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O. Introduction

Let M be a compact Riemann surface of genus g > 2. Then M F\H
where H is the upper half plane, and F is a discrete subgroup of SL(2, R),
acting freely on H via fractional linear transformations. Let T be a finite
dimensional unitary representation of F with character Z. In a well-known
paper [21], A. Selberg showed how we may attach a zeta function Zv(s, Z) (of
a complex variable s) to this data, and showed how the location and the orders
of the zeros of Zr give us information about the spectrum ofM on the one hand
and about the topology ofM (via its Euler characteristic) on the other hand.
Now let G be a connected semisimple Lie group with finite center, K a max-

imal compact subgroup, and H the symmetric space G/K; We endow H with a
G-invariant metric. Let F be a discrete torsion-free subgroup of G such that
F\G is compact. Then the manifold F\H(F\G/K) which we will call M, is a
compact Riemannian manifold, whose simply connected covering manifold is
H, and we have F nl(M). M is a compact space form of H.
We assume throughout this paper that rank (G/K) 1.
Let T be a finite-dimensional unitary representation of F, and. let Z be its

character. The object of this paper is to study a certain zeta function Zr(s, Z)
attached to the data (G, K, F, Z). We shall see that this zeta function has all of
the properties possessed by Selberg’s zeta function. The following properties
will be discovered"

(1) Zr is holomorphic in a half plane Re s > 2po where Po is a positive real
number depending only on (G, K).

(2) Zr has a meromorphic continuation to the whole complex plane.
(3) Zr satisfies the functional equation

Zr(2po s, Z) exp (fez(l) vol (F\G) c(it)-lc(-it)- dt) Zr(s, Z).

Here, vol (F\G) is the volume of F\G in a suitable normalization, : is a positive
integer depending only On (G, K), and c(.) is Harish-Chandra’s c-function
which appears in the Plancherel measure for G/K [ 10-]. In our case, this function
is essentially a function of one complex variable.
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(4) Zr(s, 7.) always has certain zeroes that we call spectral zeroes. These are
located at certain points sf, s-, j > O, with s- 2po s]. When sf O,
the order of the zero at s equals n where is the integer mentioned above,
and nj is a positive integer depending on 7.. These zeroes are called spectral
because their location and order gives us spectral information, in the following
sense" Let U be the representation of G induced from the representation T of F.
Then certain spherical representations of G, say {U,j >_ 0} will occur as
summands in U. Let {vj, j > 0} be the parameters attached to {Uj} in the
usual way (cf. Section below). We shall see that the numbers s (or s}-)
determine the parameters {vj, j > 0}. Moreover, with at most one exception,
the integer n equals the multiplicity with which U occurs in U.

(5) Apart from the spectral zeroes of Zr, there may exist a series of "topo-
logical" zeroes or poles of Zr. These exist only when dim (G]K) is even, or what
is the same, when the Euler-Poincar6 characteristic ofM is nonzero. We can be
rather precise about their location. Indeed, let {rk, k > 0} be the poles of the
function r --. c(r)-lc(-r) -x in the upper half-plane Im r > 0. One sees that
there is always a pole at ipo, and we arrange matters so that ro ipo. The
topological zeroes or poles of Zr, when they exist, occur at the points Po / irk,
k > 1. The numbers Po / irk, k > are all negative integers, and for a given
G, they are either all poles or all zeroes of Zv. Whether we have zeroes or poles
depends on the sign of the numbers idk, k > O, where dk is the residue of
c(r)-lc(-r)- at rk. The numbers idk are all real, nonzero, and have the same
sign. If this sign is positive, then Zr has poles at the points Po + irk, k > 1.
Zr has zeroes at Po + irk, k > in the opposite case. In any case, the order
of the zero or pole is always a multiple of the Euler-Poincare characteristic E
of M F\G/K. This order is of the form ]Z(1)ekE] where ek is an explicitly
computable integer, depending on dR, to, etc. ekE and idg have the same sign.
Computations show that poles occur precisely when dim (G/K) =_ 0 mod 4.
When G SOo(2n / l, 1), the function r - c(r)- c(- r)- is a polynomial;

In these cases, dim (G/K) 2n + so that E 0. The function Zr has only
spectral zeroes in this case, and its functional equation simplifies.

(5 bis) The point s 0 is somewhat special in that the behavior of Zr at
this point has both spectral and topological aspects. Roughly speaking, the
"spectral part" of Zr contributes a zero of order rao where ao is the multiplicity
of the trivial representation of F in the representation T; the "topological" part
of Zr contributes a zero at s 0 if 7.(1)eoE is negative, of order 17.(l)eoEI, and
a pole of order 7.(1)eoE at s 0 if 7.(1)eoE is positive. Here as above, eo is
explicitly computable in terms of do, to, where do is the residue of c(r)- c(- r)-
at the pole ro ipo. The upshot is that Zr has a pole (resp. zero) of order
]cao 7.(1)eoE] at s 0, if Cao 7.(1)eoE is negative (resp. positive).

(6) The zeroes (poles) described above are the only zeroes (poles) of Zr.
When the poles do not exist, Zr is an entire function, of finite order. The order
can be related to the structure of (G, K). It equals dim (G/K).

(7) The spectral zeroes {s, s-f;j > 0} lie on the line Re s Po except for



ZETA FUNCTIONS OF SELBERG’S TYPE 3

a finite number of indices j. Thus Zr satisfies a sort of modified Riemann
hypothesis. The representations Uj which correspond to the s] lying on
Re s Po are all in the spherical principal series. Those sj, sj- which are off
the line Re s Po are all real, and lie in the interval [0, 2po], symmetrically
about Po. The corresponding representations Uj are all in the spherical com-
plementary series. One can show that for certain G and F, these zeroes actually
occur, and that their total number can be made large as we please, by choosing
G, F, 7. properly. For a fixed G, F, the number of such zeroes is no bigger than a
multiple of 7.(1) vol (F\G).

(8) The logarithmic derivative of Zr in the half plane Re s > 2po (where
Zr is zero-free) is related via an integral transform to a sort of theta function
O(t), > 0. This theta function arises from the fundamental solution of the
heat equation on M. Thus the relation between Zr and 0 is analogous to the
relation between the classical (-function of Riemann and the Jacobi theta
function (cf. [5]).

(9) Zr has an infinite product representation in the half plane Re s > 2po.
The product runs over the conjugacy classes of primitive elements in F, and over
a certain lattice of linear forms on a Cartan subalgebra of the Lie algebra of G.
When G SL(2, R) the infinite product reduces to the one given by Selberg
(cf. the end of Section 2 below).

(10) Zr has natural properties with respect to the character 7.. Thus, one
has

Zr.(S, 7. + )() Zr(s, 7.)Zr(s, 7.’) and Zr(s,

where 7.)( m7.i. We also have Zr(s, )*) Zr(s, 7.) where 7.* is the contra-
gredient of 7.. Of course, one may phrase these properties in terms of direct
sums or tensor products if one wishes.
These properties of Zr are established in Section 2, after preliminaries in

Section 1. Section 3 is an appendix, devoted to an auxiliary computation.
A few remarks about our results are in order. Our method uses the trace

formula of Selberg in one of its simplest versions, and generalizes Selberg’s
method for SL(2, R). Selberg defined his zeta function for SL(2, R) and des-
cribed its properties in 1-21], without any proofs. Selberg’s method for SL(2, R)
was expounded by Kuga in [15], a paper based on Selberg’s lectures given in the
late 1950’s in Princeton. In his paper, Selberg mentioned that the trace formula
can be established satisfactorily for the hyperbolic spaces of higher dimension,
but gave no details about it. Thus, the present paper may be regarded as an
attempt to understand the situation for R-rank one groups.
The result (7) described above implies that aribtrarily large numbers of non-

tempered spherical representations can occur in the representation U, for suit-
able G, F, 7.. That a nontempered representation can occur in L2(G/F) has been
observed by Wallach; cf. [27]. However, that representation is’nonspherical.
Besides, that method does not lead immediately to the assertion that arbitrarily
large numbers of such representations can occur.
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Unfortunately, I do not know what arithmetical significance Zr might have,
either locally or globally, even in the case of SL(2). In particular, I do not know
if these Zr can be related in any way to the zeta and L-functions of Godement,
Jacquet, and Langlands; cf. [9], [13].

I would like to thank Polly Hemstead for carefully reading over a first draft
of this paper, and pointing out some slips.

1. Preliminaries

Let G be a connected noncompact semisimple Lie group with finite center,
K a maximal compact subgroup of G. Let 9, tt be their respective Lie algebras,
and let .q -t- p be a Cartan decomposition of with respect to the involution
0 determined by f. For any X g, (.o, .) denotes the Cartan-Killing form.
Put IX’] 2 -(X’, OX>; then ].] is a norm on 9. Let ap be a maximal abelian
subspace of p. Throughout this paper we assume that dim % 1. Extend % to
a maximal abelian 0-stable subalgebra a of 9, so that a a + %, with
a acf, % atop. Then a is a Cartan subalgebra of 9. Denote by
9c, ac the complexifications of g, a, and let (9c, ac) denote the set of roots of
(gc, ac). Order the dual spaces of % and % + ia compatibly, as usual (of.
[12]), and let + be the set of positive roots under this order. Let

P+ { (I) + 0 on %), P_ { +; 0 on %).

Put p -} Y’.,/ . For /, let X be a root vector belonging to , and
put nc ,/ CX. Then if n nc c , we have the Iwasawa decomposi-
tions + % + n, G KAy,N, where of course A exp %, N exp n.
We will denote by W the Weyl group of (G, A).
We denote by A the real dual of %, by Ac its complexification A + iA. For

2A, we can write 2 Re2 + ilmA, withReA, ImAinA.
Denote by C(K\G/K) the space of differentiable spherical functions (i.e.,

those that satisfy f(klxk2)= f(x), x G, kl, k2 K) and by C(K\G/K),
those elements of C(K\G]K) which have compact support: The spaces
LI(K\G/K), L2(K\G/K) have the obvious meaning. For any v Ac, we denote
by bv the elementary spherical function corresponding to v (of. [12]). Let E(x)
denote the elementary spherical function bo, and let a(x) [X[, where x
k exp X, X p is the polar decomposition of x G. The Harish-Chandra-
Schwartz space rg(G) is now defined as in [11]. We have

C(G) f C(G); sup E(x)-’(1 -I- a(x))"lDf(x)[ < oo

(1.1) ( a

for all r >_ O, all D
where D denotes a left or right invariant differential operator on G.
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We similarly define

(1.2) cgl(G) .f C(G); sup -(x)-2(1 + tr(x))rlDf(x)l < oo for all r, D.
Then cgl(G) c (G) LE(G), and cg(G) c Lx(G).
The subspaces of spherical functions in Cg(G), cg(G) will be denoted by

Cg(K\G/K) and cg (K\G/K) respectively.
Let E be the set of restrictions to % of elements of P+. Since dim % 1,

one knows that we can find fl E such that 2fl is the only other possible element
in E. Let p be the number of roots in P+ whose restriction to % is fl, and let
q be the number of the remaining elements of P+. We fix the element Ho %
by the property fl(Ho) 1. Then one knows that

(Ho, Ho) 2p + 8q, p(Ho) 1/2(p + 2q),

Ha (2p + 8q)-*Ho and (p,p) 1/4(p +2q)2(2p +8q)-*.
Throughout this paper, we will denote by Po the number p(Ho).
For any h A, we put u(h) [3 (log h). Then u u(h) may be regarded as

a parameter on the group A. By this paraometrization Ao can be identified with
R. Let du be the standard Lebesgue measure on R. Via the identification of

A with R, we get a Haar measure dh on Av which we fix from now on.
For any v A, we put r r(v) v(Ho). Then r is a parameter on A, and

maps A isomorphically onto R. In these parameters, v (log h) u(h)r(v) for
v e A, h Ao. Let dr be the Lebesgue measure on R. Then dr/27r is the measure
on R dual to the measure du on R (in the sense of Fourier transforms). We
denote by dv the measure on A that we obtain from dr/27r. Then dh, dv are dual
in the sense of Fourier transforms.

