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Letf: Rn+ R" be a continuous map with support in the product of R and
some compact set in Rn. Let y Rn, let R, and let (to, Yo) P Rn+ 1. A
map y: R R is called a solution off through p provided that y is a solution
of the initial value problem

(1) y’(t) f(t, y(t)), Y(to) Yo.
The cross-section of the integral funnel at time is the set

Ft(p) ((t, y(t)): y is a solution offthrough p).

The integral funnel or f-funnel through p is the set F(p) tR Ft(p).
In the case that f is not Lipschitz continuous, the cross-section Ft(p) may

consist of more than one point, and it becomes an interesting problem to
investigate the topological properties of this set. H. Kneser obtained the first
results on this problem; he showed that under the above hypotheses, each cross-
section Ft(p) is a continuum, i.e., a compact, connected set.

In this note, we obtain necessary conditions for a continuum to be homeo-
morphic to a cross-section of a solution funnel. This yields examples of continua
that can never be cross-sections of a solution funnel. Our tools are shape theory,
continua theory, and tech cohomology theory.

1. Results of Aronszajn and Pugh.
In this section, we recall two previous results on this problem that will be

useful in our program, and we recast these theorems in the language of shape
theory.
The overlyingf-funnel/(f, p) is the set off-solutions throughp in the function

space C1(R, Rn). N. Aronszajn [1 considered overlying f-funnels in 1942,
when he proved that each overlying f-funnel is the intersection of a decreasing
sequence of compact absolute retracts. Thus each overlying f-funnel is a
continuum. Since the evaluation function y y(t) from (f, p) onto Ft(p) is
continuous, Aronszajn obtained another proof of Kneser’s theorem that each
cross-section is a continuum.
We assume that the reader is familiar with shape theory as expounded by

Borsuk [-2, 3-[. Intuitively, shape theory is (ech homotopy theory. Continua
shape-equivalent to a point are said to have trivial shape. D. Hyman I-6] has
proved that a continuum has trivial shape if and only if it is the intersection of a
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Figure 1. S. $

decreasing sequence of absolute retracts. We can therefore restate Aronszajn’s
results in the language of shape theory.

THEOREM 1. Each overlying f-funnel is a continuum of trivial shape.

A subset A of R is said to be a funnel-section if for some n > m, there
exists a continuous mapf: R"+ R as above and a point p in R+ such that
i(A) Ft(p) for some t, where i" R R is the standard injection.

C. C. Pugh [10, 11] has proved that there exists a plane continuum that is
never a funnel-section. This plane continuum , the union of S and an
outward plane spiral S, is pictured in Figure 1. Pugh [10, 11] has also shown
that any finite, connected polyhedron can be embedded in some R as a funnel-
section. In particular, S c R2 is a funnel-section. Since S and $ have the
same shape, it follows that being a funnel-section is not a shape property.
Pugh [-11] has proved that any subcontinuum of R whose complement is

diffeomorphic to the complement of a point is a funnel-section (in fact, if
m - 4, then "diffeomorphic" may be replaced by "homeomorphic"). T. A.
Chapman [5-1 has proved that any finite-dimensional continuum of trivial shape
can be embedded in some R such that its complement is homeomorphic to
the complement of a point. We can therefore restate Pugh’s theorem in the
language of shape theory.

THEOREM 2.
funnel-section.

Each finite-dimensional continuum of trivial shape can be a

2. Necessary conditions for a continuum to be a funnel-section.
A circle is a continuum homeomorphic to S x. A continuum X is said to be

circle-like if it is homeomorphic to the inverse limit of an inverse sequence of
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circles with all bonding maps being surjective. If, in addition, each bonding
map is a nontrivial covering map, then X is called a solenoid. The first (ech
cohomology group of a continuum X with integral coefficients is denoted
H(X).
A nonzero element 9 of an abelian group G is said to have infinite height if

there exists a sequence P {Pl, P2,... } of integers such that (1) each Pi > 1,
and (2) for each positive integer n, there exists an element h of G such that
(PAP2"’" p,)h #.

THEOREM 3. IfX is a continuum and ifHa(X) contains an element of infinite
height, then X can never be afunnel section.

Proof- The main theorem of [13] states that a continuum X can be mapped
onto a solenoid if and only if H (X) contains an element of infinite height.
Thus, there is a solenoid S and a map#:X-S ofXonto S. IfXwere
homeomorphic to a cross section Ft(p), for some f: R"+ -, R", then there
would exist a continuous map of the overlying f-funnel g(f, p) onto X. Hence
there would exist a continuous map of the overlying f-funnel (f, p) onto the
solenoid S. This would imply that/_/l(/(f, p)) contains an element of infinite
height; but such an implication contradicts the fact that if(f, p) has trivial
shape and thus trivial (ech cohomology. Thus X cannot be a funnel section.

In particular, no solenoid can be a funnel section; thus there is a collection of
cardinality c of topologically distinct, compact, connected abelian groups such
that no one of them is ever a funnel section.
More can be said by using some results of shape theory. Q is the Hilbert

cube. First we recall a definition. A pointed continuum (X, Xo) = (Q, Xo) is
said to be 1-movable if for every neighborhood U of X, there exists a neighbor-
hood V ofX with the property that every loop in V based at Xo can be deformed
within U into any neighborhood of X, the basepoint remaining fixed at Xo
throughout the deformation. Roughly, X is 1-movable means that fundamental
groups of X-neighborhoods are nicely related. If (X, Xo) is 1-movable, and if
x X, then (X, xx) is 1-movable. Thus we may speak of pointed 1-movable
continua.

