COMPACT EXTREMAL OPERATORS

BY
Julien Hennefeld

1. Introduction

For X a Banach space, let $\mathscr{B}(X)$ denote the space of bounded linear operators and $\mathscr{C}(X)$ the space of compact linear operators. The identity of a Banach algebra is always an extreme point of its unit ball. See [1]. As a simple consequence, any unitary element is also extreme. Kadison [4] has shown that for X Hilbert space, the extreme points of the unit ball of $\mathscr{B}(X)$ are precisely the semiunitary operators (partial isometries such that either $T T^{*}=I$ or $T^{*} T=I$).

For X an arbitrary infinite dimensional Banach space, there is no reason to suspect that $\mathscr{C}(X)$ has many, if indeed any, extreme points in its unit ball. In the first place, $\mathscr{C}(X)$ does not contain any unitary operators. Moreover, the Krein-Millman theorem cannot be readily invoked to conjure up extreme points, since there are no known examples where $\mathscr{C}(X)$ is a conjugate space, and many examples where $\mathscr{C}(X)$ is known not to be a conjugate space. See [2]. Finally, it is known that, for X either Hilbert space or $c_{0}, \mathscr{C}(X)$ has no extreme points. See [5] for Hilbert space.

We present two results in this paper. First, we show that the unit ball of $\mathscr{C}\left(l^{p}\right)$ is the norm closed convex hull of its extreme points for $1 \leq p<\infty$ and $p \neq 2$. We do so by constructing extreme points which, like unitary operators use all the coordinates. For the bizarre James' space we construct very different extremal operators, not at all analogous to unitary operators.

2. I^{p} spaces

Lemma 2.1. Let $\left\{e_{i}\right\}$ be the standard basis for l^{p} with $2<p<\infty$. Suppose $T e_{j}=\sum_{i=1}^{\infty} a_{i} e_{i}$, with each $a_{i} \neq 0$ and $\left\|T e_{j}\right\|=1$; and that $T e_{k}$ is nonzero for some $k \neq j$. Then $\|T\|>1$.

Proof. Without loss of generality, we can assume that each $a_{i}>0$, since $\|T\|=\|V T\|$ where $V e_{i}=\left(\operatorname{sign} a_{i}\right) e_{i}$. Suppose $T e_{k}=\sum b_{i} e_{i}$. Note that $\left\|e_{j} \pm \lambda e_{k}\right\|^{p}=1+|\lambda|^{p}$. We will show that for λ sufficiently small, either $\sum\left|a_{i}+\lambda b_{i}\right|^{p}$ or $\sum\left|a_{i}-\lambda b_{i}\right|^{p}$ is greater than $1+|\lambda|^{p}$.

Suppose $0<|\lambda b|<a$. By applying Taylor's theorem to

$$
f(\lambda)=|a+\lambda b|^{p}+|a-\lambda b|^{p}
$$

we have

$$
\begin{aligned}
&|a+\lambda b|^{p}+|a-\lambda b|^{p} \\
& \quad \geq 2 a^{p}+\lambda^{2} \frac{1}{2}(p(p-1)) b^{2}\left[|a+\theta \lambda b|^{p-2}+|a-\theta \lambda b|^{p-2}\right]
\end{aligned}
$$

Received July 10, 1975.
where $0<\theta<1$. Therefore

$$
|a+\lambda b|^{p}+|a-\lambda b|^{p} \geq 2 a^{p}+\lambda^{2} \frac{1}{2}(p(p-1)) a^{p-2}|b|^{2}
$$

Clearly,

$$
|a+\lambda b|^{p}+|a-\lambda b|^{p} \geq 2 a^{p} \quad \text { if } \lambda b=0 \text { or }|\lambda b|>a>0
$$

