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1. Introduction

The symmetric group $3 has a matrix representation F, given by

With

U(d)=(0d 11) ford= lor3,

the U(d)-IFU(d)are Z-representations, both Q-equivalent to F, but not
mutually Z-equivalent. Every Z-representation of $3 rationally equivalent to F
is integrally equivalent to one of these two. (Cf. [.5, Example 1, p. 505].)

Again, taking

F(2) [1
[-’F(23) 1

F(34) [-1
(with blanks representing zeros) and

U(d) d

1 1],-1

1 1

d 1,2, or4,

a similar statement may be made on behalf of $4.
More generally, for a certain integral representation F of S,+ of degree n,

we give representatives for the Z-equivalence classes of Z-representations
Q-equivalent to F. The precise statement is contained in the theorem of Section
3. In Section 4, the resulting groups of integral matrices are interpreted as giving
automorphisms of certain quadratic forms. These were first described by
Coxeter, and are of interest for their arithmetic properties (see [3]). Section 2
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provides the theoretical background for the later sections. The reference !-5]
cited above contains the representation theory used here.

2. Preliminaries

We write ej for the jth column of the n n identity matrix I, (= I). For a
real n x n matrix A # I, we adopt the conventions" aj is the (i, j) entry, aj is
the jth column,

(A) Za + ...+ Za..
A is unimodular if both A, A- M,(Z).

Also, G will denote a finite group of order 7, and F: G - M,(Z) a matrix
representation of degree n which is irreducible in the complex field. Thus for
h G, we have h F(h), where by an adaptation of our convention for
matrices, we write

F(h) (F(h),..., F,(h)) (F,j(h)).

Finally, * U-xFU will be a Q-representation of G which is Q-equivalent
to F. We can clearly suppose the ui to be integers, with

G.C.D. (uj) 1. (1)

LEMMA 1. If W V-1FV is a second such representation, then , g are
Z-equivalent ifffor some unimodular W, we have V UW.

Proof Given that g W-X.W, we obtain (UWV-1)F F(UWV-X).
Since F is absolutely irreducible, by Schur’s Lemma UWV- must be a scalar
matrix, that is, UW t. However, can only be + 1 or 1, because UW has
the same G.C.D. of coefficients as U itself (W being unimodular), namely 1,
while the same is true for V. The converse is trivial.

Consider now, the action of G as a group of linear transformations of Rn,
which is given by

(h, x) F(h)x, for h G, x e 1{n.

Then F(h) is just the matrix of (h, -), taken with respect to el,..., e, as basis
for R". Also, .(h) is the matrix with respect to ul, u,. Since F is an integral
representation, the lattice (I,) becomes a G-module, and we have:

LEMMA 2. The condition Jbr go to be a Z-representation, is that (U> shouM
be a G-submodule (&variant sublattice) of

COROLLARY. Equivalently, is integral iff all columns of F(h)U lie in <U>,
for all h Go, where Go denotes afixed set ofgeneratorsJbr G. (That is, instead
of testin,q F(h)x e <U> ./"or all h G and x <U>, it is enough to examine the
action of,qenerators for G upon (tenerators for <U>.)
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Taking different bases for (U) (namely the columns of matrices UW, where
W is unimodular), we obtain all representations Z-equivalent to . The next
result shows that only finitely many classes of Z-equivalent representations of
G, rationally equivalent to F, consist of Z-representations. In fact, for to be
integral, the index of (U) in (I,) is bounded.

LEMMA 3. If is a Z-representation, then (U) has ((gin)l) as a sublattice.

Proof. We may write U X .diag (dl,..., d,)’Y, where X, Y are uni-
modular matrices and dl,... d (the invariant factors of U) are positive
integers satisfying dildi+l, for 1 <_ < n. By (1), we must have dl 1.
Thus x is the first column of UY-1. As y-1 is integral, it follows that
x (U), and so by Lemma 2, F(h)x (U) for all h G. Hence (U) must
contain h O(h-1)F(h)xl for any integers O(h-), where the sum is taken over
all h G.

