}(M) \to R/I$ splits in R-mod and hence in $R/\mathfrak{M}(M)$-mod. Thus $R/\mathfrak{M}(M)$ is a direct summand of $R/\mathfrak{M}(M)$ as an $R/\mathfrak{M}(M)$-module.

(3) \Rightarrow (4). Since $\mathfrak{M}(M)M^J = 0$ (for any indexing set J) we can regard M^J as an $R/\mathfrak{M}(M)$-module. The R-submodules of M^J are the same as the $R/\mathfrak{M}(M)$-submodules.
submodules of \(M^J \). The semisimplicity of \(R/\mathfrak{M}(M) \) implies that \(M^J \) is semi-
simple as an \(R/\mathfrak{M}(M) \)-module and hence as an \(R \)-module also.

(4) \(\Rightarrow \) (1) is trivial.

Remark 2.9. \(M = \bigoplus_p \mathbb{Z}_p \) (direct sum over all the primes \(p \)) is an example
of a semisimple \(\mathbb{Z} \)-module for which \(\mathbb{Z}/\mathfrak{M}(M) = \mathbb{Z} \) is not semisimple.

Proposition 2.10. If every \(M \)-independent \(R \)-module is injective then \(R/\mathfrak{M}(M) \)
is a semisimple ring.

Proof. Since \(R/\mathfrak{M}(M) \) is \(M \)-independent, any left ideal of \(R/\mathfrak{M}(M) \) being a
submodule of \(R/\mathfrak{M}(M) \) is \(M \)-independent, and hence injective as an \(R \)-module.
Thus every left ideal of \(R/\mathfrak{M}(M) \) is an \(R \)-direct summand and hence an \(R/\mathfrak{M}(M) \)
direct summand of \(R/\mathfrak{M}(M) \).

Lemma 2.11. For any \(A \in R \text{-mod} \) we have \(\mathfrak{M}(M)A \subset t_M(A) \).

Proof. Trivial.

Remark 2.12. If \(A \) is any \(M \)-independent \(R \)-module, from Lemma 2.11 we see
that \(\mathfrak{M}(M)A = 0 \). Hence \(A \) can be regarded as an \(R/\mathfrak{M}(M) \)-module in a natural
way. If \(R/\mathfrak{M}(M) \) is semisimple Artin (as a ring) then \(A \) is injective as an \(R/\mathfrak{M}(M) \)-
module. But in general \(A \) need not be injective as an \(R \)-module. Thus the con-
verse of Proposition 2.10 is not true. For instance let \(M = \mathbb{Z}_p \) in \(\mathbb{Z} \text{-mod} \) and
\(A = \mathbb{Z}_p \). Then \(\mathfrak{M}(M) = p\mathbb{Z} \) and \(\mathbb{Z}/\mathfrak{M}(M) = \mathbb{Z}_p \) is a field. Also \(t_M(\mathbb{Z}_p) =
t\mathbb{Z}_p(\mathbb{Z}_p) = 0 \). However \(\mathbb{Z}_p \) is not injective as a \(\mathbb{Z} \)-module.

When \(M \) is an injective \(R \)-module the converse of Proposition 2.10 is valid.

Proposition 2.13. Let \(M \) be an injective \(R \)-module such that \(R/\mathfrak{M}(M) \) is a
semisimple ring. Then any \(M \)-independent \(R \)-module is injective

Proof. Let \(A \) be any \(M \)-independent \(R \)-module. Let \(I \) be any left ideal in
\(R \) and \(f: I \to A \) any map. We will show that \(f(I \cap \mathfrak{M}(M)) = 0 \) using the fact
that \(M \) is an injective \(R \)-module. Suppose on the contrary \(f(\lambda) \neq 0 \) for some
\(\lambda \in I \cap \mathfrak{M}(M) \). Since \(t_M(A) = 0 \) we can find a \(g: A \to M \) with \(g(f(\lambda)) \neq 0 \).
Since \(M \) is injective, there exists an \(h: R \to M \) such that \(h|I = g \circ f \). Then
\(0 \neq g(f(\lambda)) = h(\lambda) = h(\lambda \cdot 1) = \lambda h(1) = 0 \) since \(\lambda \in \mathfrak{M}(M) \) and \(h(1) \in M \).
This contradiction shows that \(f(I \cap \mathfrak{M}(M)) = 0 \).