Thus,

$$
\sum\left(\left|a_{i}+\lambda b_{i}\right|^{p}+\left|a_{i}-\lambda b_{i}\right|^{p}\right)>2+\lambda^{2} \sum_{\left|\lambda b_{i}\right| \leq a_{i}} \frac{1}{2}(p(p-1)) a_{i}^{p-2} b_{i}^{2}
$$

As $\lambda \rightarrow 0$, the last sum (the coefficient of λ^{2}) increases monotonically. Thus λ can be chosen small enough so that

$$
\sum\left(\left|a_{i}+\lambda b_{i}\right|^{p}+\left|a_{i}-\lambda b_{i}\right|^{p}\right)>2\left(1+|\lambda|^{p}\right)
$$

Lemma 2.2. Let $\left\{e_{i}\right\}$ be the standard basis for l^{p} with $2<p<\infty$. Suppose $T e_{j}=\sum a_{i} e_{i}$ and $T e_{k}=\sum b_{i} e_{i}$, where $j \neq k$, and for some i both a_{i} and b_{i} are nonzero. Then $\|T\|>\left\|T e_{j}\right\|$.

Proof. The proof of Lemma 2.2 is similar to that of Lemma 2.1.
Definition. An operator S in $\mathscr{C}\left(l^{p}\right)$ is said to be concentrated on $\left[e_{1}, \ldots, e_{n}\right]$ if range $S \subseteq\left[e_{1}, \ldots, e_{n}\right]$ and kernel $S \supseteq\left[e_{n+1}, \ldots\right]$.

Proposition 2.3. For $2<p<\infty$, the unit ball of $\mathscr{C}\left(l^{p}\right)$ is the norm closed convex hull of its extreme points.

Proof. For any positive integer n, let S be any operator in $\mathscr{C}\left(1^{p}\right)$ which is concentrated on $\left[e_{1}, \ldots, e_{n}\right]$ and which is extremal in the unit ball of $\mathscr{B}\left(\left[e_{1}, \ldots, e_{n}\right]\right)$. We will show that for each such S there exists an operator $V+T$ such that both $S+V+T$ and $S-V-T$ are extremal in the unit ball of $\mathscr{C}\left(l^{p}\right)$. Then, since the unit ball of $\mathscr{B}\left(\left[e_{1}, \ldots, e_{n}\right]\right)$ is the closed convex hull of its extreme points, and since the set of all operators which are concentrated on some $\left[e_{1}, \ldots, e_{n}\right]$ are dense in $\mathscr{C}\left(1^{p}\right)$, it follows that the unit ball of $\mathscr{C}\left(1^{p}\right)$ is the norm closed convex hull of its extreme points.

For S as described above, we now give the construction of V. Consider
$\left\{W: W e_{n+1} \in\left[e_{1}, \ldots, e_{n}\right], W e_{i}=0\right.$ for all other i, and $\left.\|S+W\|=1\right\}$.
Let V_{1} be an operator of maximum norm from that set of W. Suppose V_{1}, \ldots, V_{k} have been defined, where $k<n$. Consider
$\left\{W: W e_{n+k+1} \in\left[e_{1}, \ldots, e_{n}\right], W e_{i}=0\right.$ for all other i,

$$
\text { and } \left.\left\|S+V_{1}+\cdots+V_{k}+W\right\|=1\right\}
$$

Let V_{k+1} be an operator of maximum norm from that set of W. This defines V_{1}, \ldots, V_{n}. Let $V=V_{1}+\cdots+V_{n}$.

Note that the V_{j} must map onto disjoint coordinates. That is, for $j<k$, if $V_{j} e_{n+j}$ has nonzero i th coordinate, then $V_{k} e_{n+k}$ must have i th coordinate zero.

Suppose the contrary. Then by Lemma $2.2,\left\|V_{j}+V_{k}\right\|>\left\|V_{j}\right\|$, and there would exist an element z of unit norm such that $\left\|\left(V_{j}+V_{k}\right) z\right\|>\left\|V_{j}\right\|$. Then W, defined by $W e_{n+j}=\left(V_{j}+V_{k}\right) z$ and $W e_{m}=0$ for all other m, would contradict the maximality property of V_{j}.

