ON FLAT FIBRATIONS BY THE AFFINE LINE

BY

T. Kambayashi¹ and M. Miyanishi

A recent joint work [1] of Dolgačëv and Veĭsfeĭler studies in the main the geometric structures of unipotent group schemes over an integral ring. As a natural generalization of their own results the following *conjecture* is set forth (see [1, 3.8.3ff]).

Let $\phi: X \to S$ be a flat affine morphism of finite type; assume that S is locally noetherian, normal and integral, and that the fibre $\phi^{-1}(P)$ of ϕ above each point P of S is isomorphic to the affine *n*-space Aⁿ over the residue field $\kappa(P)$ of P. Then, X is an Aⁿ-bundle over S relative to the Zariski topology.

In the paper cited above, the authors obtain various results in the direction of this conjecture while working under the assumption of an S-group scheme structure on X.

In the present paper we propose to settle the conjecture affirmatively in the special case where n = 1. (It is understood that V. I. Danilov possesses unpublished results to the same effect; cf. [1, 3.8.5].) What we actually prove are the following two theorems.

THEOREM 1. Let $\phi: X \to S$ be an affine, faithfully flat morphism of finite type. Assume that S is locally noetherian, locally factorial and integral scheme, and that the generic fibre of ϕ is A^1 and all other fibres are geometrically integral. Then, X is an A^1 -bundle over S.

THEOREM 2. Let k be an algebraically closed field, let S be a regular, integral k-scheme of finite type, and let $\phi: X \to S$ be an affine, faithfully flat morphism of finite type. Assume that each fibre of ϕ is geometrically integral and the general fibres of ϕ are isomorphic to \mathbf{A}^1 over k. Then, there exist a regular, integral k-scheme S' of finite type and a faithfully flat, finite, radical morphism S' \to S such that $X \times_S S'$ is an \mathbf{A}^1 -bundle over S'. If in particular the characteristic of k is zero, X is an \mathbf{A}^1 -bundle over S.

A variation of the conjecture above, wherein S is a curve and A^n is replaced throughout by the projective *n*-space P^n , is in fact a proven theorem (see Maruyama [9, Theorem 0.1]). It seems that the exact relationship between this variation and the conjecture above stated remains to be clarified.

© 1978 by the Board of Trustces of the University of Illinois Manufactured in the United States of America

Received June 8, 1977.

¹ Supported in part by a National Science Foundation research grant.

1. Proof of Theorem 1

1.1. Let S be a locally noetherian, integral scheme, and let $\phi: X \to S$ be an affine, flat morphism of finite type. The fibres of ϕ above the closed points of S will be referred to as closed fibres, while the fibre above the generic point of S will be called the generic fibre. By the general fibres of ϕ we shall mean all fibres above the closed points belonging to an unspecified nonempty open set of S. The morphism $\phi: X \to S$, or more conventionally X by itself, is called an affine ruled variety over S if for every point P on S (including the generic point) the fibre $\phi^{-1}(P)$ above P is isomorphic to the affine line $A^1_{\kappa(P)}$ over the residue field $\kappa(P)$ of P. The morphism ϕ , or again simply X, is said to be an A¹-bundle over S if there exists an open covering $\{U_i \to S\}$ relative to the Zariski topology on S such that $X \times_S U_i$ is isomorphic to the affine line $A^1_{U_i} := A^1 \times_Z U_i$ over U_i for all *i*. A scheme S is said to be locally factorial if for every point P on S the local ring $\mathcal{O}_{P,S}$ is a factorial ring (= a unique factorization domain). A discrete valuation ring of rank 1 will be called a principal valuation ring.

The proof of Theorem 1 will be given below in several reduction steps.

1.2. We shall begin with the following elementary result, which is a special case of a theorem of Nagata [11].

LEMMA. Let \mathfrak{o} be a principal valuation ring and let A be a flat \mathfrak{o} -algebra of finite type. Let K be the quotient field of \mathfrak{o} , t a uniformisant of \mathfrak{o} and k the residue field of \mathfrak{o} ; and let A_K and A_k denote respectively $K \otimes_{\mathfrak{o}} A$ and $k \otimes_{\mathfrak{o}} A$. Assume that A_K and A_k are integral domains. Then:

- (i) If A_K is a normal ring, so is A.
- (ii) If A_K is factorial, so is A.