Thus \(f \) induces a map \(\bar{f}: I/I \cap \mathfrak{M}(M) \to A \). Clearly \(\bar{f} \) is an \(R/\mathfrak{M}(M) \)-map.
The semisimplicity of \(R/\mathfrak{M}(M) \) implies that \(\bar{f} \) can be extended to an \(R/\mathfrak{M}(M) \)
homomorphism \(\theta: R/\mathfrak{M}(M) \to A \). If \(\eta: R \to R/\mathfrak{M}(M) \) is the canonical quotient
map, then it is clear that \(\theta \circ \eta: R \to A \) is an \(R \)-homomorphism extending
\(f: I \to A \). Thus \(A \) is an injective \(R \)-module.

Combining Propositions 2.10 and 2.13 we get the following:

Corollary 2.14. When \(M \) is injective, each of the statements (1), (2), (3), (4)
of Theorem 2.8 is equivalent to (5) stated below:

(5) Every \(M \)-independent \(R \)-module is injective.
3. Strong \(M \)-projective covers

Definition 3.1. A minimal epimorphism \(\alpha: A \to B \) is called a strong \(M \)-projective cover if

1. \(A \) is strongly \(M \)-projective and
2. \(\alpha \) is \(M \)-independent (in the sense of Definition 2.4)

As in the case of projective covers, strong \(M \)-projective covers do not exist in general. Conditions for existence will be investigated presently. But before that we will prove the essential uniqueness of a strong \(M \)-projective cover when it exists.

Lemma 3.2. Suppose \(\alpha: A \to B \) is a strong \(M \)-projective cover and \(\pi: P \to B \) an epimorphism with \(P \) strongly \(M \)-projective. Then there exists an epimorphism \(h: P \to A \) satisfying \(\pi \circ h = \alpha \).

Proof. Let \(L = \ker \alpha \). Since \(\alpha \) is \(M \)-independent, from Lemma 2.5 we see that \(\alpha \) is an \(M' \)-epimorphism. Since \(P \in \mathcal{C}_p(M^J) \), by (2) of Proposition 1.3 we get a map \(h: P \to A \) satisfying \(\alpha \circ h = \pi \). Since \(\pi \) is onto, we get \(\text{Im} h + L = A \).

The smallness of \(L \) in \(A \) gives \(\text{Im} h A \).

Proposition 3.3. Suppose \(\alpha_1: A_1 \to B \), \(\alpha_2: A_2 \to B \) are any two strong \(M \)-projective covers of \(B \). Then there exists an isomorphism \(h: A_1 \to A_2 \) such that \(\alpha_2 \circ h = \alpha_1 \).

Proof. By Lemma 3.2, there exists an epimorphism \(h: A_1 \to A_2 \) satisfying \(\alpha_2 \circ h = \alpha_1 \). If \(K_1 = \ker \alpha_1 \), \(K = \ker h \) from \(\alpha_2 \circ h = \alpha_1 \) we immediately get \(K \subset K_1 \). Hence \(K \) is \(M \)-independent in \(A_1 \) and is also small in \(A_1 \). Lemma 2.5 now implies that \(h \) is a minimal \(M^K \)-epimorphism. Since \(A_2 \in \mathcal{C}_p(M^K) \), an application of Lemma 1.7 yields that \(h \) is an isomorphism.

We next show that any \(B \in \text{R-mod} \) which possesses a projective cover automatically admits a strong \(M \)-projective cover. We will actually indicate a method of constructing a strong \(M \)-projective cover of \(B \) from a given projective cover of \(B \).

Theorem 3.4. Suppose \(B \) has a projective cover \(\pi: P \to B \). Let \(L = \ker \pi \) and

\[T = \{ x \in L \mid f(x) = 0 \text{ for all } f \in \text{Hom} (P, M) \}. \]

Let \(\alpha: P/T \to B \) be the map induced by \(\pi \). Then \(\alpha: P/T \to B \) is a strong \(M \)-projective cover of \(B \).