Setting 19 X-1FX, a Z-representation of G (being Z-equivalent to F), we
have then

O,(h-))x, <u>.
However, F(h)xl X01(h)= _mxmOz(h), so the sum above can be re-
written as

From the theory of group representations, the inner sum equals (gin)6,,,,,
where 6k,, is the Kronecker symbol. Thus (g/n)xk is contained in <U). Letting
k vary, we see <U> contains all columns of (gin)X, hence <U> = <(gin)X>.
However, <X) <I), which gives the result sought.
A further technical simplification in constructing the G-invariant lattices

<U), is provided by the primary decomposition for finite abelian groups, as
follows.

LEMMA 4. Suppose m p’ .pr is the factorization of m g/n in powers
of distinct primes, and set qi m/pT’. Then the G-invariant lattices <U) with
(I) z (U) z <ml), are precisely the <U) ] qi(Ui), where for each i,
<Ui) denotes a G-invariant lattice such that (I) z (Ui) z <pa’l).

Proof. As <ml) is a G-invariant sublattice of <I>, there is a natural module
action of G on the difference lattice <I) <ml), making <U) <ml) a
G-submodule. We have

<I> <mI> ] q,(<l) <mI>) ] <q,l> <mI>

for the primary decomposition of <I) <mI). Let the decomposition of the
subgroup <U) <mI) be i <Vi) <ml), where <qil) = <Vi) = (mI).
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Then the (V) must be G-invariant. For G, acting as a group of automorphisms
of (U) (mI), must fix the primary components (Vi) (mI) (these being
characteristic subgroups). Setting U q- 1V, we conclude that

(U) q(U) where (I) = (Us) (p’I)

and (Ui) is G-invariant. Conversely, every such (U) is clearly an invariant
lattice lying over (mI).
We proceed to consider the quadratic forms associated with our representa-

tions.

LEMMA 5. The transformations x F(h)x, h G, are automorphisms of a
positive quadratic form xTHx (H symmetric), uniquely determined to within a
constant .factor.

Proof The real quadratic form h [F(h)x[ 2 xTH1x is clearly fixed by the
above transformations. As the sum of positive definite forms, it is itself positive
definite, hence nondegenerate. If x"H2x is a second real invariant quadratic
(possibly degenerate), then for all h G, we have

(Hi- H2)F(h) H- (F(h)r) 1H2

(F(h)’H1) 1H2

(H1F(h)- 1)- 1H2
F(h)(H-aH2).

Thus H2 is a constant multiple of H1, by Schur’s Lemma.

LEMMA 6. The quadratic invariant for *--U-1FU has matrix UrHU,
where H is the matrix of the form fixed by F.

The proof is an easy exercise. In particular, the quadratic forms associated
with Z-equivalent representations (rationally equivalent to F) are seen to be
equivalent forms.

Finally, we remark that the last two lemmas clearly continue to hold without
the assumption that F be integral. ("Automorphisms" must in this case be
interpreted as meaning "rational" automorphisms of the invariant form.)

3. The Representations Fn
Define the matrices Eij (or Ei’j) by E 6ik6jt for 1 <_ k, < n. Multi-

plication is given by EJESt 6jsE". This notation allows us to avoid space-
consuming matrix displays; however, the reader will find it worthwhile to
reconstruct these (say for n 3, 4). Undefined matrices like E’ are zero.



710 MAURICE CRAIG

We borrow from A. Young’s representation theory of the symmetric group,
the fact that Sn + has an absolutely irreducible Q-representation Pn of degree n,
given by

Pn(k k + 1)+In

l<_k<_n.

Specifically, Pn is the "rational seminormal" representation corresponding to
the partition (2, 1n-l) ofn + 1. (See [2, Theorem 5.6, p. 131], [6, Fundamental
Theorem, p. 38].) Recall that the adjacent transpositions (k k + 1) serve to
generate Sn+ 1. The multiplication of permutations is taken to be such that, for
example, (12)(23) (123).
Our starting point in the present section will be the Z-representation Fn

obtained from Pn as follows. Set

X =In + Ei’i+1.
i+l

We claim X-1PnX Fn, where (for < k _< n)

F,(k k + 1) + I Ek’k- + 2Ekk + Ek,k+ 1.