Let dk be the normalized Haar measure on K. On N we fix a Haar measure
normalized by the following condition" Let O(n-x) for n . N, and for any
x G, let H(x) % be defined by x k exp H(x)n, k K, n N. The measure
dn is to satisfy the condition j’n exp (-2p(H()))dn 1. (This choice of
measure on N is motivated by our need to use the Plancherel theorem on G]K
repeatedly. It makes the Plancherel measure less cumbersome to write.) Having
fixed the above measures on K, A, N, we fix the Haar measure dx on G given by

dx exp 2p (log h) dk dh dn.

These normalizations will be adhered to throughout in whatfollows.
The Plancherel theorem of Harish-Chandra, for spherical functions, now

takes the following form" Forf Cg(K\G]K), we have

(1.3) f(v) .fr. f(x)dpv(x) dx,

(1.4) f(x) [W] -a f f(v)dpv(x-X)c(v)-ac(- v)- dv
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where c(.) is the c-function of Harish-Chandra.2 In our case c(.) is given by

(1.5) c(v)_
F((p + q)/2)F(ir + p/E)F(ir/2 + p/4 + q/2)

F(p + q)F(ir)F(ir/2 + p/4)

where r r(v) v(Ho), F(’) being the classical gamma function.
It will be convenient to write c(r)-1 for the function of r on the right side.

This double use of c will not cause any confusion. (1.5) implies that r c(r)-
is a tempered function.
The Abel transform Fj. off (K\G/K) is

(1.6) fs(h) exp p (log h) .In f(hn) dn, h Av.

It is related to f by

(1.7) f(v) F(v) I. fs(h) exp iv (log h) dh.

Thus F is the ordinary Fourier transform of F.. By Fourier inversion we
have

(1.8) F(h) ;A f(v) exp (-- iv (log h)) dv, h Av.

For a givenf (K\G/K), the function F/. induces a function on R via the
parametrization u, and we call this function F; Its Euclidean Fourier transform
will be called F*. Thus F(u) F(h), where u u(h), and F*(r) F(v)
f(v) where r r(v).

The formulas above now become

(1.9) f(v) t*(r) .f

_
f(u) exp iru du, r r(v),

(1.10) Fl,(h) F(u) (1/2n)?oo F*(r) exp (- iru) dr, u u(h).

The inversion formula (1.4) gives, for x 1,

/(1) ([W]-l/27r) F*(r)c(r)-Ic(-r)-1 dr

(1.11)
(1/4n) f_ooF*(r)c(r)-c(-r)-idr,

which will be used incessantly below.
Now let F be a discrete subgroup of G such that F\G is compact. We assume

that F has no elements of finite order. Then every element v e F is conjugate in

2 14z] stands for the order of the Weyl group IF’.



ZETA FUNCTIONS OF SELBERG’S ’l ,.- 7

G to an element of the Cartan subgroup A centralizer of a in G. A AA,;
choose an element h(V) of A to which is conjugate, and let h(v) h(v)hp(y).
We then define u fl (log hp(v)). Thus u u(h,(y)). Though u will depend
on the choice of h(v), its absolute value lug[ depends only on V. (lull is essentially
the length of the shortest geodesic in the free homotopy class associated to on
the manifold F\G/K; cf. [7].)
An element V F, -# is called primitive if it cannot be expressed as 6", for

some n > 1, 6 e F. It can be proved [7] that every V -# is equal to a positive
power of a unique primitive element 6. The integer j(v) is defined by 6j().
Our chief tool is Selberg’s trace formula. Let Tbe a finite dimensional unitary

representation of F, with character Z. Denote by U the unitary representation
of G induced by T. U is a discrete direct sum of irreducible unitary representa-
tions of G, occurring with finite multiplicities. Let { Uj, j > 0} be the spherical
representations that occur in U, and let nj(z) be their multiplicities. For tech-
nical reasons, we always let Uo be the trivial representation of G. Its multiplicity
no(X) is equal to ao, where ao is the multiplicity of the trivial representation of F
in T. Thus no(X) may be zero. We shall nevertheless include Uo in the collection
{Uj}. Each Uj is completely determined by its elementary spherical function,
say bvj, with vj AC. 3 Since Uj is unitary, vj is positive definite, and one knows,
of. [6], that (vj, vj) + (p, p) > 0. From this it follows that vj is either purely
real, i.e., vj A or purely imaginary, i.e., vj iA. We choose and fix vj so that
when it is real, we have vj(Ho) >_ O, and when it is purely imaginary, we have
ivj(Ho) < 0. Since Uo is the trivial representation, we have that Vo ip.
The notion of an admissible functionfis defined as usual, cf. [8], and one has

the trace formula

(1.12)

jO

fr\G ’’’FZ(y)f(x-lyx) dSc

x(l) vol (r’\G)f(m) + X Z(Y)IuIJ(Y)-C(h(y))FAh(Y))
eCr-{l}

which was derived in [7]. Here vol (r’\G) stands for the volume of F\G in the in-
variant measure d which arises on V\G when we equip F with counting measure,
and C(h) is a positive function depending only on the structure of G. The num-
ber C(h())Fy(h,()) depends only on the G-conjugacy class of y. Cr is a set of
representatives in F for the F-Conjugacy class of elements of F.4 C(h()) is
given by

(1.13) C(h()) e(h(?))p(hp()) II (1 ,(h(/))-) -a
aP+

a We then say that v occurs in the spectrum.
’ Since F has no nontrivial elements of finite order, it follows that no nontrivial element of

F can be conjugate to its own inverse. Hence we can choose Cr in such a way that it is stable
under , ,-a.
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Here, for any , stands for the character of A AAp defined by (h)
exp (log h), and e(h) is, for h e A, equal to the sign of I-[o,/ (1 (h)- 1),, being the set of real roots of (gc, ac), i.e., those that are real on a. As seen
in [7], C(h) is a positive function on A.
The actual value of C(h(v)) plays no role in the sequel:
One concludes from this formula, as in [7], that the numbers

{lull; Y e Cr {1}}
are bounded away from zero.

Because of [8], every fcgl(K\G/K) is admissible, and can be used in the
trace formula. Both sides then converge absolutely.
We shall write rf(z)= vj(Ho), and rf(g)= -vj(Ho) and put sf()=

Po + irf, sf(7.) Po + irf, for j > 0. Though all these quantities depend
on Z, when there is no risk of confusion we shall omit explicit mention of ;t, and
write nj, sf sf etc. Now

(vi, vi) / (p, p)- IHol-2((r+)2 / p)
as is easily seen, so that (vj, vj) + (p, p) _> 0 implies (rf)2 + po2 >_ 0. Thus
(rf)2 is real and lies in [-po2, c). Note that either (i) Re s; Po or (ii)
Im s; 0 and s lies in the interval [-0, Po). (Note that s-= 0.)

Clearly the numbers sf (or sf) determine the numbers vj(Ho), and hence the
linear forms vj. These in turn determine the spherical representation Uj. We
know that when vj is real, i.e., vj e A, Uj is in the spherical principal series.
This corresponds to Re sf Po. On the other hand when vj e iA and vj - 0,
Uj is in the spherical complementary series. This corresponds to sf in the
interval [-0, Po). In terms of the parameters r, u, and the functions F, F* defined
above, (1.9), (1.10), the trace formula takes the form

E njF*(r;)
jo

(1.14)
z(1) vo (v\(0f(1) + g()iulj()-lC(h())F(u)

eCr-{1}

which will be the form most often used below.
It will be useful to have a simple condition on F or F* which will imply that

f cgI(K\G/K). This can be easily done, by using the results of [24] (actually
since rank (G/K)= 1, one could proceed directly as well). Suppose F*(z)
satisfies (i) F*(z) F*(-z), (ii) for some e > 0, F* is holomorphic in the
strip (z C, ]Im zl < Po / e} and (iii) F* is a rapidly decreasing function of
Re z when z is on the boundary of this strip; then one can show that there exists
fcg(K\G/K) such that f(v) F*(r); r r(v) v(Ho). These conditions
are easily translated in terms ofF(u). If F(u) is C oo, F(- u) F(u) and for some
e>O,

sup (exp (Po + e)lul)lF(u)l

then F* will satisfy the above conditions.
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The following propositions will be used below.

PROPOSITION 1.1 (Cf. [8]). There exists an integer d > 0 such that

nj(1 + (vj, vj) + (p, p))-a < oz.
jo

In particular, this implies the convergence of

E + r + p o)
j>o

It follows that the numbers r] (X)2 do not have a finite point of accumulation.
Thus r-(Z)2 can lie in [-p, 0) for only finitely many indices j. We shall
assume the indices j to be chosen so, that r]. (;02 is an increasing sequence.

PROPOSITION 1.2 (Cf. [-4], [6]). For any x > 0 let N(x) be defined by

(1.15) N(x) n.
{1; (rj )2 : x}

Then as x oz we have N(x) Co vol (F\G)x", where n dim G/K, and Co
is a constant depending only on G.

Note that (v, v) + (p, p) is just the negative of the eigenvalue of the casi-
mir operator of G operating on bvj. Thus the numbers -(p + r(;t)2) can be
interpreted as the eigenvalues of the Laplace Beltrami operator of G]K (in a
suitable metric). IfV is this operator, one can interpret the numbers nj(z) as the
multiplicity of the eigenvalue -(po2 + r] (Z)2) when V operates on the smooth
sections of the vector bundle Ex whose base is F\G/K and the fibers are Cm,
where rn degree (T), and F operates on the fibers via the representation T
in the usual way.

Finally, we note that when T is the trivial one-dimensional representation of
F, which (as well as its character) we denote by , then the trivial representation
of G occurs in U with multiplicity one. The trivial representation of G corre-
sponds to the element ip iA. Thus in this case the first term on the left side of
(1.14) is precisely F*(ipo), which will be used below.

2. The zeta function

With T, Z fixed as in Section above, we shall define Zr(s, ;t) by writing down
its logarithmic derivative with respect to s. This logarithmic derivative, which
will be called r(S, Z), will be written down in the form of a series convergent
in Re s > 2po. The series comes from the application of the trace formula to
a suitable admissible function. We will first define r and study it.

Let eo > 0 be a fixed real number and let g be a real-valued function in
C(R) such that: (i) g is even, (ii) g vanishes in some neighborhood of zero,
(iii) g is constant, equal to c, say, in {x R; [x[ > Co} and (iv) 0 < g < c.
Such functions surely exist. The constant c will be chosen conveniently later on.
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Now let s be a complex variable and define

(2.1) g(s, u) g(lul) exp ((po s)lul), u R.