Proof. We shall prove only (ii), as the proof of (i) is a routine exercise. By flatness there is a natural inclusion $o \subset A$, and A is in turn contained in A_K and is noetherian. Since A_k is integral, tA is a prime ideal in A and $\bigcap_{v\geq 0} t^v A = (0)$. Let p be an arbitrary prime of height 1 in A. If $t \in p$ then clearly tA = p. In case $t \notin p$, the ideal pA_K is prime of height 1 in the factorial domain $A_K = A[t^{-1}]$, whence $pA_K = fA_K$, where we may and shall take $f \in A - tA$. Let $b \in p$ be arbitrary, and write $b = ft^m a$ with integer m and $a \in A - tA$. If m < 0, then $fa = bt^{-m} \in tA$, an absurdity. Consequently, $m \ge 0$ and $p \subseteq fA$. It follows that p = fA because $f \in p$.

1.3. LEMMA. Let (0, t0) be a principal valuation ring with residue field k and quotient field K. Let A be a flat 0-algebra of finite type. Assume that $A_K := K \otimes_0 A$ is K-isomorphic to a one-variable polynomial ring K[x] and that $A_k := k \otimes_0 A$ is a geometrically integral domain over k. Then, A is 0-isomorphic to a one-variable polynomial ring.

Proof. Because A is factorial by Lemma 1.2 (or, rather, because of the

simple fact that $\bigcap_{v \ge 0} t^v A = (0)$, we may assume that $x \in A$ and x is prime to the uniformisant t of \mathfrak{o} . We may write $A = \mathfrak{o}[x, y_1, \dots, y_m]$. Since $A \subset A_K = K[x]$, there exist integers $\alpha(i) \ge 0$ such that

(1)
$$t^{\alpha(i)}y_i = \phi_i(x) := \lambda_{i0} + \lambda_{i1}x + \dots + \lambda_{ir(i)}x^{r(i)}$$

with $\lambda_{ij} \in 0$ for $1 \le i \le m$ and $0 \le j \le r(i)$, where we may assume with each *i* that if $\alpha(i) > 0$ then not all of $\lambda_{i0}, \lambda_{i1}, \ldots, \lambda_{ir(i)}$ are divisible by *t*. Let us put $\alpha_x := \text{Max} \{\alpha(1), \ldots, \alpha(m)\}$. Consider the following assertion:

P(n). If $x \in A$ is found as above with $\alpha_x = n$, then there is some $x_1 \in A$ such that $A = \mathfrak{o}[x_1]$.

We shall prove the assertion P(n) by induction on *n*. P(0) is obviously true. We prove P(n) assuming P(r) to be true for all r < n. By applying the canonical (reduction modulo t) homomorphism $\rho: A \to A/tA = A_k$ to the both sides of (1) for each *i* with $\alpha(i) = \alpha_x$, we get

(2)
$$\rho(\lambda_{i0}) + \rho(\lambda_{i1})\rho(x) + \dots + \rho(\lambda_{ir(i)})\rho(x)^{r(i)} = 0$$

with at least one of the coefficients $\rho(\lambda_{ij}) \neq 0$. Since A_k is an integral domain, the equation (2) is a nontrivial algebraic equation of $\rho(x)$ over k. Since A_k is geometrically integral, the field k is algebraically closed in the quotient field of A_k , whence $\rho(x) \in k$. Let $\mu \in \mathfrak{o}$ be such that $\rho(\mu) = \rho(x)$, and write $x - \mu = t^\beta x'$ with a positive integer β and $x' \in A - tA$. Then, noting $\phi_i(\mu) \in t\mathfrak{o}$ and by substituting $\mu + t^\beta x'$ for x in (1), we obtain, after cancellation of t,

$$t^{\alpha'(i)}y_i \in \mathfrak{o}[x']$$
 for $1 \le i \le m$ and $K[x] = K[x']$

where $\alpha_{x'} = \text{Max} \{ \alpha'(1), \dots, \alpha'(m) \} < n = \alpha_x$. Since $P(\alpha_{x'})$ is assumed to be true, the conclusion of P(n) holds. Q.E.D.

1.4. It is easy to see, as shown in Paragraph 1.5 below, that Theorem 1 follows from Lemma 1.3 in the special case where dim S = 1. In order to prove the theorem over S with dim $S \ge 2$ we need the following:

LEMMA. Let (A, m) be a factorial local ring of dimension ≥ 2 with residue field k. Let R be a flat A-algebra of finite type. Assume that $R_{\mathfrak{p}} := A_{\mathfrak{p}} \otimes_A R$ is $A_{\mathfrak{p}}$ -isomorphic to a one-variable polynomial ring $A_{\mathfrak{p}}[t_{\mathfrak{p}}]$ for every nonmaximal prime ideal \mathfrak{p} of A and that $\overline{R} := R/mR$ is geometrically regular over k. Then, R is A-isomorphic to a one-variable polynomial ring A[t].