Proof. If \(i: T \to P \) denotes the inclusion of \(T \) in \(P \), from the very definition of \(T \) we have \(i^* : \text{Hom} (P, M) \to \text{Hom} (T, M) \) to be the zero homomorphism. By Lemma 1.6 we see that \(P/T \in \mathcal{C}_p(M) \). Clearly \(T \) is small in \(P \). Hence the canonical quotient map \(\eta: P \to P/T \) is a projective cover of \(P/T \). Lemma 2.2 now yields \(P/T \in \mathcal{C}_p(M^J) \) for every set \(J \). It is easily seen that \(L/T \) is \(M \)-inde-
pendent in P/T. In addition L/T is small in P/T. This proves that $\alpha: P/T \to B$ is a strong M-projective cover of B.

Corollary 3.5. If R is left perfect (resp. semiperfect) every module (resp. cyclic module) over R possesses a strong M-projective cover.

Proposition 3.6. Suppose $M \in R\text{-mod}$ satisfies $\mathfrak{U}(M) = 0$. Then $B \in R\text{-mod}$ is strongly M-projective iff B is projective.

Proof. The implication \Leftarrow is trivial. As for the implication \Rightarrow, let B be strongly M-projective. Let

$$0 \longrightarrow K \xrightarrow{i} F \xrightarrow{\phi} B \longrightarrow 0$$

be an exact sequence in $R\text{-mod}$ with F free. Let $\{e_x\}_{x \in J}$ be as basis for F. Suppose $0 \neq x \in k$. Then $x = \sum \lambda_x e_x$ with at least one $\lambda_x \neq 0$. Since $\mathfrak{U}(M) = 0$ there exists a $g_x: R \to M$ with $g_x(\lambda_x) \neq 0$. Then $h: F \to M$ given by $h | Re = g_x$, $h | Re_\beta = 0$ for $\beta \neq \alpha$ clearly satisfies $h(x) \neq 0$. Thus K is M-independent in F. By Lemma 2.5, ϕ is an M^K-epimorphism. Since $B \in C_p(M^K)$, by (3) of Proposition 1.3 we see that ϕ splits. Hence B is projective.

Corollary 3.7. Let $M \in R\text{-mod}$ be such that $\mathfrak{U}(M) = 0$. Suppose B is an R-module possessing a projective cover. Then B is projective iff B is M-projective.

Proof. We have only to prove the implication \Leftarrow. This is immediate from Lemma 2.2 and Proposition 3.6.

Any R-module B satisfying $\mathfrak{U}(M)B = 0$ can be regarded as an $R/\mathfrak{U}(M)$-module. In particular this is the case if $t_M(B) = 0$ by Lemma 2.11.

Lemma 3.8. Suppose $B \in R\text{-mod}$ satisfies $\mathfrak{U}(M)B = 0$. Then B is strongly M-projective iff as an $R/\mathfrak{U}(M)$-module B is projective.

Proof. From $\mathfrak{U}(M)M^J = 0$ we see that M^J is an $R/\mathfrak{U}(M)$-module, (whatever be the indexing set J). Also it is clear that for any $A \in R\text{-mod}$ satisfying $\mathfrak{U}(M) = 0$, the R-submodules of A are the same as the $R/\mathfrak{U}(M)$-submodules of A. It follows from this comment that B is strongly M-projective in $R\text{-mod}$ iff B is strongly M-projective in $R/\mathfrak{U}(M)$-mod. The annihilator $\mathfrak{U}_{R/\mathfrak{U}(M)}(M)$ of M as an $R/\mathfrak{U}(M)$-module is clearly seen to be zero. Lemma 3.8 now follows from Proposition 3.6.

Theorem 3.9. The following statements are equivalent.

1. Every $B \in R\text{-mod}$ satisfying $\mathfrak{U}(M)B = 0$, possesses a strong M-projective cover (in $R\text{-mod}$).
2. $R/\mathfrak{U}(M)$ is left perfect.

