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ON FLAT FIBRATIONS BY THE AFFINE LINE

BY

T. KAMBAYASHI AND M. MIYANISHI

A recent joint work [1] of Dolgarv and Veisfeiler studies in the main the
geometric structures of unipotent group schemes over an integral ring. As a
natural generalization of their own results the following conjecture is set forth
(see [1, 3.8.3ff]).

Let b: X S be a fiat affine morphism of finite type; assume that S is locally
noetherian, normal and integral, and that the fibre b-l(p) of b above each
point P of S is isomorphic to the affine n-space A" over the residue field x(P)of
P. Then, X is an M-bundle over S relative to the Zariski topology.

In the paper cited above, the authors obtain various results in the direction
of this conjecture while working under the assumption of an S-group scheme
structure on X.

In the present paper we propose to settle the conjecture affirmatively in the
special case where n 1. (It is understood that V. I. Danilov possesses unpub-
lished results to the same effect; cf. [1, 3.8.5].) What we actually prove are the
following two theorems.

THEOREM 1. Let ok" X - S be an affine, faithfully flat morphism offinite type.
Assume that S is locally noetherian, locallyfactorial and inte#ral scheme, and that
the enericfibre ofc is A and all otherfibres are eometrically inte#ral. Then, X
is an A-bundle over S.

THEOREM 2. Let k be an algebraically closed field, let S be a regular, integral
k-scheme offinite type, and let ok: X - S be an affine, faithfully fiat morphism of
finite type. Assume that each fibre of ck is geometrically integral and the general
fibres of ck are isomorphic to A over k. Then, there exist a regular, integral
k-scheme S’ offinite type and afaithfullyflat,finite, radical morphism S’ S such
that X x s S’ is an A-bundle over S’. If in particular the characteristic of k is

zero, X is an A-bundle over S.

A variation of the conjecture above, wherein $ is a curve and A" is replaced
throughout by the projective n-space P", is in fact a proven theorem (see
Maruyama [9, Theorem 0.1]). It seems that the exact relationship between this
variation and the conjecture above stated remains to be clarified.
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I. Proof of Theorem 1

1.1. Let S be a locally noetherian, integral scheme, and let b: X S be an
affine, fiat morphism of finite type. The fibres of q above the closed points ofS
will be referred to as closed fibres, while the fibre above the genetic point of S
will be called the genericfibre. By the generalfibres of we shall mean all fibres
above the closed points belonging to an unspecified nonempty open set of S.
The morphism b: X $, or more conventionally X by itself, is called an affine
ruled variety over S if for every point P on S (including the genetic point)the
fibre b- (P) above P is isomorphic to the affine line Ate) over the residue field
x(P) of P. The morphism b, or again simply X, is said to be an A1-bundle over S
if there exists an open covering {U S} relative to the Zariski topology on S
such that X x s U is isomorphic to the affine line A:, A x z U over U for
all i. A scheme S is said to be locallyfactorial if for every point P on S the local
ring 6%,s is a factorial ring (= a unique factorization domain). A discrete
valuation ring of rank 1 will be called a principal valuation ring.
The proof of Theorem 1 will be given below in several reduction steps.

1.2. We shall begin with the following elementary result, which is a special
case of a theorem of Nagata [11].

LEMMA. Let o be a principal valuation ring and let A be a flat o-algebra of
finite type. Let K be the quotient field of o, a uniformisant ofo and k the residue
field ofo; and let Ar and Ak denote respectively K (R)o A and k (R)o A. Assume that
Ar and Ak are integral domains. Then:

(i)
(ii)

IfAr is a normal ring, so is A.
IfAr is factorial, so is A.

Proof. We shall prove only (ii), as the proof of (i) is a routine exercise. By
flatness there is a natural inclusion o c A, and A is in turn contained in A and
is noetherian. Since Ak is integral, tA is a prime ideal in A and _>o A (0).
Let p be an arbitrary prime of height 1 in A. If p then clearly tA p. In case
t p, the ideal pAr is prime of height 1 in the factorial domain Ar A[t-],
whence pAr =fAr, where we may and shall take f A tA. Let b p be
arbitrary, and write b =fta with integer m and a A- tA. If m < 0, then
fa bt-" tA, an absurdity. Consequently, m > 0 and p

_
fA. It follows that

p fA because f p.

1.3. LEMMA. Let (o, to) be a principal valuation ring with residuefield k and
quotient field K. Let A be a fiat o-al#ebra of finite type. Assume that
AK K (R)o A is K-isomorphic to a one-variable polynomial rin# K[x] and that
Ak k (R)o A is a #eometrically inte#ral domain over k. Then, A is o-isomorphic to
a one-variable polynomial rin#.