We claim that $S+V$ is extremal as an element of the unit ball of

$$
\mathscr{B}\left(l^{p},\left[e_{1}, \ldots, e_{n}\right]\right) .
$$

Suppose $S+V+A$ and $S+V-A$ both have norm one. Consider the following three cases.

For $1 \leq j \leq n, A e_{j}=0$, since S was extremal in the unit ball of

$$
\mathscr{B}\left(\left[e_{1}, \ldots, e_{n}\right]\right)
$$

For $1 \leq j \leq n, A e_{n+j}=0$, by a simple induction argument using the fact that l^{p} is strictly convex and the maximality property of each V_{j}.

For $m>2 n, A e_{m}=0$. To see this, consider these two cases: If $V_{n}=0$, then $A e_{m}$ nonzero would contradict the maximality property of V_{n}. If V_{1}, \ldots, V_{n} are all nonzero, and $A e_{m} \neq 0$, then, for some i and $j, A e_{m}$ and $V_{j} e_{n+j}$ would both have nonzero i th coordinate, and this too would contradict the maximality of V_{j}. Thus, we have finished the proof that $S+V$ is extreme in the unit ball of $\mathscr{B}\left(1^{p},\left[e_{1}, \ldots, e_{n}\right]\right)$.

Next, define the operator T by $T e_{2 n+1}=\sum_{i=n+1}^{\infty} a_{i} e_{i}$, with each $a_{i} \neq 0$ and $\left\|T e_{2 n+1}\right\|=1$, and $T e_{j}=0$ all other j.

We claim that $S+V+T$ is extremal in the unit ball of $\mathscr{C}\left(l^{p}\right)$. Suppose that $S+V+T \pm B$ both have norm 1. By the strict convexity of $l^{p}, B e_{2 n+1}=0$. For $m \neq 2 n+1, B e_{m}$ cannot have nonzero i th coordinate for $1 \leq i \leq n$, by the extremality of $S+V$, and for $i>n$, by Lemma 2.2 applied to $T \pm B$. Thus, $B=0$, and $S+V+T$ is extreme. Of course, $S-V-T$ is also extreme, and this concludes the proof of the proposition.

As we have already mentioned, the unit ball of $\mathscr{C}\left(1^{2}\right)$ has no extreme points. The previous proposition, however, can be extended to $\mathscr{C}\left(1^{p}\right)$, for $1<p<2$, by using the fact that $\mathscr{C}\left(1^{p}\right)$ is isometrically isomorphic to $\mathscr{C}\left(1^{q}\right)$, where $1 / p+$ $1 / q=2$; also it can easily be proved directly for $p=1$. Thus we have:

Theorem 2.4. For $1 \leq p<\infty$ and $p \neq 2$, the unit ball of $\mathscr{C}\left(l^{p}\right)$ is the norm closed convex hull of its extreme points.

Remark. The extremal operators that we constructed in proving Proposition 2.3 are analogous to unitary operators in that they map onto all coordinates of l^{p}. That is, the matrix for such an operator has at least one nonzero entry in each row. The adjoint of such an operator, which would be extreme in $\left(l^{p}\right)^{*}$, has at least one nonzero entry in each column. In the next section, we give compact extremal operators which are not analogous to unitary operators in this sense.

Proposition 2.5. Let T be an isometry from l^{p} to l^{p}, for $2<p<\infty$. Then for each j, there exists $\sigma_{j} \subset N$ such that $T e_{j}=\sum_{i \in \sigma_{j}} \lambda_{i} e_{i}$ and $\sigma_{j} \cap \sigma_{k}=\emptyset$ when $k \neq j$.

Proof. T must achieve its norm on each e_{j}, since T is an isometry. By a proof similar to that of Lemma 2.1, if for $j \neq k, T e_{j}$ and $T e_{k}$ both had a nonzero coefficient for some e_{i}, then the norm of T would be greater than one.