Proof. The proof consists of four steps.

(I) Let X := Spec R, S := Spec A and let $\phi: X \to S$ be the flat morphism corresponding to the canonical injection $A \subset R$. ϕ is in fact faithfully flat, and each fibre of ϕ is geometrically regular. Therefore, ϕ is smooth. Since S is normal, this implies that X is normal [3, IV (6.5.4)]. Thus, R is a normal domain.

(II) Let $U := S - \{m\}$. Since R is finitely generated over A and $R_p = A_p[t_p]$ for each $p \in U$, there is $f_p \in A - p$ such that $R[f_p^{-1}] = A[f_p^{-1}][t_p]$, whence we know the existence of an open covering $\mathscr{V} = \{V_i\}_{i \in I}$ of U such that

$$V_i := \operatorname{Spec}\left(A[f_i^{-1}]\right)$$

with $f_i \in A$ and $R[f_i^{-1}] = A[f_i^{-1}][t_i]$ for each $i \in I$. This shows that $X_U := \phi^{-1}(U) = X \times_S U$ can be viewed as an A¹-bundle over U. Set

$$A_i := A[f_i^{-1}], A_{ij} := A[f_i^{-1}, f_j^{-1}] \text{ and } A_{ijl} := A[f_i^{-1}, f_j^{-1}, f_l^{-1}]$$

for $i, j, l \in I$. Since $A_{ij}[t_i] = R[f_i^{-1}, f_j^{-1}] = A_{ij}[t_j]$ and A_{ij} is an integral domain, we get $t_j = \alpha_{ji}t_i + \beta_{ji}$ with units α_{ji} in A_{ij} and $\beta_{ji} \in A_{ij}$ for each pair *i*, *j* of elements of the index set *I*, where, furthermore, the α 's and the β 's are subject to the relations in A_{ijl} that read as follows:

$$\alpha_{li} = \alpha_{lj}\alpha_{ji}$$
 and $\beta_{li} = \alpha_{lj}\beta_{ji} + \beta_{lj}$

Consequently, $\{\alpha_{ij}\}_{(i,j) \in I \times I}$ gives rise to an invertible sheaf \mathscr{L} which one views as an element of $H^1(U, \mathcal{O}_U^*)$. However, $H^1(U, \mathcal{O}_U^*) = (0)$ because (A, \mathfrak{m}) is a factorial domain [5, Exp. XI, 3.5 and 3.10]. Thus, by replacing \mathscr{V} by a finer open covering of U if necessary, we may assume that

(3)
$$t_j = t_i + \beta_{ji}$$
 with $\beta_{ji} \in A_{ji}$ such that $\beta_{li} = \beta_{ji} + \beta_{lj}$ for $i, j, l \in I$.

Hence, $\{\beta_{ij}\}_{(i,j) \in I \times I}$ defines an element $\xi \in H^1(U, \mathcal{O}_U)$.

(III) Consider $X_U = \phi^{-1}(U) = X \times_S U$ and let $Y := X - X_U$. By the local cohomology theory we have the commutative diagram

$$\begin{array}{c} H^{1}(X_{U}, \mathcal{O}_{X}) \cong H^{2}_{Y}(X, \mathcal{O}_{X}) \cong \lim_{n} \operatorname{Ext}^{2}_{R}\left(R/\mathfrak{m}^{n}R, R\right) \\ \uparrow^{\theta_{U}} \qquad \uparrow^{\theta_{\mathfrak{m}}} \qquad \uparrow^{\theta_{\mathfrak{m}}} \qquad \uparrow^{\theta_{A}} \\ H^{1}(U, \mathcal{O}_{S}) \cong H^{2}_{(\mathfrak{m})}(S, \mathcal{O}_{S}) \cong \lim_{n} \operatorname{Ext}^{2}_{A}\left(A/\mathfrak{m}^{n}, A\right) \end{array}$$

where the terms in the upper and lower rows are respectively *R*-modules and *A*-modules, and θ_U , θ_m , and θ_A are homomorphisms induced by the canonical injection $\mathcal{O}_S \hookrightarrow \phi_* \mathcal{O}_X$. (For the definitions and relevant results in local cohomology theory, consult [5] or [6].) Since *R* is *A*-flat and $\underline{\lim}_n$ commutes with $R \otimes_A ?$, we have