For clearly, det X 1, while an easy calculation gives

(Pn(k k + 1) + In)X X(Fn(k k + 1) + In),

the common value of the two sides being

k-1
k

(Ek- 1, k-

_
2Ek- 1, k + Ek- 1, k + 1) + (Ek, k-

__
2Ekk + Ek, k+ 1).

For a positive integer d, define the matrix Un(d) by

n-1

Un(d ) (dEu + (-1)"-i+iEin) + En".

Our aim in the present section is to establish:

THEOREM. The Fa, Un(d)-lFnUn(d)for din + 1 are Z-inequivalent Z-
representations of Sn + 1, and 9ire all classes of inteyral representations rationally
equivalent to F

The Z-representations Q-equivalent to Fn will be determined by finding the
Sn+l-invariant lattices (Un) lying over (mIn), where rn (n + 1)!/n
p] .Pr We first determine those lying over (pain), where p is any prime and
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a > 0. Since (U.) (U.W) for any unimodular W, we can suppose that
u > 0 for all i, and uj 0 for > j. Hence U. may be partitioned as

where U*_ has the same specifications.
Inspection of F, above, shows that for 1 <_ k < n,

F.(kk+ 1)=IF"-l(kk +1)0 f(kk+_l 1)1"
Here, f(k k + 1) equals e._ if k n 1, and is zero otherwise. Hence for
k < n, and for suitable vectors w(k k + 1),

V.(kk + 1)U. FF"-’(kk + 1)U.*_I w(kk + 1)l
0 Unn

Using the rule provided by the corollary to Lemma 2, we conclude:

LEMMA 7. The submatrix U*,_ has the property that (U*,_) is an S,-
invariant lattice over (pl,,_.
We immediately have:

COROLLARY. Un*_ is a multiple of some Un-. (Note that the matrices
U are constrained by (1), which U*_ will not in 9eneral satisfy.)

Clearly, F.(k k + 1)U. has columns in (U.) iff (F.(k k + 1) + I.)U. has.
The latter equals

E’’k-x + 2Ekt’ + Ek’’+) HijEij-- Z (llk-l,j + 2Ukj "4" tlk+l,j)Ekj. (2)
i,j j

Hence, for 1 _< j, k < n, we have

UK-1,j + 2Ukj + U+I,j 0 (mod u). (3)

LEMMA 8. U. has the property that u,j 0 (mod u..), 1 < i, j < n.

Proof Suppose inductively, that every U._ (normalized as described above)
has this property. By the preceding corollary, this implies with regard to U.
that

Uij 0 (mod Un_l,n_l) 1 <_ i,j <_ n 1.

Next, set j k 1 in (3). Recalling that Un is upper-triangular, we get
u_a,k_ 0 (rood u). Hence with U,n as the modulus of the remaining
congruences, all u 0. For j n, (3) therefore implies

uk_l,. + 2u. + uk+l,. 0.
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Letting k run through the values 2, 3,..., n in reverse order, we conclude that
all Uk, O.
The relations u,,_ 1,,,-1 O, Uk,, 0 thus established are sufficient to prove

the claim in the case n 2. This provides a base for the induction. The same
relations then combine with the inductive hypothesis to give the result for larger
values of n.

COROLLARY. The coefficient u.. is 1. (This follows from the lemma by (1).)

Example. It is now a simple matter to determine all possibilities for

The lattice U) is to contain the columns of the matrices given by (2), for
k 1, 2. The second columns of these matrices (from the terms for j 2) are

+ 0 21I2u120 11 and IUl2 _..
The requirement that (U2) should contain these is expressed by the conditions

2ulz + 1 =-O,

//12(/,/12 + 2) =- 0,

where congruences are modulo u. Multiplying the second congruence by 2
and using the first, we conclude that u12 -2. Substitution in the first then
gives 3 0. Hence (U2) (U(d)) for d 1 or 3, as stated in the introduc-
tion. (Taken in conjunction with Lemma 11 below, this also proves the theorem
in the case n 2.)

LEMMA 9. Let (U,) be invariant over (p"I,), and let G.C.D. (uii)= 1.
Then (U,) (Un(pb)) for some b (a >_ b >_ O) such that pb n + 1.

Proof The case n 2 having been worked as an example, assume the
statement correct with n 1 in place of n. Notice that when p does not divide
n + 1, pb n + 1 is possible only for b 0, in which case we have (U,(p))
(I.).