Then, for fixed s, g(s, u) is an even smooth function of u and g(s, u)=
c exp (Po s)lul if [u[ >_
For hp Ap, let u(ho) fl (log h). We regard u u(h,) as a parameter on

A, and thus functions on R can be regarded as functions on Ap. Let Fs be
defined on A by Fs(ho) g(s, u(h)). Then Fs is a C, W-invariant function
on Ao, and outside a compact set, we have F(hp) exp (Po s)[fl (log ho)[.
It follows from the remarks in Section 1, (cf. [24]) that Fs is the Abel transform
of a function f in cgl(K\G/K), provided that Re s > 2po. Thus

(2.2) F(h) F(h) g(s, u(h)) withf cg(K\G/K)

Sincef is admissible, we have the trace formula

E n L(v )
jo

(2.3) ;(1)f(1) vol (riG) + ]
,eCr-(l}

7.(1)f(1) vol (F\G) +

Z(v)lulj (V)- C(h(y))Fx(h(v))

7.(7)[ulj(y)-aC(h(y))O(s, u),

where both sides converge absolutely for Re s > 2po.
The numbers {[u[ / Cr { } } are bounded away from zero; cf. Section 1.

If we choose and fix eo so small that it is smaller than the smallest of these
numbers, we have g(s, u) c exp (Po s)[u]. Hence we get the following
proposition.

PROPOSITION 2.1. Let T be a finite-dimensional unitary representation of F,
with character 7.. Then the series

(2.4) gr(S, Z, g) g(eo) ;(’)lulj()- C(h()) exp (Po s)lul
,Cr-{1}

converyes absolutely, uniformly ith respect to for each s in the half-plane
Rc s > 2/)o. The converTence is uniform with respect to s in each half-plane
Res > 2po +,,where > O.

The uniformity statement with respect to 7. comes from observing that
17.()1 < 7.(1) degree (T), and that C(h()) > 0 for every . Thus the series
(2.4) is dominated by a multiple of qr (Re s, ,, 7) where is the trivial character
ofF.

Observe that, because of (2.3) we have

qr(S, Z, 9) njf(v) Z(1)f(1) vol (V\G);
jo

We will show next that each term on the right has a meromorphic continuation
to the whole plane. This gives us a meromorphic continuation of Pr(S,
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For any complex number r, let H(r) j’ 9’(u) exp iru du. Because of the
properties of y, y’ is in C(R), and y’(u) 0 if lul > eo. Hence an application
of the Paley-Wiener theorem gives us the following lemma.

LEMMA 2.3. H is an entire function of r. Moreover, for each inteyer n >_ 1,
we can find C > 0 such that we have the estimates

IH(r)l < Cn[rl if Im r _> 0
(2.5)

< Cnlrl-nexp(eolImrl) ifImr < 0.

Let us also observe"

LEIA 2.4. Letf be as above in (2.2), with Re s > 2po and let v A. Then
wherever f(v) exists, we have

(2.6) f(v) H(is- ipo + v(Ho)) + H(is- ipo- v(Ho)).
s- Po iv(Ho) s- Po + iv(Ho)

Proof. fs(v) I. F’s(h) exp iv (log h) dh

f 9(s, u(h))exp iv(Ho)u(h) dh

O(s, u)exp i(Ho)u du

O(-u) exp (s Po + iv(Ho))U du

+ .If 9(u)exp (Po- s + iv(Ho))U du

9(u) exp (-s + Po- iv(Ho))U du

+ ff 9(u)exp (-s + Po + iv(Ho))U du.

Integrate by parts and remember that y(0) 0, and that Re s > 2po. The
lemma follows.
We now define A(S) ,>_o nf(v) for Re s > 2po.

PROPOSITION 2.5. The function A(s) has a meromorphic continuation to the
whole complex plane. The poles ofA occur at the points sf. and s-, j > O, where
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s Po + ivj(Ho) and s- Po ivj(Ho). These poles are all simple; the
residues at sf and s- both equal njH(O), j O, 1, 2,..., if sf s-. (It is
understood that the poles at s and sff are present only if no > 0.) Finally, if
s +. s- for some j, the residue of A(s) at sf is 2njH(0)

Proof We have

H(is ipo + vj(no)) + n(is- ipo -_. vj(no))A(s) no I. s Po iv(Ho) s Po + ivj(Ho)

o nIH(i(s- s’))+ H(i(s- s-f))
s. s-

in the half plane Re s > 2po. Each term on the right is meromorphic in s, and
thanks to the estimate of Lemma 2.3 and Proposition 1.2, the series converges
absolutely, uniformly for s running over a compact set disjoint from {s: }>_o. []

We will now consider the term Z(1).f(1) vol (F\G), and show that it is mero-
morphic in s.
By the Plancherel formula for G/K, we have

(2.7) f(1) [W ] -1 .fA L(V)(V)- c( 1’)- all).

Now fs(v) is given by (2.6), and c(v) is as in (1.5). If we recall the normaliza-
tions of the dh, dv in Section 1, in terms of the parameters u u(h), r r(v)
introduced there, we can write this as

(2.8) L(1) [w3-’ I h(r, s)c(r)- c(- r)- dr

where

(2.9) h(r, s) H(i(s Po it)) + H(i(s Po + it))
s- Po ir s- Po + ir

and

(2.10) c(r)- F((p + q)/2)F(ir + p/2)F(ir/2 + p/4 + q/2)
F(p + q)r(ir)F(ir/2 + p/4)

and F is the classical F-function.
Observe that the substitution r -r interchanges the two terms on the right

side of (2.9). Moreover [ W] 2 in our case. It follows that

(2.11) fs(1) nl f_ H(i(Ss --poP--irir)) c(r)_lc(_r)_ dr.

We now shift the integration into the complex plane by using a rectangular
contour with vertices at -R, +R, R + iR, -R + iR; The function r
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c(r)-lc(-r) -x is meromorphic in the upper half plane, and can only have
simple poles. Let rk, k >_ 0... be the poles, if any, and let dk be the residue of
c(r)-lc(-r)-I at the pole rk. Using the residue theorem one finds

f(1) H(is- ipo + rk).d + I+ + I_ + J
{k; Im rk R} S PO irk

where I+I_ are the contributions from the vertical sides of our contour and J
is the integral coming from the top side. Now, because Im r >_ 0, and
Re s > 2po, we have Im (is ipo + r) >_ O, so that the estimate

IH(is- ipo + r)l < C,Is- Po +

of Lemma 2.3 is available.
On the other hand, It(r)- ac(-r)-I _< Cllrld as remarked in Section 1.

Since the integer n is at our disposal, we see easily from these estimates that
I+, I_, J all tend to zero as R . It follows that

(2.12) f(1) H(is- ipo + rk).dk, Res > 2Po.
kO S- PO irk

Of course, if c(r)- c(- r)- has no poles in the upper half plane then this sum
is to be interpreted as zero.
The poles rk of c(r)-lc(--r)- and the residues dk at these poles can be cal-

culated for all the groups G of split rank one. We omit the tedious calculation,
and summarize the results in Table I at the end of this paper.
Note that when G SOo(n, l) with n odd, the function c(r)-lc(-r) is a

polynomial in r, and has no poles. Thus in that case, f(1) 0. (This accords
with the known facts. Indeed, in this case, the inverse of the Abel transform
f F. is given by a differential operator, and since Fss vanishes near the iden-
tity, due to the properties of g, one can deduce that f(1) 0.)

In all the other cases c(r)-c(-r)-1 has simple poles, and those in the upper
half plane are tabulated in Table I. One notes that rk is purely imaginary,
Irk] O(k), and [dkl O(ka) where a is a positive integer, depending only on G,
and that Po + irk equals either -k or -2k, k >_ O.
We now claim that the series on the right side of (2.12) converges absolutely,

uniformly with respect to s varying over a compact subset U of the complex
plane, provided that U is disjoint form the points {P0 + irk; k > 0}. Indeed,
for s in U, we see that Im (is ipo + rk) > 0 for large enough k. For such k,
the estimate

IH(is- ipo + rDI -< C.lis- ipo +

of Lemma 2.3 is available; Since s is confined to U which misses Po + irk, we
have

IH(is- ipo + r)l < Cx(n)lrkl-"
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for large k, with C1 independent of k. Using the estimates on rk, dk given by
Table I, we conclude by choosing n large that the series on the right side does
indeed converge as claimed.

It follows that the series defines a meromorphic function of s with simple
poles at the points Po / irk, k >_ O, and the residue of this function at the pole
DO -- il’k is equal to ill(O) dk. We summarize these observations.

PROPOSITION 2.6. For Re s > 2po we have

(2.13) Z(1)f(1) vol (F\G) ix(l) vol (F\G) H(is ipo + rk) dk
kO S PO irk

where (rk; k >_ 0} are the poles of the function (c(r)c(-r))- in the’upper half
plane and dk is the residue of thatfunction at rk. (The series is to be interpreted at
zero when the set {rk} is empty.) The series converges absolutely, uniformlyfor s
in any compact set disjointfrom the numbers (Po + irk}, and defines a meromor-
phic function of s in the whole complex plane, thus giving us a meromorphic
continuation of the left side of (2.13). Thisfunction has simple poles at the points
Po + irk, k >_ O, and has the residue ix(l) vol (F\G)H(0) dk at the pole Po + irk.

Note that Po + irk is a nonpositive integer in all cases, either equal to -k or
-2k. Also, since dk is purely imaginary, the residue ix(l) vol (F\G)H(0) dk is
real.
By the Gauss-Bonnet theorem applied to F\G/K, we can relate vol (F\G)

vol (F\G/K) to the Euler-Poincar6 characteristic E of the manifold F\G/K.
As is seen in Section 3, for our normalization of Haar measure, it turns out that
vol (F\G) is a rational multiple of E. Also, Table I shows that dk is a rational
number, whose denominator depends only on (G, K), and not on k. It follows
that vol (F\G) dk ekE/l<, where l< is a positive integer depending on the pair
(G, K) alone, and ek is an integer. Note that ekE and dk have the same sign.

Recall that, in defining Pv(s, 7., g) we had used a constant c, with g(x) c
when x >_ Co. We now choose c to be equal to the integer l<. The corresponding
’r(s, 7.,g) will be denoted simply by I’r(s ;0. Note that then, H(0)=
j.o 9’(u)du 9(80) 9(0) l<. Thus, taking into account Propositions 2.5
and 2.6, and the definition of Pr(S, 7.), we get the following proposition. Bear
in mind that the sets (sf, j _> 0} and {Po + irk, k >_ 0} have just the point 0
in common, because 0 s Po + iro. Also recall that ao is the multiplicity
of the trivial representation of F in the representation T.

PROPOSITION 2.7. For Re s > 2po, define
(2.14) qr(s, ;0 , ()iulj (y) xC(h(Y)) exp (Po s)lul.