THEOREM 4.
I-movable.

If the continuum X can be a funnel section, then X is pointed

Proof. Let X be homeomorphic to a cross section Ft(p), for somef: Rn+

R". Let b(f, p) be the overlyingf-funnel. Since (f, p) has the shape of a point,
by Theorem 1, it follows that (f, p) is pointed 1-movable. Pointed 1-
movability is a continuous invariant [7], [8]; hence Ft(p) is pointed 1-movable
because the evaluation map ev" (f, p) Ft(p) is a continuous surjection.
Hence X is pointed 1-movable.

THEOREM 5. lfthe curve (i.e., one.dimensional continuum) X is afunnel section,
then X is shape-equivalent to a point or a countable bouquet of circles.
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Pro@ For curves, movability and pointed 1-movability are equivalent
concepts. A. Trybulec [14-1 has shown that every movable curve has the shape
of a plane continuum. K. Borsuk I-2] has shown that every plane continuum is
shape equivalent to a countable bouquet of circles (regard a point as an empty
bouquet of circles). Thus the theorem is proved.

Since the (ech cohomology functor factors through the shape category, we
have the following corollary:

COROLLARY 6. If the curve X is afunnel section, then H1(X) n Z, where
Z is the set of integers and n O, 1, 2,... or .
The converse to this corollary fails in all cases.

THEOREM 7. Let n be a nonnegative integer or let n . Then there is a
curve X such that HI(X) ), Z and X is not a funnel section.

Pro@ Pugh’s example (described above) is easily modified to cover the
cases n > 1 by adding suitably-chosen concentric circles and spirals. As an
example of an acyclic curve that is never a funnel section, we refer to the Case-
Chamberlain example [4]. This curve is described as an inverse limit of figure-
eights; the bonding maps are so conceived, however, that the curve has trivial
ech cohomology. Sibe Mardegid and Jack Segal [9! have shown that the
Case-Chamberlain curve is not movable. Therefore, it is not a funnel section.
By the Alexander duality theorem, no continuum such that H(X) contains

an element of infinite height can be embedded in R2. Thus no solenoid embeds
in R2. Since solenoid. are circle-like continua (while Pugh’s example is not),
we might ask whether each circle-like continuum in the plane is a funnel-
section. Circle-like continua X in the plane satisfy one of two conditions"
Hi(X) 0 or Hi(X) Z. In the former case, X is embedded in R2 such that
its complement in R2 is diffeomorphic to the complement of the origin. Hence
by results of Pugh, X can be a funnel-section. In the latter case, results of Pugh
state that S can be a funnel-section. We find, on the other hand, the following
result.

THEOREM 8.
funnel-sections.

There exist circle-like continua in the plane that are never

Proof. Let the circle-like continuum X be a funnel-section. Then X is the
continuous image of a continuum with trivial shape, namely some overlying
f-funnel (f, p). J. Krasinkiewicz [7-] has proved that such a continuum X is
also a continuous image of an arc-like continuum. Hence to find a circle-like
plane continuum that can never be a funnel section, it suffices to find one that is
not a continuous image of an arc-like continuum. Such continua have been
studied previously [12]; in particular, the pseudo-circle is such a continuum
[2].
We close with the following example.
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THEOREM 9. There exists an arcwise-connected curve in R3 that is never a

funnel-section.

Proof. The example T is a modification of the plane continuum S. Recall
that g $1 w S, where

S {(r, O)’r 1 0-1, 27 <_ 0 < oz}.

is pictured in Figure 1. Consider as a subcontinuum of R3. Let A be an
arc in R3 such that

(1) one endpoint of A is the endpoint of S,
(2) the other endpoint of A is (1, 0, 0),
(3) all other points of A have third coordinate z > 0,
(4) A does not intersect the z-axis.

Finally, define T S w A.
Suppose that T F(p) for a suitable f: R"+1 --, R". Let

7" R3 __, R3 (z-axis)

be the universal covering space ofR3 (z-axis). Proceeding as in [11, Theorem
3.1], we find that the evaluation map,

ev" ff( p) R3 (z-axis),

which maps the overlying f-funnel into R3 (z-axis), lifts to R3. Hence we
have the commutative diagram"

(f,) N (z-axis).

Restricting to -(T), we have the commutative diagram"

-l(r)

F T

See Figure 2 for a picture of a homeomorph of- (T). The arcwise:connected
set -(T) consists of 3 types of lines"

(1) the x-axis, which covers S,
(2) half-lines {H,} that converge asymptotically to the x-axis and cover S,
(3) arcs {A,} that cover A and that join the endpoint of H to the point

(n, o, o).

Since (f, p) is compact, its image (F(f, p)) is bounded in Ra. Let m be a
positive integer such that any point (x, y, z) in (F( p)) lies in the set B
{(x, y, z)" -m < x < m}. Since (f, p) is connected, its image (F( p)) lies
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H ’s
n

x-axis

A’s dotted linesn

Figure 2. n- (T)

in one component of B c n-l(T). But no component of B n-(T) projects
onto T. Therefore T is not a funnel-section.

Still unresolved is the question of whether every finite-dimensional Peano
continuum can be a funnel-section or even if every finite-dimensional, compact,
connected ANR can be a funnel-section.
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