Proof. Because A is factorial by Lemma 1.2 (or, rather, because of the
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simple fact that >_o A (0)), we may assume that x A and x is prime to
the uniformisant of o. We may write A o[x, y:, ym]. Since A = Ax
K[x], there exist integers (i) > 0 such that

(1) t={’)y, bi(x):= 2,o + 2,x x + ""+ 2,,{i)x
with 2u e o for 1 < < rn and 0 < j < r(i), where we may assume with each
that if a(i) > 0 then not all of 2o, 2,, 2{) are divisible by t. Let us put

Max {(1), (m)}. Consider the lollowing assertion"

P(n). If x e A is found as above with ,, n, then there is some x, e A such
that A o[x].

We shall prove the assertion P(n) by induction on n. P(0) is obviously true. We
prove P(n) assuming P(r) to be true for all r < n. By applying the canonical
(reduction modulo t) homomorphism p" A -+ A/tA A to the both sides of
(1) for each with (i)= , we get

(2) p(2,o) + p(2,i)p(x) + + p(2i,(o)p(x)"(= 0

with at least one of the coefficients p(2u) 4: 0. Since Ak is an integral domain,
the equation (2) is a nontrivial algebraic equation of p(x)over k. Since Ak is
geometrically integral, the field k is algebraically closed in the quotient field of
Ak, whence p(x) k. Let # o be such that p(#) p(x), and write x # tax
with a positive integer fl and x’ A- tA. Then, noting b(#) to and by
substituting # + tax for x in (1), we obtain, after cancellation of t,

t"ti)y o[x’] for 1 < < m and K[x] K[x’]
where ,, Max {0((1), ’(m)} < n ,. Since P(,,)is assumed to be true,
the conclusion of P(n) holds. Q.E.D.

1.4. It is easy to see, as shown in Paragraph 1.5 below, that Theorem 1
follows from Lemma 1.3 in the special case where dim S 1. In order to prove
the theorem over S with dim S > 2 we need the following"

LEMMA. Let (A, m) be a factorial local rin9 of dimension > 2 with residue
field k. Let R be a flat A-aloebra offinite type. Assume that R,=A (R) A R is

A-isomorphic to a one-variable polynomial rin9 A[t] for every nonmaximal
prime ideal p ofA and that R/mR is geometrically regular over k. Then, R is
A-isomorphic to a one-variable polynomial ring A[t].

Proof The proof consists of four steps.

(I) Let X Spec R, S Spec A and let b: X S be the fiat morphism
corresponding to the canonical injection A R. b is in fact faithfully fiat, and
each fibre of b is geometrically regular. Therefore, b is smooth. Since S is
normal, this implies that X is normal [3, IV (6.5.4)]. Thus, R is a normal
domain.



ON FLAT FIBRATIONS BY THE AFFINE LINE 665

(II) Let U S {m}. Since R is finitely generated over A and Rp Ap[t]
x] A[f- x][t,], whence wefor each p U, there isf A p such that R[f

know the existence of an open coveting {V} of U such that

V Spec (A[f;
with f A and R[f-x] A[fTx][t] for each i I. This shows that
Xv -(U)= X x s U can be viewed as an A-bundle over U. Set

A, A[f ’], A, A[f a,f; ,] and

for i, j, I. Since a o[t] R[f, f] A o{tj] and A is an integral domain,
we get t e t + with units e in Aj and B A for each pair i, j of
elements of the index set I, where, furthermore, the e’s and the ffs are subject to
therelations in At that read as follows"

li ljji and flli ljflji + fllj"

Consequently, (}t, gives rise to an invertible sheaf which one views
as an element of H(U, ). However, H(U, C)= (0) because (A, m)is a
factorial domain [5, Exp. XI, 3.5 and 3.10]. Thus, by replacing by.a finer
open coveting of U if necessary, we may assume that

(3) t t + fl with fl A such that flu fl + fll for i, j, I.

Hence, {flq}t, t defines an element H(U,
(IlI) Consider Xv if-(U)= X x s U and let Y:= X Xv. By the local

cohomology theory we have the commutative diagram

where the terms in the upper and lower rows are respectively R-modules and
A-modules, and Or, 0, and 0a are homomorphisms induced by the canonical
injection s ,Cx. (For the definitions and relevant results in local cohomol-
ogy theory, consult [5] or [6].) Since R is A-flat and , commutes with
R @a ?, we have