$$\lim_{n} \operatorname{Ext}_{R}^{2} (R/\mathfrak{m}^{n} R, R) \cong R \otimes_{A} \lim_{n} \operatorname{Ext}_{A}^{2} (A/\mathfrak{m}^{n}, A)$$

and θ_A is identified with the homomorphism $u \mapsto 1 \otimes u$ for u belonging to $\lim_{n} \operatorname{Ext}_A^2(A/\mathfrak{m}^n, A)$. Since R is A-flat, θ_A is then injective. The commutative diagram above shows, hence, that θ_U is injective. On the other hand, X_U has an open covering $\phi^{-1}(\mathscr{V}) = \{\phi^{-1}(V_i); i \in I\}$, and the element $\theta_U(\xi) \in H^1(X_U, \mathcal{O}_X)$ is represented by a Čech 1-cocycle $\{\beta_{ij}\}$ with respect to $\phi^{-1}(\mathscr{V})$. The relation (3) implies that $\{\beta_{ij}\}$ is in fact a 1-coboundary because

$$t_i \in \Gamma(\phi^{-1}(V_i), \mathcal{O}_X) = A_i[t_i].$$

Thus, $\theta_U(\xi) = 0$, and we find $\xi = 0$ because θ_U is injective. It follows that X_U has a section and is, in fact, a trivial A^1 -bundle A_U^1 .

(IV) Replacing \mathscr{V} by a finer open covering of U if necessary, we may assume that $\beta_{ji} = \gamma_j - \gamma_i$ with $\gamma_i \in A_i$ for all $i, j \in I$. Then, $t_i - \gamma_i = t_j - \gamma_j$ for all i and all j, so if we put $t := t_i - \gamma_i$ then $t \in \Gamma(X_U, \mathcal{O}_X)$. On the other hand, since codim $(Y, X) \ge 2$ and R is normal, \mathcal{O}_X is Y-closed [3, IV (5.10.5)]. Hence, $t \in \Gamma(X_U, \mathcal{O}_X) = \Gamma(X, \mathcal{O}_X) = R$. Now, look at the A-subalgebra A[t] of R, and let Z := Spec (A[t]). Then, ϕ decomposes as

$$X \xrightarrow{\phi_1} Z \xrightarrow{\phi_2} S.$$

where ϕ_1 and ϕ_2 are the morphisms corresponding to the injections $A \subseteq A[t] \subseteq R$. By step (III), $R_p = A_p[t]$ for each $p \in U$. This implies that $\phi_1|_U: X_U \to \phi_2^{-1}(U) = Z \times_S U$ is a U-isomorphism. Notice that \mathcal{O}_Z is $(Z - \phi_2^{-1}(U))$ -closed because codim $(Z - \phi_2^{-1}(U), Z) \ge 2$ and Z is normal. Then we have

$$A[t] = \Gamma(Z, \mathcal{O}_Z) = \Gamma(\phi_2^{-1}(U), \mathcal{O}_Z) \cong \Gamma(X_U, \mathcal{O}_X) = R,$$

O.E.D.

an isomorphism given by $(\phi_1|_U)^*$. Therefore, R = A[t].

1.5. Proof of Theorem 1. Since ϕ is affine, it suffices clearly to prove the theorem under the hypothesis that X and S are affine schemes. The proof consists of two steps.

(I) Let $A := \Gamma(S, \mathcal{O}_S)$ and $R := \Gamma(X, \mathcal{O}_X)$. The homomorphism $A \to R$ induced by ϕ is injective, and makes R a flat A-algebra of finite type. For each prime ideal \mathfrak{p} of A, let $R_{\mathfrak{p}} := A_{\mathfrak{p}} \otimes_A R$. By induction on n := height (\mathfrak{p}) we shall establish the following assertion:

P(n). R_{p} is a one-variable polynomial ring over A_{p} provided p is of height n.