(i) Suppose p ’ n (= (n 1) + 1). Thus (U,*_I) (pI,_), where
a > b > 0. Congruences being modulo p, (3) gives

lgk-1,n "AI- 2Ukn q- Uk+ 1,n 0 for 1 _< k _< n 1.

These may be solved, to yield

u+ a,, (- 1)(k + 1)ul,. (4)

In particular, u,_ 1,, (- 1)"-1(n 1)ul, and

1 (- 1)"-lnul,, (5)
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SO

ux. (- 1)"- l(u._,,. + 1). (6)

Setting k n in (2) and selecting the term corresponding to j n, we see
(U.) must contain (u._ 1,. + 2)e.. This implies that uj.(u,,_ 1,,, + 2) _-- 0 for
j < n, and so ul,,(u._ 1,,, + 2) 0. Multiplying by n and using (5), we conclude
that u.-1,. -2. Therefore ul. --- (-1)", by (6), and (5) now gives n + 1 _=

0. That is, pb[ n + 1. Using (4), we then obtain v v._ (mod pb), where

is the last column of all the matrices U.(d).
(ii) Suppose pin. By the inductive hypothesis, (U.*_I) equals

pb-c(u._l(pC))

for some b, c where a > b >_ c > 0. As before (cf. (5)), we obtain

(- 1)"- lnul. 1 (mod pb- O.

(7)

This implies G.C.D. (n, pb-c) 1, which is impossible for b > c. So (U.*_ x)
(U.-I(p0). In particular, u.-1,.-1 1, hence we may assume u.-1,. 0.
Set k n in (2), and take the term given by j n 1. We see (U.) contains
e., which (as u.-l,. 0) requires that u._2,. 0 (modpC). Finally, set
k n 1 in (2) and take the term given byj n. We find that (U.) contains
(Hn_2, + 1)en_l, SO (bin_Z, "+ 1)Vn_ 2 -- 0 (modp0. Combined with the pre-
ceding congruence, this implies v.-2 0, hence 1 =-0 (modp0. In other
words, <U,,> <I,,>.

LEMMA 10. Let <U,,> be invariant over <mI,,>, where G.C.D. (uij) 1 and
m (n + 1)!In. Then <U,> <U,,(d)>for some d > 1 such that din + 1.

Proof By Lemma 4, we have

<U,,> q,<p’-c’U,(p[’)>

for someb,c,wherea > b > c > 0andp[’]n + 1. The sum of several
sublattices of (I,> is simply the sublattice generated by the union of their
generators, in this case the columns of the matrices qp’-c’U,(p[’).

biNow these have as their .jth columns, the vectors qpi e2 for j < n, and
qip’-’u for j n. (See (7).) We have

G.C.D. (q,p,-c,)= n pb,-c, t, say,
and

G.C.D. (q,pb,)= l-[ P’= td,

where d 1-[ P’. Hence reduction to a basis gives (U> (U(d)>. Then
G.C.D. (u2) 1, while d is a divisor of n + 1.
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COROLLARY. Every (Un(d)) for which din + 1 is indeed invariant over
(ml).

Proof. Requiring (U.(d)) to contain the columns of

(Ek.k-X + 2Ekk + Ek, k+l)U.(d) forl _< k < n- 2

imposes no restraints on d. For k n- 1 and k n, the matrices are
respectively

dE"- 1..- 2

__
2dE"- x,.- + (n + 1)E"- 1.. and dE"’ + (n + 1)E"".

LEMMA 11. Suppose, for divisors d1, d2 of n + 1, the representations Fa.,
F. are Z-equivalent. Then d d2.
Proof Applying Lemma 1, we obtain U.(dl) U.(dz)W, for a unimodular

matrix W. Now compare determinants.
This completes the proof of the theorem.

4. The formsAn
Let A. denote the symmetric, tri-diagonal matrix

(E
, - + 2Eu + E, 4-1).