Ext R Ext] A)

and 0a is identified with the homomorphism u 1 @ u for u belonng to. Ext (A/m", A). Since R is A-fiat, 0a is then injective. The commutative
diagram above shows, hence, that Ov is injective. On the other hand, Xv has an
open covering 6- x() {6- (); e I}, and the element Ov()
is represented by a ech 1-cocycle {#} with respect to 4- x(). The relation (3)
implies that {fl} is in fact a 1-coboundary because
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Thus, Ov() 0, and we find 0 because Ov is injective. It follows that Xv has
a section and is, in fact, a trivial AX-bundle AXv

(IV) Replacing by a finer open covering of U if necessary, we may
assume that fl 7 with Afor all i,j I. Then, t- 7 t- 7for all
and all j, so if we put t then F(X v, (9 x). On the other hand, since

codim (Y, X)> 2 and R is normal, (gx is Y-closed [3, IV (5.10.5)]. Hence,
t F(Xv, (gx) F(X, (gx) R. Now, look at the A-subalgebra A[t] of R, and
let Z Spec (A[t]). Then, 4) decomposes as

x *--__, z s,
where 4) and kz are the morphisms corresponding to the injections
A C-A[t] R. By step (III), Ro A[t] for each p 6 U. This implies that
c Iv: Xv c (U) Z x s U is a U-isomorphism. Notice that (gz is
(Z b x(u))-closed because codim (Z bf (U), Z) > 2 and Z is normal.
Then we have

A[t] F(Z, (gz)= F(th x(V), (gz) F(XV, (gx)= R,

an isomorphism given by (bx Iv)*. Therefore, R A[t]. Q.E.D.

1.5. Proof of Theorem 1. Since is affine, it suffices clearly to prove the
theorem under the hypothesis that X and S are affine schemes. The proof
consists of two steps.

(I) Let A:=F(S, Cs) and R:=F(X, Cx). The homomorphism AR
induced by b is injective, and makes R a flat A-algebra of finite type. For each
prime ideal p of A, let Ro A, (R) A R. By induction on n height (p) we shall
establish the following assertion:

P(n). Rp is a one-variable polynomial ring over Ap provided p is of height n.

Indeed, P(0) follows from the assumption of the theorem. As for P(1), A is a
principal valuation ring in that case, so the assertion is supported by Lemma
1.3. We now prove P(n) assuming P(r) to hold for every r < n. To simplify
notations let us write R and A instead of R, and Ao, respectively. Now, A is a
factorial local ring of dimension > 2 with maximal ideal m. By virtue of [3, II
(7.1.7)] one can find a principal valuation ring o such that the quotient field K
of o agrees with that of A and that o dominates A. Then o (R)A R is a flat
o-algebra of finite type, K (R) (o (R) a R) K (R) a R is a one-variable polyno-
mial ring over K, and

(R)o (o (R) (R)

is geometrically integral, where is a uniformisant of o. By Lemma 1.3, o (R) a R
is then a one-variable polynomial ring over o. It follows that (o/to)
(R/mR) is geometrically regular and, consequently, R/mR is geometrically
regular over Aim. This observation and P(r) for 0 < r < n together imply that
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A and R satisfy all assumptions in Lemma 1.4. Thus, by that lemma, we
conclude that R is a one-variable polynomial ring over A.

(II) Since R is finitely generated over A, step (I)implies that for each prime
ideal p of A there exists an element f A such that f p and R[f-t] is a
one-variable polynomial ring over A[f-]. Thus, for the Zariski open set

U Spec (A[f-])_ S, an isomorphism X x s Uj.= A (R)z Uobtains, and
S is clearly covered by finitely many such Uj.’s. This completes the proof of
Theorem 1.

2. Proof of Theorem 2

2.1. Let k be a field. A k-scheme X is called aform ofA over k, or simply a
k-form of A, if for an algebraic extension field k’ of k there exists a
k’-isomorphism X (R)k k’ A (R)k k’= A,. When that is so, there is a purely
inseparable extension field k" of k such that X (R)k k" is k"-isomorphic to A,,. It
is obvious that, for a k-scheme X and an algebraic extension field k’ of k, X is a
k-form ofA if and only ifX (R)k k’ is a k’-form ofA. A k-form ofA is evidently
an affine smooth k-scheme. A k-form of A may be characterized as a one-
dimensional k-smooth scheme of geometric genus zero having exactly one
purely inseparable point at infinity. For detailed study on k-forms ofA 1, see [7,
Section 6] and [8].

2.2. A key result to prove Theorem 2 is the following"

LEMMA. Let k be a field of characteristic p > 0, let S be a geometrically
integral k-scheme offinite type, and let dp X --. S be an affine, flat morphism of
finite type. Assume that the generalfibres of 49 areforms ofA over their respec-
tive residuefields at the base scheme S. Then, the generic fibre Xr is a K-form of
A 1, where K denotes the function field of S over k. If in particular p O, Xr is
K-isomorphic to Ak.