Indeed, P(0) follows from the assumption of the theorem. As for P(1), A_p is a principal valuation ring in that case, so the assertion is supported by Lemma 1.3. We now prove P(n) assuming P(r) to hold for every r < n. To simplify notations let us write R and A instead of R_p and A_p , respectively. Now, A is a factorial local ring of dimension ≥ 2 with maximal ideal m. By virtue of [3, II (7.1.7)] one can find a principal valuation ring o such that the quotient field K of o agrees with that of A and that o dominates A. Then $o \otimes_A R$ is a flat o-algebra of finite type, $K \otimes_o (o \otimes_A R) = K \otimes_A R$ is a one-variable polynomial ring over K, and

$$(\mathfrak{o}/t\mathfrak{o}) \otimes_{\mathfrak{o}} (\mathfrak{o} \otimes_{A} R) = (\mathfrak{o}/t\mathfrak{o}) \otimes_{A/\mathfrak{m}} (R/\mathfrak{m}R)$$

is geometrically integral, where t is a uniformisant of \mathfrak{o} . By Lemma 1.3, $\mathfrak{o} \otimes_A R$ is then a one-variable polynomial ring over \mathfrak{o} . It follows that $(\mathfrak{o}/t\mathfrak{o}) \otimes_{A/\mathfrak{m}} (R/\mathfrak{m}R)$ is geometrically regular and, consequently, $R/\mathfrak{m}R$ is geometrically regular over A/\mathfrak{m} . This observation and P(r) for $0 \le r < n$ together imply that

666

A and R satisfy all assumptions in Lemma 1.4. Thus, by that lemma, we conclude that R is a one-variable polynomial ring over A.

(II) Since R is finitely generated over A, step (I) implies that for each prime ideal \mathfrak{p} of A there exists an element $f \in A$ such that $f \notin \mathfrak{p}$ and $R[f^{-1}]$ is a one-variable polynomial ring over $A[f^{-1}]$. Thus, for the Zariski open set $U_f := \operatorname{Spec} (A[f^{-1}]) \subseteq S$, an isomorphism $X \times_S U_f = A^1 \otimes_Z U_f$ obtains, and S is clearly covered by finitely many such U_f 's. This completes the proof of Theorem 1.

2. Proof of Theorem 2

2.1. Let k be a field. A k-scheme X is called a form of A^1 over k, or simply a k-form of A^1 , if for an algebraic extension field k' of k there exists a k'-isomorphism $X \otimes_k k' \cong A_k^1 \otimes_k k' = A_{k'}^1$. When that is so, there is a purely inseparable extension field k'' of k such that $X \otimes_k k''$ is k''-isomorphic to $A_{k''}^1$. It is obvious that, for a k-scheme X and an algebraic extension field k' of k, X is a k-form of A^1 if and only if $X \otimes_k k'$ is a k'-form of A^1 . A k-form of A^1 is evidently an affine smooth k-scheme. A k-form of A^1 may be characterized as a one-dimensional k-smooth scheme of geometric genus zero having exactly one purely inseparable point at infinity. For detailed study on k-forms of A^1 , see [7, Section 6] and [8].

2.2. A key result to prove Theorem 2 is the following:

LEMMA. Let k be a field of characteristic $p \ge 0$, let S be a geometrically integral k-scheme of finite type, and let $\phi: X \to S$ be an affine, flat morphism of finite type. Assume that the general fibres of ϕ are forms of \mathbf{A}^1 over their respective residue fields at the base scheme S. Then, the generic fibre X_K is a K-form of \mathbf{A}^1 , where K denotes the function field of S over k. If in particular p = 0, X_K is K-isomorphic to \mathbf{A}_K^1 .

Proof. The proof consists of four steps.

(I) Let \overline{k} be an algebraic closure of k. Let

$$\overline{S} := S \otimes_k \overline{k}, \quad \overline{X} := X \otimes_k \overline{k} \text{ and } \overline{\phi} := \phi \otimes_k \overline{k}.$$

Then \overline{S} is an integral \overline{k} -scheme, and the general fibres of $\overline{\phi}$ are \overline{k} -isomorphic to $\mathbf{A}_{\overline{k}}^1$. The stated conditions for ϕ are clearly present for $\overline{\phi}$, too. Let $\overline{K} := \overline{k} \otimes_k K$. As remarked in 2.1, the generic fibre X_K of ϕ is a K-form of \mathbf{A}^1 if and only if the generic fibre $\overline{X}_{\overline{K}}$ of $\overline{\phi}$ is a \overline{K} -form of \mathbf{A}^1 . These observations show that in proving the lemma at hand we may assume from the outset that k is algebraically closed and that the general fibres are k-isomorphic to \mathbf{A}_k^1 . Furthermore, we may assume with no loss of generality that S is smooth over k because the set of all k-smooth points of S is a nonempty open set. We shall assume these additional conditions in the steps that follow.