),Cr-{1}

This series converges absolutely, uniformly in any halfplane Re s >_ 2po + 6,
so that Pr is holomorphic in Re s > 2po. Pr(S, Z) has meromorphic continuation
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to the whole complexplane, via the relation Wr(s, Z) A(s) ;((1)f(1) vol (F\G).
The poles ofPr are all simple, and are asfollows"

(2.15)

Pole Residue

sf Po + ivj(Ho)
s-j- Po iv(Ho)

Po + irk --7.(1)ekE
0 tcao 7.(1)eoE

j>l
j>l
k>l.

If 0 A occurs in the spectrum, i.e., iffor some j, we have vj 0, thenfor that
j, s. s- Po, and the residue at this pole is 2xnj.

Because the function qr(s, 7.) has only simple poles with integer residues, we
can find a meromorphic function Zr(s, 7.) such that

d
log Zr(s, 7.) qr(s 7.).

ds

Zr will be defined up to a multiplicative constant, which we will now fix. As
we have seen, if for some j, vj 0, then Zr will have a zero at Po of order
2xnj. We will denote this even integer 2xn by mo. Of course, mo 0 if all the

v are nonzero, i.e., if 0 e A is not in the spectrum. We now normalize Zr by
requiring that (s po)-mZF(s, 7.) as s Po. This determines Zr com-
pletely. We shall call this the zeta function attached to the data (G, K, F, 0.
It is obvious that the points s], s-, with j > are zeroes of Zr of order
respectively, and the points Po + irk, k > are either zeroes or poles of Zr
according to whether -7.(1)ekE is positive or negative, the order of the zero or
pole being [7.(1)ekEI. Since 7.(1) > 0, and ekE and dk have the same sign, the
sign of -7.(1)ekE can be read off from Table I at the end of this paper. That
table shows that the sign of d is independent of k, and depends on (G, K)
alone. When the sign is positive, Po / irk, k >_ 1, are all poles of Zr. They are
all zeroes of Zr in the opposite case. By Table I, poles occur precisely when
dim (G/K) 0 mod 4.
The point s 0, which is common to the sets {s;, j >_ 0} and {Po + irk,

k _>. 0} is somewhat special as is made clear in the above proposition. It will
be a zero of Zr if rcao 7.(1)eoE is positive, and a pole if xao 7.(1)eoE is
negative. In each case the order of the zero or pole will be [xao 7.(1)eoE[.
At this point, we have proved that Zr has properties (1), (2), (4), (5), and

(5 bis) described in Section 0. It is also clear that we have proved the first
statement of (6).
Our next task is to show that Zr enjoys the functional equation claimed in

(3) of Section 0. For brevity, we write (t) x vol (F\G)(1)c(it)-lc(-it) -1.
Then is meromorphic and its poles are simple.
We shall first show that the logarithmic derivative t’r of Zr has a functional

equation.



16 RAMESH GANGOLLI

PROPOSITION 2.8. We have

(2.16) r(S,g) +r(2Po- s,g) +tI)(s- Po) = 0, sC.

Proof The three terms are all meromorphic with simple poles. The poles
of r are at s], sf and at Po + irk. Since s- 2po s, it follows that
r(S, X) + tt’r(2po s, X) has only simple poles at

{Po + irk, Po irk, k > 0},

with residues --)(1)ekE, )(1)ekE respectively. On the other hand the poles of
O(s Po) are at s Po + irk and So Po irk, and the residues are )(1)ekE
and --X(1)ekE respectively. It follows that r(S, X)+ (2po- s, Z)+
*(s- Po) is an entire function. Call this function Q(s). We will show by
applying the trace formula that Q(s) =- O.

Let r i(po- s) so that s Po + ir. It will be convenient to use the
variable r instead of s. The above functions P, Q can be regarded as functions
of r. We denote them by , q when so regarded. Thus $r(r, .) tP(po + it,
q(r) Q(po + it). Also during the rest of this proof we shall write $(r)
instead of r(r, X).

Let rf, rf be defined by s f. Po + irf, and s; Po + irf. Then
r] v(Ho) and rf -v(Ho). We shall show that

(r) + $(-r) + tb(ir) O, re C.

Note that P(ir) tcZ(1) vol (F\G)c(r)-c(-r)-.
Fix > 0, and let F* be a function on C which satisfies" (i) F*(z) F*(-z),

(ii) F* is holomorphic in {z; lira z[ < Po + }, and (iii) F* is rapidly decreasing
in Re z on the boundaries of this strip. Then, as we saw in Section 1, we can
find f Cgx(K\G/K) such that (v) F*(r), r r(v). By (1.9), (1.10) we have

F(h) F*(r) exp (-iru) dr F(u), u u(h),
(2.17)

f(v) F(u) exp iru dr F*(r), r r(v).

Note that f(vj) F*(vj(Ho)) F*(rf). Using all this in the trace formula
(2.3), we get

njF*(r]) ;(1) vol (F\G)f(1)
jo

+ z(v)luvlj(v)-aC(h(Y)) F(u)
eCr-{1}

(2.18)
X(1) vol (r\G) 7= F*(r)c(r)-lc(-r)-1 dr

/ Z(y)luij()-C(h(y))F(u).
veCr-{1}

where we used the Plancherel theorem for G/K to express f(1) as an integral.
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Now let fR be the rectangular contour in the complex r-plane with vertices
atA -R (Po + e)i,B R- (Po + e)i, C R + (po + e)i and D
-R + (Po + e)i, as in the figure below.

D -R + (Po +

A -R--(Po + 8)i

C=R+(po+)i

B= R- (Po + )i

F*(r) is holomorphic inside fR. The poles of (r), and the residues at’these
poles are described in Proposition 2.7. By Cauchy’s Residue Theorem,

(2.19) a
F*(r),(r) dr

2rci {iz(1)eoEt*(ipo) +
{j; Irjl <R}

+.) + F*(r))(- injx)(F*(rj

But r -rj- and F*(r) F*(-r). So

lima F*(r),(r)dr=-2zcfZ,(1)eoEF*(ipo)- Y, 2xnjF*(r.)}.R-*
11

j O

Now,

(2.21) u
F*(r),(r) dr

F*(r)/(r) dr + F*(r)/(r) dr + I+ + I_

where I+, I_ are the integrals along the vertical sides of t). Now,

re’ F*(r)b(r) dr F r)(- r) dr,
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and since F*(r) F*(-r), we get

(2.22) F*(r)(r) dr F*(r)(b(r) (-r)) dr + I+ / I_.

Since q(r) ,(r) + b(-r) + p(ir), we get

(2.23)

F*(r)(r) dr 2 F*(r)(r) dr + f F*(r)#P(ir) dr

F*(r)q(r) dr / I+ + I_.

Now let R - oo. Using the properties of F*, , one sees that I+, I_ 0
as R - oo, and

(2.24)

Now Pr(s) has the representation (2.14) when Re s > 2po. So,

(2.25)
@(x- i(Po + e))

=x ,
Cr-{1}

X(),)[uv[j(y)-lC(h(y)) exp --i(x (Po + e)i)lUvl.

Since F* is holomorphic in the strip {x + iy; -Po e, < y < 0}, we can
shift integration to get

(2.26)

F*(x- i(po + e))(x i(po + )) dx

2x v g(Y)luvlJ(Y)-lC(h(Y)) ;-oo
X(y)lurlj (y)- C(.h(y)) ;

4nx x(y)lurlj()-1C(h(?))F(ur)

(exp ixlu.l)F*(x) dx

(exp ixuv)F*(x) dx

where we used F*(x) F*(-x) for the last equality but one, and (2.17) for
the last step.

Next, consider J’oo F*(x- i(po + e))eP(i(x- i(po + e)))dx. Here F*(z)
is holomorphic in {z x + iy, -Po e < y <_ 0} while (iz) is meromor-
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phic there with possibly a pole at z -Po, with residue ix(1)eoE. Using the
Residue theorem, we get

(2.27)

i(po + e))(i(x- (ipo + e,)i)) dx

f_(R) F*(x)(ix)dx + 2i(iZ(1)eoE)F*(ipo)

2rcT.(1)eoEF*(ipo)

4:x vol (F\G);(1)f(1) 2rc,(1)eoEF*(ipo).

Finally, since F* and q are holomorphic in the strip

we have
{x + iy; -Po e < y < 0},

(2.28)

(2.29)

i(po + Q)q(x- i(po + )) dx= f-oo F*(x)q(x) dx.

Now (2.20) together with (2.24), (2.26), (2.27), (2.28) leads to

+ 4nx vol (F\G)x(1)f(1) 2nX(1)eoEF*(ipo)

f?oo F *(x)q (x) dx.

Recalling (2.18), we have from this

(2.30) F *(x)q (x) dx O.

Now F* can be varied over a large class of functions; For example any
function of the form P(x) exp (-ax2) where a > 0 and P(x) is an even poly-
nomial in x will fulfill the assumptions on F*. Since q(x) is an even function of
x, one deduces from (2.30) that q(x) 0, x e R. But q is entire, hence q -= 0.
It follows that Q(s) 0 and Proposition 2.8 is proved. []

We are now in a position to get the functional equation for Zr.
THEOREM 2.9. We have

(2.31) Zr(2po s,

where (I)(t) x vol (F\G)x(1)c(it)-Xc(-it)-x.
((t) dt
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Proof. Let us note first of all that the expression exp j.-po (t)dt is well
defined, when j.-po (t) dt is interpreted as a contour integral. Indeed, (t) is
meromorphic and its residues at the poles are always integral. It follows that
two different contours from 0 to s Po will lead to values for j.-o (t) dt that
differ by an integral multiple of 2rci. Hence exp j.-po (t) dt is well defined.

Since

d
(log Zr(s, Z)),

it is evident that Proposition 2.8 leads by integration to

(2.32) Zr(2po s, )0 eZr(s, )(.)exp (t) dr.

where e is a nonzero constant. We claim that e 1.
Indeed, let mo be the multiplicity of the zero of Zr at Po (too 0 if p is not

a zero), and recall that m is even (cf. Proposition 2.5). Hence (s po)’
(Po sl’. Thus from (2.32) we get

(2.33) (Po s)-"oZr(2po s, )0 e(s po)-moZr(s, )0 exp (t) dr.

Now suppose Zr(s, )(.)= (s- po)mF(s) in a neighborhood of Po; then
F(po) 1, so (s po)-mZr(s, 1:) as s -* Po. On the other hand

Zr(2po s, ;0 (Po s)mF(2po s)

in a neighborhood of Po, so (Po s)-’Zr(2po s, ) 1 as s Po. Thus
letting s Po in (2.33), we see that 1. Theorem 2.9 is completely proved. []

For G SL(2, R), this functional equation was observed by Selberg [21,
p. 75]. In that case, c(r)-lc(-r) -1 r tanh zrr and ti)(t) -jr(l) vol (F\G)t
tan rt. Thus the above equation reduces to the one given by Selberg, if we
remember that for G SL(2, R) we have x (cf. Section 3).
When G SOo(2n + 1, 1), is a polynomial, and so is j.-po O(t) dt. Thus

the functional equation is simpler in that case. In all other cases, (t) will equal
a polynomial times t tan zrt, so that j.-po O(t) dt is not an elementary function.
The simplicity of the formulas in the case SOo(2n + 1, 1) is due to the structural
fact that there is then just one conjugacy class of Cartan subgroups in G.