Proof. (1) \Rightarrow (2). Let $B \in R/\mathfrak{U}(M)$-mod. Then B regarded as an R-module satisfies $\mathfrak{U}(M)B = 0$. Let $\alpha: A \to B$ be a strong M-projective cover of B in $R\text{-mod}$. Let $K = \ker \alpha$. From $\alpha(\mathfrak{U}(M)A) \subset \mathfrak{U}(M)B = 0$ we see that
\(\mathfrak{A}(M)A \subset K \). Hence \(\alpha \) induces a map \(\tilde{\alpha}: A/\mathfrak{A}(M)A \to B \). Now, \(A/\mathfrak{A}(M)A \) is an \(R/\mathfrak{A}(M) \)-module and \(\ker \tilde{\alpha}: K/\mathfrak{A}(M)A \) is small in \(A/\mathfrak{A}(M)A \). Thus \(\tilde{\alpha} \) is a minimal epimorphism in \(R/\mathfrak{A}(M) \)-mod. If \(i: \mathfrak{A}(M)A \to A \) denotes the inclusion, it is clear that

\[
i^* : \text{Hom}_R (A, M) \to \text{Hom}_R (\mathfrak{A}(M)A, M)
\]

is zero. Hence for any indexing set \(J \), the map \(i^* : \text{Hom}_R (A, M^J) \to \text{Hom}_R (\mathfrak{A}(M)A, M^J) \) is zero. Since \(A \) is strongly \(M \)-projective as an \(R \)-module, applying Lemma 1.6 we see that \(A/\mathfrak{A}(M)A \) is strongly \(M \)-projective in \(R \)-mod. Now Lemma 3.8 implies that \(A/\mathfrak{A}(M)A \) is a projective \(R/\mathfrak{A}(M) \)-module. Thus \(\tilde{\alpha}: A/\mathfrak{A}(M)A \to B \) is a projective cover of \(B \) in \(R/\mathfrak{A}(M) \)-mod. This proves that \(R/\mathfrak{A}(M) \) is left perfect.

(2) \(\Rightarrow \) (1). Let \(B \in R \)-mod be such that \(\mathfrak{A}(M)B = 0 \). Let \(\pi: P \to B \) be a projective cover of \(B \) in \(R/\mathfrak{A}(M) \)-mod. Then \(P \) is an \(R/\mathfrak{A}(M) \)-direct summand and hence an \(R \)-direct summand of \(\bigoplus_{x \in S} R/\mathfrak{A}(M) \) for some set \(S \). If \(i: \mathfrak{A}(M) \to R \) denotes the inclusion, clearly \(i^* : \text{Hom}_R (R, M) \to \text{Hom}_R (\mathfrak{A}(M), M) \) is zero and hence

\[
i^* : \text{Hom}_R (R, M^J) \to \text{Hom}_R (\mathfrak{A}(M), M^J)
\]

is zero for every set \(J \). Since \(R \) is free it is strongly \(M \)-projective in \(R \)-mod. By Lemma 1.6 we see that \(R/\mathfrak{A}(M) \) is strongly \(M \)-projective in \(R \)-mod. From (1) of Proposition 1.5 it follows that \(P \) is strongly \(M \)-projective in \(R \)-mod.

Now \(R/\mathfrak{A}(M) \) is \(M \)-independent. From this it follows immediately that \(\bigoplus_{x \in S} R/\mathfrak{A}(M) \) and hence \(P \) are \(M \)-independent. If \(K = \ker \alpha \), then \(K \) is \(M \)-independent in \(P \) (by the comments following Definition 2.3). Thus \(\pi: P \to B \) is a strong \(M \)-projective cover of \(B \) in \(R \)-mod.

Obvious modifications in the proof of Theorem 3.9 yield:

Theorem 3.10. The following statements are equivalent.

1. Every cyclic \(B \in R \)-mod satisfying \(\mathfrak{A}(M)B = 0 \) possesses a strong \(M \)-projective cover as an \(R \)-module.
2. \(R/\mathfrak{A}(M) \) is semiperfect.

Proposition 3.11. The following statements are equivalent.

1. The direct product \(\prod_{x \in J} B_a \) of any family \(B_a \) of strongly \(M \)-projective \(R \)-modules with \(\mathfrak{A}(M)B_a = 0 \) for all \(x \in J \) is strongly \(M \)-projective.
2. \((R/\mathfrak{A}(M))^J \) is strongly \(M \)-projective for every indexing set \(J \).
3. \(R/\mathfrak{A}(M) \) is left perfect, and any finitely generated right ideal of \(R/\mathfrak{A}(M) \) is finitely related.

Proof. Immediate consequence of Theorem 3.3 of [4] and Lemma 3.8.

References

The University of Calgary
Calgary, Alberta