(II) Let C denote the generic fibre X_K of ϕ . C is an affine curve over K, whose function field K(C) is a regular extension field of K [3, IV (9.7.7), III (9.2.2)]. For each positive integer n we let $K_n := K^{p^{-n}}$. If p = 0, K_n is understood to mean K for every n. By virtue of [2, Theorem 5, p. 99], there exists a positive integer N such that a complete K_N -normal model of $K_N(C) := K_N \otimes_K K(C)$ is smooth over K_N . We fix such an N once and for all. Let S_N be the normalization of S in K_N . Since S is smooth over k and k is algebraically closed, S_N is smooth over k and the normalization morphism $S_N \to S$ is identified with the Nth power of the Frobenius morphism of S_N .

(III) Let \tilde{C}_N be a complete normal model of $K_N(C)$ over K_N . Then, \tilde{C}_N is a smooth projective curve over K_N . Thus, \tilde{C}_N is a closed subscheme in the projective space $\mathbf{P}_{K_N}^m$ defined by a finite set of homogeneous equations

$$\{f_{\lambda}(X_0,\ldots,X_m)=0;\ \lambda\in\Lambda\}.$$

One can then find a nonempty open set U of S_N such that all the coefficients of all f_{λ} 's, as elements of $K_N = k(S_N)$, are defined on U. Let \tilde{X}_N be the closed subscheme of $\mathbf{P}_k^m \times_k U$ defined by the same set of homogeneous equations

$$\{f_{\lambda}(X_0,\ldots,X_m)=0;\,\lambda\in\Lambda\},\$$

and let $\tilde{\phi}_N: \tilde{X}_N \to U$ be the projection onto U. The generic fibre of $\tilde{\phi}_N$, which coincides with \tilde{C}_N , is geometrically regular. Applying the generic flatness theorem [3, IV (6.9.1)] and the Jacobian criterion of smoothness, we may assume, by shrinking U to a smaller nonempty open set if need be, that $\tilde{\phi}_N$ is smooth over U. Now, look at the morphism $\phi_N: X_N := X \times_S U \to U$ obtained from $\phi: X \to S$ by the base change $U \to S$. Since \tilde{C}_N is a completion of the generic fibre $C_N := C \otimes_K K_N$ of ϕ_N , we have a birational U-mapping $\psi_N: X_N \to \tilde{X}_N$ such that $\phi_N = \tilde{\phi}_N \psi_N$. Since ψ_N is everywhere defined on C_N , we may assume, by replacing U by a smaller open set if necessary, that $\psi_N: X_N \to \tilde{X}_N$ is an open immersion of U-schemes.

(IV) It now suffices to show that X_K is a K-form of A¹ under the following additional hypotheses:

(i) There exist a projective smooth morphism $\tilde{\phi}: \tilde{X} \to S$ and an open immersion $\psi: X \to \tilde{X}$ such that $\phi = \tilde{\phi}\psi$.

(ii) Every closed fibre of ϕ is k-isomorphic to A_k^1 .

Then, every closed fibre of $\tilde{\phi}$ is k-isomorphic to \mathbf{P}_k^1 by virtue of conditions (i) and (ii). Since $\tilde{\phi}$ is faithfully flat and arithmetic genus is invariant under flat deformations [4, Exp. 221, p. 5], [3, III, Section 7], we have the arithmetic genus $p_a(\tilde{X}_K) = 0$ for the generic fibre \tilde{X}_K of $\tilde{\phi}$, which is a smooth projective curve defined over K. We shall next show that $\tilde{X}_K - \psi(X_K)$ has only one point and that point is purely inseparable over K. Let η be a point on $\tilde{X}_K - \psi(X_K)$ and let T be the closure of η in \tilde{X} . Then, $T \subseteq \tilde{X} - \psi(X)$, the restriction $\tilde{\phi}_T$: $T \to S$ of $\tilde{\phi}$ onto T is a dominating morphism, and deg $\tilde{\phi}_T = [K(\eta): K]$. Notice that $\tilde{\phi}_T$ is a generically one-to-one morphism because for each closed point P on S,

$$\widetilde{\phi}_T^{-1}(P) \subseteq \widetilde{\phi}^{-1}(P) - \psi \phi^{-1}(P) = \mathbf{P}_k^1 - \mathbf{A}_k^1 = \{\text{one point}\}.$$

This implies that $\tilde{\phi}_T$ is a birational morphism if p = 0 and a radical morphism if p > 0. Thus, $K(\eta)$ is purely inseparable over K. If η' is a point of $\tilde{X}_K - \psi(X_K)$ distinct from η , let T' be the closure of η' in \tilde{X} . Then, $T' \subseteq \tilde{X} - \psi(X)$ and $T \neq T'$. Then, for a general closed point P on S, $\tilde{\phi}^{-1}(P) - \psi \phi^{-1}(P)$ would have two distinct points, and this is a contradiction. Thus, $\tilde{X}_K - \psi(X_K)$ has only one point, and this point is purely inseparable over K. As ψ is an open immersion, this last fact combined with the fact that $p_a(\tilde{X}_K) = 0$ tells us in view of 2.1 that X_K is a K-form of A¹, as desired (cf. [7, 6.7.7]). Q.E.D.