Since s. Po + ivj(Ho), it is clear that s] determines vj(Ho); Moreover,
since rank (G/K) 1, this in turn determines the linear form v. Thus a knowl-
edge of the zeroes sj and their multiplicities xn is equivalent to the knowledge
of the parameters v, and the multiplicities n, since x depends on (G, K) alone.
As we have remarked in Section 1, the parameters vj correspond to spherical
representations U occurring in U, and the integers n to their multiplicities.
Now if bvj is the elementary spherical function of the representation U, then
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tkv is positive definite and the eigenvalue of the Laplacian operating on bv is
real and nonpositive. In our parametrization, this means that

-(v, v> (p, p> _< 0.

Now (vj, vj) vj(Ho)2(fl, fl) and (p, p) p(Ho)2(fl, fl) p2o(#, fl). So
we obtain vj(Ho)2 + po2 > 0. It follows that vj(Ho) is either real or purely
imaginary. In the latter case we must have Iv(Ho)l _< Po. Because of Proposi-
tion 1.1, such v can only be finite in number. Now it is well known, cf. [25],
that the v which are real correspond to representations U of the spherical
principal series, and the purely imaginary v correspond to representations in
the spherical complementary series of G. Since s. Po / iv(Ho), we find that
the zeroes s: lie on the line Re s Po except for the finitely many indices j for
which vj(Ho) is purely imaginary and 0. For these j, s- is real, and lies in
1-0, Po). sj- lies in (Po, 2po], and is symmetrically opposed to s around Po.
Thus except for these zeroes, finite in number, the spectral zeroes of Zr satisfy
the modified Riemann hypothesis Re s]: Po (cf. [,21]).

If T, T’ are finite dimensional unitary representations of F, with characters
27, 27’, their direct sum T @ T’ will have character 27 + 27’. Now the induced
representations Uz, Uz, and Uz+ z’ will satisfy Uz+ z’ - Uz Uz’. It follows
that n(27 + 27’) n(27) + nj(27’). Thus if mo(27), mo(27’) and mo(27 + 27’) are the
multiplicities with which the spherical representation corresponding to 0 e A
occurs in Uz, Uz,Uz+ z, respectively, we see that mo(Z + ’) too(Z) + mo(Z’).
Now consider q’r(S, Z + Z’). It is obviously linear in the variable ;t. Hence

q’r(S, ; + ;t’) q’r(S, ;) + q’r(S, ;t’),

which readily leads, via the above relation for mo, to

Zr(s, + .’) Zr(s, ;t)Zr(s, ;t’).

Similarly decomposing the tensor product T (R) T’ into irreducibles T with
characters 27, we get

2727’ m,27, and Zr(s, 277.’) I-I Zr(s, 27,)"’.

Finally, observe that the contragredient 27* of 27 obeys 27*(?) 27(?-1). In the
expression for qr(S, 27), the factors lull, j(y), C(h()) are all invariant under

?-1, as is the factor exp (s Po)lUl. Since F is torsion free, no nontrivial
element of F can be conjugate in F to its own inverse. Thus Cr { can be
chosen to be stable under ? ?-1. We see from the above observations that
Fr(S, 27*) Pr(S, 27). On the other hand, it is obvious that mo(27") mo(X).
It follows that Zr(s, 27*) Zr(s, 27).
At this point, we have established all the statements made in Section 0, except

(8), (9), and the latter halves of (6) and (7), concerning the occurrence of zeroes
in [0, 2po-I and the order of Zr when it is entire. We shall now proceed to these
matters.
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In order to prove (8), we consider, for t > 0, the function

v --, exp (--(r(v)2 q- p)t),

where r(v) v(Ho), v e A. It is seen that this function is the Fourier transform
ofa function in Cgl(K\G/K) which we will call hr. ht is essentially the fundamental
solution tgt of the heat equation on G/K discussed in [6]. In fact, if co is the
Casimir operator of G, so that tgt is the fundamental solution of cou c3u/t3t,
then one checks easily that h is the spherical fundamental solution of(1/c2)cou
du/dt, where c2 Inol 2p + 8q. So we have h Ytc2. Using this ht in
the trace formula we have

(2.34)

(2.35)

,(v) exp (--(r(v)2 + p)t),

Fh,(h) exp (-(r 2 -I- p2o)t) exp iru dr,

(4rrt) -1/2 exp (-(pt + u214t)), u u(h).

so that the trace formula is

nj exp (-(p + r(vj)2)t)

(2.36) (1) vol (F\G)h,(1)

+ (4zrt)-/ ;t(r)lurlj(r)- C(h(r)) exp (-(pt + u/4t)).
Cr-{1}

Now define the theta function 0 by

O(t) n exp (-(po2 + r(v)2)t) ;t(l) vol (F\G)h,(1)
(2.37)

;t(r)lurlj(y)-lC(h(y))(4zrt)-/2 exp (-(pt + u2r/4t)).
yeCr-{l}

Now multiply by exp (--s(s 2po)t) and integrate term by term with respect
to between [0, oo). The procedure can be justified easily since Re s > 2po,
and we obtain for s real and Re s > 2po,

(2.38)

o
exp (--s(s 2po)t)O(t) dt

Z()lulj()-C(h(r))

0 (471:t) -1/2 exp (--((s po)2t) + u2/4t)dt

, X(y)lulj(y)-C(h(y))(2(s- po))-a exp (-(s- Po)lul)

2(s Po)- x- lr(S, Z)
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where we used the formula

o’(4rct)

-1/2 exp (-(x2t + y2/4t)) (2x)-1 exp (-xy),

valid for x > 0, y > 0.
(2.38) holds for complex s such that Re s > 2po by analytic continuation,

and we get

d
(log Zr(s, 7.)) x2(s Po) fo O(t) exp (-s(s 2p0)t) dt(2.39) ss

which is the relation claimed in (8) of Section 0.
This relation is clearly analogous to the classical relation between the log-

arithmic derivative of the Riemann (-function and the Jacobi theta function via
the Mellin transform. See [5, p. 67-1 for instance. In the classical case, this
relation together with the functional properties of the theta function given by
Poisson summation forms the basis of a proof of the functional equation for
In the present case, (2.39) can be made the basis of a proof of the functional
equation for Zr. For G SL(2, R), a sketch of the proof is given in [16].
For other G the proof is much more cumbersome. It involves the explicit
inversion of the Abel transform f--. Fj,; We do not discuss it here.
The numbers r(vj) vj(Ho) are what we called rf above. As we have seen,

a finite number of these are purely imaginary. Suppose that rf is purely imag-
inary and nonzero for j 0, 1,..., N. Then s Po + irf lies in I0, Po).
Let d’ jo n. Then the number of exceptional zeroes of Zr(s, ;t) that lie
in [0, 2po] off the line Re s Po is 2d’. We intend to get an estimate for this
number. The result will be that for a given F, 2d’ < C(F);t(1) vol (F\G) where
C(F) is a positive number depending only on F and not on

This estimate is obtained by looking at the trace formula applied to hr.
Clearly, we have 0 < p + (rf)2 < p for 0 < j < N. Hence

N

a’ exp (-pt) < E ni exp (-(po + (r’f)z)t)
(2.40)

=o

-< E n exp (-(p + (rf))t).
1=0

Now the right side of this, by the trace formula (1.12) equals

This latter expression is of course positive, and is dominated by

(1) ;r rr ht(x- lyx) dye,
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because ht is positive. It follows that

d’ _< exp (po2t)(1)f h,(x-x)dS
r\a r(2.41)

Z(1)| H(&,&)d&
dr\a

where Ht(, 3) exp pt .r h(x-Y)
Since h is admissible, H(, p) is continuous on F\G x F\G. Let Ct

sup r\a H(, ). Then

(2.42) d’ < CZ(1) vol (F\G).
The left side is independent of t, and our claim follows by choosing C(F)

2C. Of course, this may not be the best possible value for C(F).
We now turn to the question of existence of these exceptional zeroes of

Zr(s, Z). If T is the trivial one-dimensional representation of F, then the trivial
representation of G occurs with multiplicity one in U, so that Zr(s, 7.) certainly
has a zero at s 0, or order 1. More generally, if T is the trivial (reducible)
representation of F on an m-dimensional space, which we shall call m, then
Zr(s, .) will have a zero of order m at s 0. We shall give a condition on the
dual space of F which will ensure that we can find nontrivial Z for which
Zr(s, Z) will turn out to have zeroes in the interval (0, Po). Thus in these cases,
nontrivial spherical complementary series representations will in fact occur in U.

For a fixed integer m >_ 1, let i,n be the set of equivalence classes of (not
necessarily irreducible) unitary representations of F, of degree m. Each element
of lm is determined by its character. We topologize lm by the topology of uni-
form convergence of the characters on compact (i.e., finite) subsets of F. The
trivial representation of degree m is denoted by t

PROPOSITION 2.10. Suppose that in the topology of m described above, the
point t is not isolated. Then there exists a nontrivial representation T ofdegree
m, with character 7., such that Zr(s, Z) has at least one zero in the open interval
(0, Po). Moreover, the number of zeroes of Zr(s, 7.) in (0, Po) is then at least
m ao, where ao is the multiplicity with which trivial representation occurs
in T. In particular, ifT is irreducible, Zr(s, 7.) will have at least m zeroes in (0, Po).
Finally, if tl is any number such that 0 < l < Po it is possible to choose T in
such a way that the interval (0, tl) contains at least m ao zeroes.

Proof The proof uses the trace formula applied to ht, written as (2.36)
above. We can also write it in the form

(47tt)/2 n(z) exp (--r()2t)
j>o

(2.43) )(1) vol (F\G)(t/4rc)/2 exp (-rt)c(r)-c(-r)- dr

/ )(7)lulj (7)-C(h(7)) exp (- u/4t)
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where we have written n(2:), rf (2) to emphasize their dependence on ;, and
have used the Plancherel theorem to express ht(1) as an integral.
The first term on the right will be denoted by Ja(, t) and the second by

Jz(z, t). As to the left side, the numbers rf(.) always fall in the interval
[-po2, ). Let Ix [-po2, 0), 12 [0, ct3). We split up sums on the index j
(such as the sum on the left side of (2.43)) into two sums over {j; r (jr)2 e I}
and {j; rf (;02 I2) and denote them by a and ]2 respectively.
We shall also tacitly assume that the indices j are so ordered that rf(;t)

increases with j.

Fx(Z, t) (4zt) 1/2 nj(z) exp (,-rf(;t)2t)
and

F2(Z, t) (4t)a/2 nj(z) exp (-rf(z)2t).
2

Note that F 0, F2 0. Then (2.43) takes the form

(2.44) F(Z, t) + F2(Z, t) J(Z, t) + J2(z, t).

Remember that denotes the trivial character of F. We shall be interested
in studying the number N(Z) x ni(D. Clearly, N(Z) is precisely the number
of zeroes (counting multiplicities) of Zr(s, Z) in [0, Po).

In what follows, we shall find it convenient to denote wholesale by e(t) any
function of which approaches zero as , not necessarily the same function
in each case.
We assume 1; It is easy to see that

(2.45) F2(, 1) J(, 1) + J2(, 1),

(2.46)
F2(Z, 1) Jx(Z, 1) + J2(Z, 1)

Z(1)J(, 1) + Z(1)J2(t, 1),

where we used the fact that J2(Z, 1) is real, and IX(Y)[ Z(1).
It follows that we can find Mx > 0 such that

(2.47) F2(Z, t) Z(1)Ma(4nt)/2 for all Z and 1.