It is easily verified that xr.,x gives the quadratic invariant for F,. (Alternatively,

is the quadratic for P,. The matrix A may then be computed as prescribed in

Lemma 6.) By Lemma 6, the form fixed under F has matrix U(d)rUn(d).
Dropping the scalar factor d, we get the (tri-diagonal) matrix

--d IX._1A, qeL nq/d

where q (n + 1)/d.
In order to recognize the above, set

q n--1

Xl (--1)i-lEii’ X2 In %" (q i)En-i’n, X3 E Ei’n-i + Enn"

Then x --, (X1X2X3)x is an equivalence transformation which carries the form
vTyd,.,-.. into

2 )Xn,X21 XlX2 "JI- X X2X3 -t- "’’’Jr- Xn_ XqX .ql_ 1/2q(1 d -1 2

provided d 4: 1. This, however, is just Aa in the notation of [3]. When d 1,
2 Changing thethe last two terms above must be replaced by + x,_ x. + x,.

sign of the last variable x, then produces the known form A. of [3].
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Appendix

The forms A.d were given a separate treatment by Barnes [1]. In order to
relate this to the present work, set X’ ._<j (-1)Eij. Thus

X’-x (- 1)i(EU + Ei’i+

and F, X’-aF,X’ is Z-equivalent to F,. Corresponding to the divisor d of
n + 1, the lattice (U,(d)> is found to be invariant, where

In fact, the Z-representations Q-equivalent to F are the

F," (X’-’U,(d)) -xF,(x’-U.(d)),
and when X’-U,(d) is computed, it is easily seen to be column-equivalent to
U,(d).
The matrix defining the quadratic invariant for F, is

X’r-.X I. + Eij.

That for U(d)-FU(d) is accordingly

U(d)T (I,,+ ijEij) U(d),
which may now be compared with the following definition (cf. [1, p. 69])"
A, is the form Y’.’ x + (Y’.’ xi)2 with lattice the integer sublattice given by
xa x, (mod t).

Appendix 2

S.+ has a second irreducible Q-representation of degree n, P.* say, which is
inequivalent to P.. This is the rational, seminormal representation associated
with (n, 1) (the partition conjugate to (2, 1"-a)) and given by

P.*(k k + 1)- I0 k+k 1Ek’k’ + ( ---2) Ek’’k’+l

+ Ek,+l,k, k Ek,+l,k,+l
k

where k’ n k + 1. Our purpose is to deduce the classes of Z-represen-
tations Q-equivalent to P.* from the corresponding results (obtained above)
for P..

Set

" n El, i+Y I,,
n-i+

F*(k k + 1) I, Ek’- ’ k’ 2E’k’ + Ek’+ , k’.
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Then

(P,*(k k + 1) L) (F*(k k + 1) L)Y, det 1,

so F* YP*Y-1 is a Z-representation Q-equivalent to P*.
Next, let stand for the first-degree representation affording the alternating

character" n(k k + 1) -1 for 1 < k < n. (In Young’s theory, n arises
as the rational, seminormal representation for the partition (1+ ).) We define
the representation F, by F, F* (R) , with (R) denoting the Kronecker
product of matrices. Note that b (R) b, is simply the trivial representation
(affording the principal character), whence also F,* F, (R) ,.
LEMMA 12. The mappings

X-1F,,X - X- F*X (R) , X-E,X - X-’F,X (R)

are mutually inverse, and give a one-to-one correspondence between the Z-
representations of S,+ rationally equivalent to F*, and those rationally equivalent
to F’..
Proof In fact, X- 1F.*X (R) . X- xFX.
It follows from the lemma that F.* has the same number of classes of Z-

representations as F,. But the same remains true with F. in place of F,. For,
setting ,_, ( 1)- (E’ "- + 2E’ + + E’ +y" 2)

we find that det Y" n + 1, and

’(r,(// + 1) + L) (E,(// + ) + I)Y’.
That is, F, is Q-equivalent to F,. It remains only to check that for each
d n + 1, an invariant lattice is determined by the columns of the matrix

V,(d) dE + (E"+ (n- + 1)EI).
2

The details are left to the reader.

The invariant quadratic for P* is

xr( n- i+
n-- i+2-

hence that for F* is x"H,x, where

HI y( n + 2E")+1-
( E"’- + E"’+)"

(Equivalently, one may check F*(k k + 1)H-IF,*(k k + 1)r= H-. Note
that all F,*(k k + 1) are selbinverse.) The invariant for Vn(d)-1F*V(d) is also
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most easily recognized from its reciprocal, which is equivalent to Ann The form
itself is therefore equivalent to A,q, where qd n + 1.
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