2.3. Now we are able to proceed to the following:

Proof of Theorem 2. Notice that k is assumed to be algebraically closed. Using the same notations as in 2.2 (especially as in step (III)), we know that for a sufficiently large integer N the generic fibre of $\phi_N: X_N \to U$ is $k(S_N)$ -isomorphic to $A_{k(S_N)}^1$, where $k(S_N)$ is the function field of S_N over k. Let $S' := S_N$. Then, S' is a regular, integral k-scheme of finite type and the canonical morphism $S' \to S$ is a faithfully flat, finite, radical morphism. Let $X' := X \times_S S'$ and $\phi' := \phi \times_S S'$. Then, ϕ' is a faithfully flat, affine morphism of finite type, the generic fibre of ϕ' is k(S')-isomorphic to $A_{k(S')}^1$, and every fibre of ϕ' is geometrically integral. Thus, all conditions of Theorem 1 are present for S', X', and ϕ' . Hence X' is an A¹-bundle over S'. If p = 0, it is clear that X is already an A¹-bundle over S. This completes the proof of Theorem 2.

3. Comments and discussions

Various remarks to Theorems 1 and 2 will be given in this section.

3.1. While the affine line A^1 , and hence the one-dimensional additive group G_a , are stable under flat, geometrically integral specializations as shown in the text above, the one-dimensional torus G_m may well be specialized into G_a , as shown by the following:

Example. Let k[x, u, t] := (k[t])[X, U]/(U(1 + tX) - 1), which contains the polynomial ring k[t] in a natural manner. Let

$$\phi \colon G := \operatorname{Spec} (k[x, u, t]) \to A^1 = \operatorname{Spec} (k[t])$$

be the corresponding morphism. The scheme G is made into an A^1 -group scheme through the group law defined by

$$(x, u)(x', u') := (x + x' + txx', uu')$$

Here, the fibre above (t = 0) is G_a , and all other closed fibres as well as the generic fibre are isomorphic to G_m .

3.2. If in the example of 3.1 the base ring k[t] is replaced by the one-variable power series ring k[t], one can see at once that in Theorem 2 the base scheme S must be assumed to be of finite type over k.

3.3. A flat specialization of A^n ($n \ge 2$) is not necessarily isomorphic to A^n , as shown by the next.

Example. Let k be an algebraically closed field, and let C be a smooth affine plane curve of genus > 0 contained as a closed subscheme in $A_k^2 := \text{Spec } (k[x, y])$. Let f(x, y) = 0 be an irreducible equation for C. Let $o := k[t]_{(t)}$ be the local ring of $A_k^1 := \text{Spec } (k[t])$ at t = 0, let K := k(t), and let

$$A := \mathfrak{o}[x, y, z]/(tz - f(x, y)).$$

Let X := Spec (A), S := Spec (o), and let $\phi: X \to S$ be the morphism induced by the natural inclusion $o \hookrightarrow A$. Then, ϕ is a faithfully flat, affine morphism of finite type, the generic fibre X_K of ϕ is isomorphic to A_K^2 , and the closed fibre is *k*-isomorphic to $C \times_k A_k^1$ which could not be isomorphic to A_k^2 . (Flatness of ϕ follows from [3, IV (14.3.8)].)

3.4. In the characteristic zero case we have the following, superficially stronger, version of Theorem 2.

Let k be a field of characteristic zero, let S be a locally factorial, geometrically integral k-scheme of finite type, and let $\phi: X \rightarrow S$ be a faithfully flat, affine morphism of finite type. Assume that every fibre of ϕ is geometrically integral. Then, the following conditions are equivalent to one another:

- (i) X is an A^1 -bundle over S.
- (ii) X is an affine ruled variety over S.
- (iii) The general fibres of ϕ are k-isomorphic to A^1 .
- (iv) The generic fibre of ϕ is k(S)-isomorphic to $A^1_{k(S)}$.

Proof. It is obvious that (i) \Rightarrow (ii) \Rightarrow (iii). (iii) \Rightarrow (iv) follows from Lemma 2.2. (iv) \Rightarrow (i) follows from Theorem 1.