Next, when Z , the trivial representation of G occurs in U. So r()
ipo, and the multiplicity no(C) 1. It follows that

(2.48) FI(, t) (1 + e(t))(4nt)x/2 exp pt.
Now, using the above, we conclude

(2.49) F2(Z, t) e(t)(4nt)/2 exp pt for every Z,

(2.50) Jx(z, t) e(t)(4nt) t/2 exp pt for every Z.

From (2.48)-(2.50), and the trace formula (2.44) with Z , we conclude

(2.51) J2(, t) (1 + e(t))(4nt)/2 exp pt.

Now put
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Let 8 > 0 be a given number, and choose to so large that all the functions
8(0 appearing above are smaller than 8 in absolute value. From now on we
only consider to.
Now consider (4nt)-1/2 exp (-pt)J2(t, t). This is the infinite sum

(4nt)-1/2 exp (-pt) lulj(y)-lC(h(y)) exp (-u2/4t).

We know from (2.51) that for > to it lies between 1 8 and 1 + 8. Fix such
a t, and let Ft be a finite subset of Cr { } so large, that

(4rrt) -a/2 exp (-p2ot) E lurlj(r)-C(h(?)) exp (-u2/4t)
rFt

is less than e. Then we find that

(2.52) ., lurlj (y)-aC(h(y)) exv (- u2r/4t)
Ft

lies between (1 28)(4rt)1/2 exp pt and (1 + 28)(4rt)1/2 exp pt. We may
assume that Ft is stable under

(2.53) r(X, t, F,) Z(y)lurlj(r)-C(h(r)) exp (- u2/4t),
ycFt

(2.54) J2(:, t, F) Y2(, t) J2(:t, t, F,).

Then, J2(, t, Ft) is real, and since I;t()l < :t(1), we find for any ;t, that

(2.55)
J2(z, t, F:) Z(1)J2(-I", t, Ftc)

< Z(1)e(47rt)/2 exp

Now by our hypothesis on lm, we can find a representation T f’m such that
its character ; satisfies [;(y) m[ < for any y F. It follows, since Z(1) m,
that

J2(;t, t, Ft) mJ2(.t, t, F,)I

-< Iz(y) ml lurlj(y)-C(h(y)) exp (-u2/4t)
(2.56)

< eJz(-l’, t, F)
_< e(1 + 2e)(4rt)/ exp pt

by (2.52). Hence

(m 8)(1 28)(4/rt)x/2 exp pot J2(z, t, F)
(2.57)

< (m + 8)(1 + 28)(4rrt)1/2 exp p2ot
Now (2.57), (2.55), and the estimate on Jl(Jt, t) implies that the right side of

the trace formula (2.44) satisfies

((m 8)(1 28)- m8- 8)(4rrt)1/2 exp pt
(2.58) <-- JI(Z, t) + J2(Z, t)

< ((m + 8)(1 + 28) + m8 + 8)(4nt)1/2 exp pt.
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It follows that the left side F(, t) + F2(;t, t) must satisfy this inequality also.
Moreover, since F2Ct, t) satisfies (2.49), we conclude finally that

(2.59) F(;t, t) >_ ((m- e)(1 2e) ms- 2e)(4t)/2 exp p2ot.

Clearly, if is chosen small enough, the right side is positive. It follows that
FI(gt, t) is not zero. Now

(2.60) FI(Z, t) (4rtt)a/2 ng(;t) exp (-rf (;t)2t).

It is easy to see that the trivial representation of G occurs in U as often as ;t
contains the trivial one-dimensional representation of F. Let ao be this multi-
plicity. Then clearly, the term corresponding to j 0 in the above sum is
ao(4;rt)/2 exp pt. Thus, recalling the definition of N(;t) we find

N(Z)(4rct)/2 exp p2ot >_ (4rot)/2 n(z)exp (-rf(z)2t)
(2.61) Fa(Z, t)

>_ ((m e)(1 2e) me- 2e)(4rct) a/2 exp pot
which implies

(2.62) N(gt) _> (m 5)(1 25) ms- 25.

Now since s is arbitrary, we find that

(2.63) N(;t) _> m.

Of the NCt) zeroes of Zr(s, ;t) in [-0, Po) exactly ao correspond to s 0. It
follows that the number of zeroes of Zr(s, Z) in (0, Po) is at least rn ao. Since
;t is nontrivial, ao # m. Finally, if ;t is irreducible, we must have ao 0. Thus
all the assertions of our proposition are proved, except the last one. For the
last one, we can repeat the argument used above almost verbatim, with 11
[_p, _q2] and 12 (//2, GO). []

For a given m, it does not seem easy to give structural conditions on F which
will imply that l,n satisfies the hypothesis of the above proposition, except when
m 1. In the case m 1, if F/IF, F] is infinite, then 1a will satisfy the hypoth-
esis of Proposition 2.10. For, then F/IF, F] is a finitely generated infinite
abelian group, so its rank is > 1. It follows that 11 contains a torus, so that the
trivial representation k of F is not isolated.

In the case of G SL(2, R), F/IF, F] is infinite. Indeed

r/It, r] z
where t7 is the genus of F\G/K. Since # > 2, Proposition 2.10 applies.

Actually, whenever F/I-F, F] is infinite, one can do more: namely, given any
integer N > 0, we can find a subgroup Fo of finite index in F such that the zeta
function Zro(S, t) has at least N zeroes in (0, Po). The proof of this assertion
for G SL(2, R) is contained in a recent paper of B. Randol [18]. An ex-
amination of his proof shows that once one has established the existence of a
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nontrivial character Z f’l such that Zr(s, ;) has a zero in [0, Po), the rest of
his proof does not depend on any property of SL(2, R) at all. Imitating it, we
get our assertion without difficulty. We omit the proof.

It should be observed that for G SL(2, R), a result analogous to the above
was mentioned without proof by Selberg. See the footnote on page 74 of [21].

In view of the discussion preceding Proposition 2.10, the above observations
mean that when F/i-F, F] is infinite and F\G is compact, given any N > 0, we
can choose a subgroup Fo of finite index in F such that the representation of G
on L2(l"o\G) contains at least N subrepresentations of the spherical comple-
mentary series. These representations are not tempered. The question of the
existence of such nontempered representations has attracted some attention
recently. That nontempered representations can occur was observed by Wallach
[27]. He observed, using the results of Hotta-Wallach [28] and Johnson-
Wallach [-29], that if G SOo(n, 1) with n > 4, and if F is a discrete torsion-free
subgroup of G such that F\G is compact and F/IF, F] is infinite then there
exists a nontempered representation nl of G whose multiplicity in L2(I\G)
equals the rank of the free summand of the abelian group F/IF, F] (which also
equals, of course, the first Betti number of F\G/K). Moreover, he also observed
that via the result of Vinberg [-25], such F do indeed exist if n 4 or 5. Our
result above differs from this in two ways. First, the representation n mentioned
here is nonspherical. Second, it is not known whether n can occur with arbi-
trarily large multiplicity, i.e., it is not known whether F can be chosen with
rank F/IF, F] arbitrarily large.
A natural question that arises is whether a given group G has discrete sub-

groups F such that F\G is compact and F/IF, F] is infinite. Because of the
results of Kazhdan [14], such groups cannot exist if rank (G/K) > 1. More-
over, these results of Kazhdan, combined with the results of Kostant [-30],
imply that if G Sp(n, 1), n > 2, or if G F4-2o, then such F cannot exist.
Thus, there remain the cases G SOo(n, 1), n _> 2, and G SU(n, 1), n > 2.
That such subgroups F exist for G SOo(n, 1) with 2 < n < 5 was observed
by Vinberg [25]. Recently, J. Millson has shown that such F exist (and can
even be assumed arithmetic) when G SOo(n, 1) with n arbitrary [31]. (I
gather that this result has also been independently obtained by W. Thurston.)
It is not known whether discrete subgroups F with these properties exist for the
groups SU(n, 1).
We finally come to the assertion concerning the order of Zr when it is an

entire function. Here we shall be content to give a sketch of the proof of the
fact that Zr has finite order, and that the order can be related to the structure
of (G, K). The reader may consult [23] where a similar argument is given in
detail for a different zeta function.

Let e > 0 be fixed. In the half plane Re s > 2p0 + e, Zr(s, Z) is clearly
bounded; Now the function j.-po {}(t) dt which occurs in the functional equa-
tion is surely a tempered function of s. More precisely, in absolute value, it is
less than or equal to A isla for some constant A and integer d. It follows from
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the functional equation for Zr that IZr(s, :)l < exp Als[a for s in the half plane
Re s < -e. We shall show that in the strip -e < Re s < 2po + e, Zr(s, 7.)
does not grow too fast as Im s --. . Then an application of the Phragm6n-
Lindel6f theorem will show that IZr(s, X)I < C exp Alsl for all s, implying
that the order of Zr is finite and < d.
To achieve this we recall that the logarithmic derivative Fr(S, ;t) equals

A(s) ;t(1) vol (F\G)f(1) where

(2.64) A(s) jo nj -s s +
s s-f )

and

(2.65)

with

h(r, s)c(r)- c(- r)- drf(1)

(2.66) h(r, s)= H(i(s- Po ir)) + H(i(s- Po + Jr))
s-Po- ir s-Po + ir

Using the asymptotic estimate of Proposition 1.2, one can prove the following
lemma"

LEMMA 2.11.
and x2 and a constant A’ > 0 such that

(i) 0 < X < X < X2 < 2x, and
(ii) for allj >_ O, we have

A’>_
xn-1

where n dim G/K.

For all sufficiently large x > 0, we can find two numbers

and Ix2- r:l >
xn-

The proof of this lemma is a simple application of the pigeonhole principle.
One cuts up the interval (0, x) (resp. (0, 2x)) into pieces of length about A/x"-
where A is small and then using the asymptotic estimate, one concludes that one
of these intervals must be free of any rj Thus one finds an interval of length
A/x"- in (0, x) which does not contain any rj. The midpoint of such an inter-
val will serve as x. x2 is produced similarly. Fix such an x, x, x2, etc.
One can now estimate A(s) where s lies on the boundary of the rectangle

ABCD

Res --e
"S

Res= 2po +

B
PO

Ims x

Ims xl
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by using the expression (2.64). It turns out that for s on the boundary, one has
for some A, A,,

(2.67) IA(s)l < Alxv + A2 where N is a large integer.

On the other hand one shows easily that

(2.68) If(1)l < Axv + A2 for s on the boundary ABCD.

It follows that

(2.69) Ir(S, ;0l < 2AxN + 2A2 for s on the boundary.

By integration, one finds

(2.70) IZr(s, ;t)l < exp (Cx+ + Da) for s on the boundary.