3. A space of James

Let X be the normed space of all those sequences x in R^{ω} such that (1) $\lim x(i)=0$ and (2) $\|x\|$ is finite where

$$
\|x\|=\sup \left\{\left(x\left(p_{n}\right)-x\left(p_{1}\right)\right)^{2}+\sum_{1}^{n-1}\left(x\left(p_{j+1}\right)-x\left(p_{j}\right)\right)^{2}\right.
$$

such that $\left\{p_{j}\right\}$ is a finite increasing subset of the positive integers $\}$.
James has shown [3] that X is a Banach space and the standard vectors $\left\{e_{i}\right\}$ form a monotone, shrinking basis. The following three facts are easily verified:
(i) For each $x \in X$ and $k \in \omega,\|x\|^{2} \geq 2|x(k)|^{2}$,
(ii) Any element in X with n consecutive ones (where $n \geq 1$), and all other coordinates zero, has norm $\sqrt{2}$.
(iii) Any $x \in X$ with $x(j)=1$ and $x(k)$ negative, for some j and k, has norm greater than $\sqrt{2}$.

Proposition 3.1. Suppose E sends e_{j} to $\pm e_{k}$ and all other basis vectors to 0 . Then E is extremal in the unit ball of \mathscr{B}.

Proof. We will give the proof for E which sends e_{j} to e_{k}. Clearly, E has norm 1. Suppose there exists an operator A such that both $E+A$ and $E-A$ have norm 1. Note that

$$
(E \pm A)\left(\sum_{p}^{q} e_{i}\right)= \pm A\left(\sum_{p}^{q} e_{i}\right)+e_{k} \quad \text { if } p \leq j \leq q
$$

Then, if $p \leq j \leq q$ we have $\left\|\sum_{p}^{q} e_{i}\right\|=\sqrt{2}$ and also $\left\| \pm A\left(\sum_{p}^{q} e_{i}\right)+e_{k}\right\|>\sqrt{2}$ for at least one choice of sign if $A\left(\sum_{p}^{q} e_{i}\right) \neq 0$. Hence $A\left(\sum_{p}^{q} e_{i}\right)=0$ whenever $p \leq j \leq q$. This implies that $A=0$ and thus E is extreme.

Question 1. For a Banach space X, what is a sufficient condition for the unit ball of $\mathscr{C}(X)$ to be the norm closed convex hull of its extreme points?

Question 2. Which is more typical with regard to extreme points, the behavior of $\mathscr{C}\left(c_{0}\right)$ and $\mathscr{C}\left(l^{2}\right)$, or $\mathscr{C}\left(l^{p}\right)$ with $p \neq 2$?

Question 3. Are there any X for which $\mathscr{C}(X)$ is a conjugate space? (It is a theorem of Bessaga and Pelczynski that the unit ball of any separable conjugate space is the norm closed convex hull of its extreme points.)

Bibliography

1. H. F. Bohnenblust and S. Karlin, Geometrical properties of the unit sphere of Banach algebras, Ann. of Math., vol. 62 (1955), pp. 217-229.
2. J. Hennefeld, The non conjugacy of certain algebras of operators, Pacific J. Math., vol. 43 (1972), pp. 111-113.
3. R. C. James, A non reflexive Banach space isometric with its second conjugate, Proc. Nat. Acad. Sci. U.S.A., vol. 37 (1951), pp. 174-177.
4. R. V. Kadison, Isometries of operator algebras, Ann. of Math. (2), vol. 54 (1951), pp. 325338.
5. R. Schatten, Norm ideals of completely continuous operators, Springer Verlag, New York, 1960.
6. A. Wilansky, Functional analysis, Blaisdell, Waltham, Mass., 1964.

Brooklyn College of the City University of New York
 Brooklyn, New York