3.5. In the positive characteristic case there can be a flat fibration of a curve in which every closed fibre is A^1 and yet the generic fibre is nonisomorphic to A^1 .

Example. Let $A := k[t] \subseteq R := k[t, X, Y]/(Y^p - X - tX^p)$ be the natural inclusion, and $\phi: X := \text{Spec } (R) \to S := \text{Spec } (A)$ be the corresponding morphism, where k denotes an algebraically closed field of characteristic p > 0. In this example, the generic fibre is a purely inseparable k(t)-form of A^1 studied in our joint works [7, Section 6], [8], while all closed fibres are k-isomorphic to A^1 .

3.6. In the notation of Theorem 2, if S is rational over k, then X is a unirational variety over k. It is an interesting problem to find examples of

670

unirational, irrational varieties by finding fibrations $\phi: X \to S$ as in Theorem 2. This is partially done in [10] by making use of quasielliptic fibrations.

3.7. For a fibration $\phi: X \to S$, the property that a fibre is geometrically integral is not preserved under generalizations, as shown by the following:

Example. Let k be a field, and let

$$A := k[[X, Y]] \quad R := A[T, U]/(X^2T - YU^2 - U - Y)$$

be the natural inclusion mapping. For the maximal ideal m of A, $R/\mathfrak{m}R \cong k[T]$, while for a prime ideal $\mathfrak{p} \subset A$ of height 1 with $X \in \mathfrak{p}$,

$$(A_{\mathfrak{p}}/\mathfrak{p}A_{\mathfrak{p}})\otimes_{A}R\cong (A_{\mathfrak{p}}/\mathfrak{p}A_{\mathfrak{p}})[T, U]/(YU^{2}+U+Y),$$

which is not geometrically integral over $A_{\mathfrak{p}}/\mathfrak{p}A_{\mathfrak{p}}$.

3.8. A very recent announcement of results [12] by Bass, Connell, and Wright is noteworthy. Their main result asserts that every A^n -bundle over an affine scheme in fact arises from a vector bundle over the same base. As a consequence, the A^1 -bundle X in our Theorem 1 above may now be considered a line bundle over S, provided S is affine.

REFERENCES

- B. JU. VEISFEILER AND I. V. DOLGAČEV, Unipotent group schemes over integral rings, Math. USSR-Izvestija, vol. 8 (1974), pp. 761-800 (= English translation of Izv. Akad. Nauk SSSR, Ser. Mat., Tom 38 (1974), no. 4, pp. 757-799).
- 2. C. CHEVALLEY, Introduction to the theory of algebraic functions of one variable, Mathematical Surveys, no. 6, Amer. Math. Soc., New York 1951.
- 3. A. GROTHENDIECK ET J. DIEUDONNÉ, Éléments de Géométrie Algébrique, Publ. Math. I.H.E.S., France, vols. 8, 11, 24, 28, 32, Paris.
- 4. A. GROTHENDIECK, Fondements de la Géométrie Algébrique—extraits du Séminaire Bourbaki, 1957-62, Secrétariat Mathématique, Paris.
- 5. , Séminaire de Géométrie Algébrique (SGA 2), North Holland Publ. Co., Amsterdam, 1968.
- 6. ——, Local cohomology, Lecture Notes in Mathematics, vol. 41, Springer-Verlag, New York, 1967.
- 7. T. KAMBAYASHI, M. MIYANISHI, AND M. TAKEUCHI, Unipotent algebraic groups, Lecture Notes in Mathematics, vol. 414, Springer-Verlag, New York, 1974.
- 8. T. KAMBAYASHI AND M. MIYANISHI, On forms of the affine line over a field, Lectures in Mathematics, Kyoto University, vol. 10, Kinokuniya Book-Store, Ltd., Tokyo, 1977.
- 9. M. MARUYAMA, On classification of ruled surfaces, Lectures in Mathematics, Kyoto University, vol. 3, Kinokuniya Book-Store, Ltd., Tokyo, 1970.
- 10. M. MIYANISHI, On unirational quasielliptic surfaces, to appear.
- 11. M. NAGATA, A remark on the unique factorization theorem, J. Math. Soc. Japan, vol. 9 (1957), pp. 143-145.
- 12. H. BASS, E. H. CONNELL, AND D. L. WRIGHT, Locally polynomial algebras are symmetric algebras, Bull. Amer. Math. Soc., vol. 82 (1976), pp. 719–720.

Northern Illinois University De Kalb, Illinois Osaka University Toyonaka, Osaka, Japan