However, Z is holomorphic in the interior of ABCD, so by the maximum
modulus principle, we get [Zr(s, ;t)l -< exp (CxTM + D) for all s inside. In
particular for any s with Im s x, inside ABCD, we get IZr(s, ;t)l <
exp (C1 [Im s[N+I + D) and it follows that

(2.71) [Zr(s, Z)[ < exp (CxlslTM / D), - < Re s < Po +
for llm sl sufficiently large. This verifies the hypotheses of Phragm6n-Lindel6f
and we conclude that when Zr is entire, it has finite order which is less than or
equal to the integer d. It is easy to see that d equals exactly the dimension of
G/K. This is because

Ic(r)-c(-r)-l < Cx(1 + Irl)"-x

where n dim G/K, as an examination of c will show.
On the other hand, Proposition 1.2 leads without difficulty to the following:

The series ,j/o n/Ir’l converges if k > n dim G/K, and diverges if
k < n. It follows that the exponent of convergence of the zeroes of the entire
function Zr is at least n. By a well-known theorem, this implies that the order
of Zr n. Together with what we showed above, this implies that the order
ofZr n dim G/K.

It only remains to prove the assertion (9) of Section 0.
Recall that an element V F, V is called primitive if it cannot be written

in the form 6 where 6 F and j > 1. It was shown in [7] that each F,
# can be expressed uniquely in the form 6t) where 6 is primitive and j(y)

is a positive integer. If Primr is a complete set of representatives for the con-
jugacy classes of primitive elements in F, we can put

Cr {6J;j > 1}.
Primr

The infinite product representation will involve a product over Primr, just as
in [21].
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Enumerate the roots in P+ as a,. t, and let L be the set of linear func-
tions on a which are of the form Y’.= m, with m nonnegative and integral.
For 2 e L, define mx to be the number of distinct ordered t-tuples (ml, mr)
such that 2 = m, and let be the character of the Cartan subgroup A
which corresponds to 2.
For any y F, y - 1, we have chosen an element h(y) A which is conjugate

to y; h(V) h(y)ht(y). We now further demand that h(y) be chosen so that
+ where a is the positive Weyl chamber in % Withho(y) lies in A + exp ap,

this understood, the product for Zr is given by (in Re s > 2po)

(2.72) Zr(s, ;t) C II l-I (det (I T(b)g,z(h(6)) -1 exp (-suo)))m
6 Primr- , L

where C is a constant 0, u6 fl (log hv(6)), and x is as defined above. I is
identity matrix, and T is the representation of F with character Jr. det means
determinant.
When G PSL(2, R), P/ consists of a single element /3, L consists of

{kfl, k > 0}, and m for each 2 L. Moreover, h(6) h(6) in this case,
so that (h(6)) is equal to exp kfl(hv(6)). Remembering that x in this case,
we recover the product formula of Selberg [21] for Zr as a special case of (2.72)
up to the constant factor C. The factor C will be commented upon below. It is
due to a difference in the normalization of Zr.
The proof of (2.72) proceeds from the formula (2.14) for the logarithmic

derivative of Zr, valid for Re s > 2po. In that formula, recall that C(h(y)) was
given by (1.13). Because of our special choice of h(), we see that e,(h()) 1,
and ur > 0, and we find that

C(h()) ,,o(h,(y))-1 II (1 :(h(,),))-1)- 1.

Thus (2.14) can be written, as in [7],

(2.73)

,4--- log Zr(s,
ds

/
6 PrimrX Jl {z(6J)u6 at I-IP (1- at(h(tS))-J)-1 exp(-sjua)}

Now expand (1 ,(h(6))-J) as a power series, (which converges because
,(h(6))-1 < by our choice of h(6)), m>o ,(h(6)) -’i", and multiply together
these series for the various P+. We find that the product

1-I (1 at(h(&))-J)
ateP+

equals the sum Z2eL ma.a(h(6))-. Hence (2.73) becomes, with a rearrangement,

d
(2.74) s log Zr(s, Z) unmxz(6)x(h(f))-exp(-sju)

tPrimr AcL j>l
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Now let e1(6), e2(6),. ., Ca(6) be the eigenvalues of T(fi). Then ;t(fij) equals= (e(fi)). Then

(2.75)

dd
log Zr(s, X)= t Z Z Z m;uo Z e,(f)J(h(6))-j exp (-sju6)

ds i=1 6 ,eL jl

d

E E E
i=1 6 2L

ei(6)x(h(6))- exp (- su6)
ei(6)x(h(6))- exp (- su6)"

Integrating this logarithmic derivative, we find

(2.76)

d

Zr(s, ;t)= C U I-I l-I (1 e,(6)(h(6))-Xe-S"e)m*K
i=1 tePrimr 2eL

C U II (det (I T(6)(h(6))-e-su))m
di Primr ,;tel

where C # 0. These manipulations are valid if Re s > 2po.
In i-21], Selberg defines Zr by giving this product representation, and choosing

C 1. We have on the other hand normalized our Zr by stipulating that
lim_.po (s- po)-mZr(s, ;t)= 1; cf. the remarks following Proposition 2.7
above. We could, of course, renormalize Zr so that C in (2.76) without
losing any property of Zr. We have now proved all the assertions of Section 0.
We conclude with a remark about the assumption that F is torsion free. If

this assumption is dropped, most of the above assertions can still be made in a
somewhat modified form. First, apart from the terms on the right side of the
trace formula, there would be in addition a finite number of terms corresponding
to conjugacy classes of elements of F that are of finite order. The contribution
of such an element to the trace formula (2.3) can be computed by using the
results of 1-19]. It turns out that if 7 is an element of finite order in F, then the
integral J’r\af(x- Tx) d which equals

vol (F\G) f f(x-Tx) d2,

can be expressed in terms off(v) as an integral on the parameter v. If we call
this term I(f, 7), one can show that I(f, 7) is meromorphic in s, and has poles
in the upper half plane precisely at the points rg, k > O. Thus there is no prob-
lem in continuing qr(S, 27, g) analytically in this case to a meromorphic function.

If now one attempts to construct Zr as before, one must relate the volume
vol (F\G) to the generalized Euler number of F\G/K in the sense of Satake [20].
Note that F\G/K is no longer a manifold, but it is a V-manifold in Satake’s
sense, and the singular points of F\G/K correspond exactly to the elliptic conju-
gacy classes of F. Therefore one expects that if one did the computations called
for by [20] in our case, one would see that

Z(1) vol (r’\6)L(1) I(f, 7)}elliptic
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would have simple poles with integer residues at rk. There would then be no
impediment to getting an analogous theory even in the case where F is not
assumed torsion free. We have not, however, carried out this suggestion.

3. Appendix: An auxiliary computation

This section is devoted to a computation which will show the existence of the
integer x that we referred to in Section 2.

If a, b are any real numbers such that a rb with r a rational number, we
shall write a b. A similar convention will be used for functions, forms, etc.
We wish to establish that in our normalization of the measures, we have
vol (F\G) E, where E is the Euler-Poincar6 characteristic of the manifold
M F\G/K. Of course, we assume throughout that dim M is even, equal to
2m say.
We denote by (-, ")0 the form -(., 0.), where (., ") is the Cartan-Killing

form of 9. Then (., ")0 is a positive definite form on 9 x g, and 9 t + p
is an orthogonal decomposition of 9. Let be the orthogonal complement of
ap in p. Then g t + % + . Since we also have g t + % + n direct
sum, we see that dim dim n. Call this integer t. Let n# be the subspace of
n on which ad(H) acts via the scalar fl(H), and lt2# the subspace on which
ad(H) acts by 2fl(H), H e %; cf. Section 1. Then dim n# p, dim rt2# q,
tt rt# + n2# is an orthogonal direct sum and p + q.
An element of g will be viewed as a left invariant vector field on G. Elements

of the dual of g can then be viewed as invariant 1-forms. Let b be any subspace
of g with orthocomplement b-t. Let B1,..., Bb be a basis of b and B,...,
be elements in g* defined by B.*,(Bj) 6ij, B.*, =_ 0 on b-. Then we can define
the form tob by

(3.1) cob (Oet Bi, B)o)I/2B* A B A... A B.
The form cob depends only on b, and not on the choice of the basis B1,.
When we have g b + b-t, clearly,

(3.2) o9 o)b A ogt,

suitable ordering of bases being tacitly understood.
These considerations imply in particular that

(3.3) o9 oh A 09% A

(3.4) o9 09% A

The form o), gives us a G-invariant volume form on the group G. The form
tot, gives by restriction to K, an invariant volume element on K. The normalized
volume element of K is then oJt(K)- lo9t. The form op can be thought of as a
volume element on G/K, invariant under G.

Throughout this section, orthogonality is understood with respect to the form (.,
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Now let be the invariant form on G which corresponds to our choice of the
Haar measure. Recall that we have normalized the Haar measure dn on N by
the requirement that s exp (-2p(H())) dn 1, and that our parametrization
on Ap is via the parameter u u(h) fl (log h), h e Ap. Taking this into
account, we get (cf. [12, chapter X, p. 373-1),

(3.5) v c-lClfDt(K)-lo.)! A 0% A f.on

where c (<Ho, Ho)o)/2 (2p + 8q)x/2, and

(3.6) C e- 2(m))o,.

The integral C can be computed by the technique of Godement-Schiffman
and Gindikin-Karpelevic, as quoted in [26, vol. II, p. 323-].

If we introduce orthonormal coordinates ,..., in n and r/l,. / in

n2, we get

(3.7) Cs f ((1 + 112/2c2)2 + 2lrll2/c2) -i/2(p+2q) d drl
PRq

where I12 E ff, Inl 2 E n, etc. c is, of course, (2p + 8q)/2 as above.
This integral can be evaluated by standard methods which we omit. The result
is

CN CV+q2(v-q)/27r(v+q+)/22-tv+q-)(((p d- q- 1)/2)1) -*
(3.8)

cn+q2fv-q)/2lr,m2-2m+2((m 1)!)-.
where m (p + q + 1)/2. Note that m 1/2 dim G/K. Thus we see that

(3.9) C CP+q2(P+q)/2ff,

SO

(3.10) c-Cv -P-q-12-(P-q)/27-m 2-(P-q)/27-m

since c (2p + 8q)/2, and so cp++ cTM 1.
Now the form ot A oo A o, is certainly an invariant (dim G)-form on G,

and as such, it must be a constant multiple ofthe form aa. We will now compute
the constant that relates these two by choosing suitable bases.

Let a be the conjugation ofc with respect to ft. Then a operates on P+ in a
natural way; we denote by the image of P+ under tr (cf. [12, p. 222]). A
root P+ is real if and only if ct ct". It follows that we can find a subset
pO+ of P+ with the property that P+ P pO+ (pO+), where P is the set
of real roots in P/, and the union is disjoint. Now let E egc be a root vector
corresponding to . We can choose E, e /(gc, ac) in such a way that

(3.11) [E, E_=] 2H=/<o, ), <E=, E_=> 2<, >- x.
This can always be done; cf. [12].
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Now consider the vectors

{E, e P_}, {(E + aE)/2, e pO+ } and {(E aE)/2i, x pO+ ).
It is easily seen that these all lie in rt; A computation, using standard facts about
a shows that these vectors are orthogonal with respect to (’, ")0. Thus they
form an orthogonal basis of ft. Normalizing these vectors, we get an ortho-
normal basis Nx,. Nt of n.

Next, consider N ONt. Clearly this belongs to p. Moreover, both rt and
0n are orthogonal to ap under (., ")0. Hence Ni ON s. In fact, one can
show that these elements are mutually orthogonal in s. The norm ofN ONi
is easily computed. It turns out to equal /2. Thus if

(N- ONe),

the vectors Yx,..., Yt are an orthonormal basis of . Similarly, if

(N q- ONi)Xi "-’"-2
we get an orthonormal set of vectors in t, which we extend to an orthonormal
basis of t, call it X,..., Xd. Note that

N 2(X + Y), i= ,t.

Let H1 be an element of norm one in %. Then the set

{X,, X2,..., Xd; H,; N,, Nz,..., Nt}

is a basis of g. We can use it to compute %, following (3.1). Since

we obtain

(3.12)

(Xi, Nj) (ij, _i,j<t,

(3.13)

% (x/2)-tX A A X’ A H’ A N* A A N*

Combining (3.12), (3.5), (3.9) we see, since p + q, that

v c-Ca(K)-a2+)/
t(K)-2--)/2+)/-m
-mt(K)-

-m(K)-1 A
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It follows that

(3.14) vol (F\G) -’%(r\6/K).

where op(F\G/K) is the volume of F\G/K with respect to the volume form
which we repeat, was obtained from the Cartan-Killing form.

It remains to check that the Euler-Poincar6 characteristic E satisfies

(3.15) E -’%(F\G/K).

To check this last point, one may either use the results of Ono [ 17, Section 3]
or proceed directly via the Gauss-Bonnet theorem. (In using Ono’s results, it
must be borne in mind that V, the derived algebra of , has two Euclidean
structures, namely one that is obtained by restricting to the Euclidean structure
on fl given by (., ")0, and the other obtained by the Cartan-Killing form of l’.
Ono uses the latter in his computation of the volume of a compact semisimple
group while we have used the former.) In either ease, it seems that one is forced
to use the classification. If we proceed via Ono’s results, we have to use the
Dynkin diagrams of the various groups.
We shall indicate here how one can verify (3.15) directly via the Gauss-Bonnet

theorem, as given in [1] or [22] for example.
For any compact oriented Riemannian manifold M of even dimension 2m,

the Gauss-Bonnet theorem tells us that the Euler-Poincar6 characteristic E(M)
is given by

(3.16) E(M)= x-(m+’/2F(m + 1).
where do is the Riemannian volume form of M and R is a function on M
defined locally by

R (2 det /(2m)!)-1 x

Here g (tkl) is the Riemannian metric tensor, and Rrstu are the components
of the Riemannian curvature tensor. The sum is over all possible permutations

(i, i2,..., i2,,) and j (jl,...,J2m) of (1, 2,..., 2m), and e(i), e(j) are
the signatures of those permutations. Of course, the components gj, Rjkt are
computed via the usual basis of the tangent space at any point viz

In our case, M is F\G/K, and since the covering manifold G/Kis homogeneous,
and the metric on it is G-invariant, it follows that R is a constant, so we need to
compute it just at the coset K in G/K.
We shall show, by choosing a suitable basis of p, that the number R is a ration-

al number. This will imply (3.15), via (3.14). In fact, let Y,..., Y2z be a
mutually orthogonal basis of p. Then the components of the Riemannian
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curvature, are given by
R(Yi, Y;)Yk

where R(., .) is the curvature tensor of G/K, viewed as a map of p x p to
End p. As is well known, R(Y, Yj)Yk --[[YYj], Yk]; cf. [12]. Thus we find

RUk ([[Y, Y], Yk], Y,)o/(Yg, Yl)o. Since OY Y,, this is seen to equal

<EY,, EY,,, r,]>/<r,, Y,>.

Thus our assertion about the rationality of R will follow if we can find a
(., .)-orthogonal basis of p, say Y1, Y2m, such that (i) RUk are all rational
and (ii) det # det (Yi, Y) is rational.

In fact one can do a little better. One can find an orthogonal basis of p such
that (i) ([Y, Yj-l, [Yk, Y]> are all rational and (ii) (Y, Yt> are all rational.

This is done as follows. Let a be the involution of gc with respect to g, as
above, and let z be the involution of c with respect to the compact real form
u [ + ip. Then a’c =’ca 0, 0a a0 =’c, and O’c =’cO a. For any
root , we let H be the element of ac such that (H, H) (H) for all H ac.
By using the classification one can show that for each root , we can choose a
root vector E in c so that the following properties hold" (i) (E, E_) is
rational. (ii) If , fl are roots such that + fl is a root, then [E, E#]
N,#E/ where N.a is rational (and even integral). (iii) "cE, E, where is
the image of the root under "c. (iv) aE, c,E:, where c is or + x/-1
for P/. The standard Chevalley bases of the complexifications of so(n, 1),
u(n, 1), and p(n, 1) have these properties. In the case of4t-2o) one has to use
the explicit multiplication table given by Cartan I-2, p. 343] for the complex
Lie algebra c, together with the description of the involutions z, a given in
I-2, p. 352] and I-_2, p. 351] respectively. (The vectors Xar in Cartan’s notation
serve as our E, e+.)
Having obtained such root vectors, we now consider the elements

{E,; o P_ }, {E, + aEo,, (Eo aE,)/i z pO+ }.
As mentioned above, these elements form an orthogonal basis of rt with respect
to (., ")0. In our case P has exactly one element. Let H be the element of
ac corresponding to it. Then H %, and H, together with the above elements
gives us an orthogonal basis of av / n with respect to (., .)0. Call this basis
Z,..., Z2m. Then {Z- OZ; 1,..., 2m} is seen to be an orthogonal
basis of p. We call this basis Y1,..., Y2m. Because of the properties of the
chosen vectors E, this basis is easily seen to have the following properties:
(i) ([Y, Y-I, [Yk, Yt-I) are all rational (and, of course, known a priori to be real)
and (ii) (Yt, Yt) are all rational. This completes the proof of (3.15).
The existence of the root vectors E with the above properties can be obtained

from a general result of Chevalley I-3] (slightly refined to give the additional
property (iv)). However, this does not in principle avoid the classification, be-
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cause Chevalley’s paper uses the classification at one point. Thus in our case
it seems simpler to proceed directly. In Table II of the appendix we have listed
the basis Y,..., Ya for the classical groups under consideration, using their
matrix realizations. The case of F,-2o) must, however, be handled abstractly
as described above.
Having established (3.15), the existence of the integer x follows, as we have

remarked in Section 2, upon observing that the numbers dk are all rational,
with denominators that depend only on (G, K) and not on the particular pole
rk. By explicit (and sometimes excessive) computation, one could actually
determine x for SOo(2n, 1), SU(n, 1), Sp(n, 1). For SOo(2n, 1) the value of
x is easy to compute. One finds that x (2n 1)n. This explains why this
integer never explicitly appears in Selberg’s paper. There, Selberg is dealing
with SL(2, R) or SOo(2, 1) essentially, and n 1, so that x in that case.

Finally, a word about the use of classification that has been made in this
section, and which one should wish to avoid. While we may have appeared to
use the classification in discussing the poles and residues of r c(r)-1 c(-r)-1
in Section 2, a moment’s thought reveals that this is merely a matter of con-
venience of description, i.e., we could have described Table I in terms of the
integers p, q if we had wished to do so. Thns the use of classification made to
arrive at Table I is inessential. However, for the computations of this section,
resulting in (3.15), the use of classification is not merely a matter of convenience,
i.e., I have not been able to avoid it.

Remark. In arriving at (3.11) above, we computed in effect the constant
factor which relates two different normalizations of Haar measure on G. In
fact, let d/ p be the Riemannian measure on G/K arising from the matric on
G/K given by the Cartan-Killing form, and let d/ g be the Haar measure on G
such that d/ g dk d/ p. On the other hand, let d/a, d/n be the Haar measures
on A, N obtained from the euclidean structures on a, rt determined by (., ")0,
and let dg be the Haar measure on G such that

dg exp 2p (log a) dk d/a d/n.

Then our argument shows actually that d+ g (x/2) -t dg, where t dim n.
The argument does not depend on the fact that rank (G/K) 1. Thus we have
computed in effect the relation between the normalizations of Haar measure
given by the Iwasawa decomposition and the polar decomposition of G. The
exact constant relating these does not seem to have been written down explicitly
in the literature except in the special cases SL(2, R) and SOo(n, 1).
The constant C can also be computed in general when rank (G/K) > 1.

Indeed, if E is the set of restrictions to ap of the roots in P+, and if Eo is the
subset {0 E, /n Y, for any integer n > 1}, then corresponding to each
0 Eo, one gets a symmetric space S of rank one, and if Cn, is the constant
corresponding to this symmetric space, one can show that Cn I-Izo C,,
as is clear from the method of Grindikin-Karpelevi,; cf. [26, vol. II, Chapter 91.
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TABLE I

F(ir / p/2) F(ir/2 + p/4 + q/2)
c(r)_l

r(tp + q)/2)
x x

r(p + q) r(ir) r(ir/2 + p/4)

/90 1/2(p + 2q)

G p q rk dk

SOo(2n + 1, 1)

n>_l

2n 0 Void Void

SOo(2n, 1)
n>_l

2n- 0

SU(n, 1) 2(n- 1) i(po + 2k)
n_>2 k>_0

Sp(n, 1) 4(n- 1) 3 i(po + 2k) 2n + 2k +
n_>2 k>_0 2

Fat- ,-o) 8 7 i(po + 2k)
k>_0

2k+ 11 (k+ 10)(k+7)22.0 7 7

In the cases SU, Sp, and F,, if we write p 2m and q 21 1, then the poles r are at
i(po + 2k) i(m + 21 + 2k 1), k >_ 0, with residue d, where

id (-1)m+
m + 21 + 2k-

22m + 41- 4. m+l-1 m+l-1

TABLE II

As usual Eo denotes a matrix with in the ijth .place and zeroes elsewhere.
(i) G SOo(2n, 1). The Caftan-Killing form is

(x, y) (2n 1) Trace (xy).
Here

P tx,_ 0
x12anyrea12n x lmatrix

The dimension of p is 2n. The basis Y Y,,,} is given by

Yj E,n+ + En+,, <j< 2n.

(ii) G SU(n, 1). The Caftan-Killing form is

(x, y> 2(n + 1) Trace xy.
Here

P Z*
Zanycomplexn x lmatrixandZ* ’

The dimension of p is 2n. The basis Y1 Y,-n} consists of the matrices S and T where

Sj E.n+ + E+1,1, < j _< n,

T (E.,+x E+.j)/i, < j <_ n.
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(iii) G Sp(n, 1). The Cartan-Killing form is

(x, y) 2(n + 2) Trace (xy).
Here

0 tZ14
P= Zl, 0 -Z,

\Z14. 0 tZ12 o/
Zt 2, Zt 4. any complex n x matrices

The dimension of p is 4n. The basis Ya Y,,) consists of the matrices Ss, Tj, Us, Vj,
where

Ss Es,.+x + E.+,,s- En+l+s, 2n+2 E2n+2,n+l+S, < j < n,

T (1/i)(Es..+ E.+,.s + E,,+,+s,.+z Ez,,+,,,+,+s), < j < n,

U Es, 2n+2 + En+l,.+l+S--t- En+l+s,n+l -- E2n+2,s, < j < n,

Vs (I/i)(EA2n+2 q- En+x.n+t+S En+t+S,n+t E2n+2,S), < j <_ n.
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