Proof. The proof consists of four steps.

(I) Let -be an algebraic closure of k. Let

:-" S (k X X (k ] and :’--(()k ’.

Then S is an integral k--scheme, and the general fibres of are --isomorphic to

Ak. The stated conditions for tk are clearly present for , too. Let/( -()k K.
As remarked in 2.1, the generic fibre Xr of is a K-form ofA if and only if the
generic fibre.e of is a/(-form ofA 1. These observations show that in proving
the lemma at hand we may assume from the outset that k is algebraically closed
and that the general fibres are k-isomorphic to Ak. Furthermore, we may
assume with no loss of generality that S is smooth over k because the set of all
k-smooth points of S is a nonempty open set. We shall assume these additional
conditions in the steps that follow.
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(II) Let C denote the genetic fibre Xr of b. C is an affine curve over K,
whose function field K(C) is a regular extension field of K [3, IV (9.7.7), III
(9.2.2)]. For each positive integer n we let K, Kp-". If p 0, K, is understood
to mean K for every n. By virtue of [2, Theorem 5, p. 99], there exists a positive
integer N such that a complete Ks-normal model of Ks(C) Ks(R)r, K(C)is
smooth over Ks. We fix such an N once and for all. Let Su be the normaliza-
tion of S in Kw. Since S is smooth over k and k is algebraically closed, Ss is
smooth over k and the normalization morphism Su S is identified with the
Nth power of the Frobenius morphism of Ss.

(III) Let ts be a complete normal model of Ks(C) over Ks. Then, (s is a
smooth projective curve over Ks. Thus, (s is a closed subscheme in the projec-
tive space PN defined by a finite set of homogeneous equations

{f (Xo, Xm)= 0; A}.
One can then find a nonempty open set U of Su such that all the coefficients of
all f’s, as elements of Ks k(Ss), are defined on U. Let s be the closed
subscheme of P’ x k U defined by the same set of homogeneous equations

{fz(Xo, X,,)= O; 2 e A},
and let s: -’s U be the projection onto U. The generic fibre of s, which
coincides with (s, is geometrically regular. Applying the generic flatness
theorem [3, IV (6.9.1)] and the Jacobian criterion of smoothness, we may
assume, by shrinking U to a smaller nonempty open set if need be, that s is
smooth over U. Now, look at the morphism b: X X x s U --. U obtained
from tk’X S by the base change U S. Since (s is a completion of the
genetic fibre Cs:=C(R)K Ks of bs, we have a birational U-mapping
N" XN . such that thu uqs. Since N is everywhere defined on Cs, we
may assume, by replacing U by a smaller open set if necessary, that
qu: Xu . is an open immersion of U-schemes.

(IV) It now suffices to show that Xr is a K-form of A under the following
additional hypotheses"

(i) There exist a projective smooth morphism " S and an open im-
mersion q’S . such that

(ii) Every closed fibre of b is k-isomorphic to A.
Then, every closed fibre of is k-isomorphic to P by virtue of conditions (i)
and (ii). Since is faithfully flat and arithmetic genus is invariant under flat
deformations [4, Exp. 221, p. 5], [3, III, Section 7], we have the arithmetic genus
p,(.r) 0 for the generic fibre .17 of , which is a smooth projective curve
defined over K. We shall next show that .17 (Xr.) has only one point and
that point is purely inseparable over K. Let q be a point on .K q(Xr) and let
T be the closure of r/in .. Then, T

___
if(X), the restriction T: T --. S of

onto T is a dominating morphism, and deg r [K(r/)" K]. Notice that ris a
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generically one-to-one morphism because for each closed point P on S,

(P)
_
-(P)- /b-(P) PR A {one point}.

This implies that T is a birational morphism if p 0 and a radical morphism
if p > 0. Thus, K(r/) is purely inseparable over K. If r/’ is a point of. (X)
distinct from r/, let T’ be the closure of r/’ in . Then, T’ c_ - (X) and
T 4: T’. Then, for a general closed point P on S, -(P- b- (P) would have
two distinct points, and this is a contradiction. Thus, Xr (Xr) has only one
point, and this point is purely inseparable over K. As is an open immersion,
this last fact combined with the fact that p,(r) 0 tells us in view of 2.1 that
Xr is a K-form of A, as desired (cf. [7, 6.7.7]). Q.E.D.

2.3. Now we are able to proceed to the following:

Proof of Theorem 2. Notice that k is assumed to be algebraically closed.
Using the same notations as in 2.2 (especially as in step (III)), we know that for
a sufficiently large integer N the generic fibre of bn: XnU is
k(Sn)-isomorphic to AktS), where k(Sn) is the function field of Sn over k. Let
S’ Sn. Then, S’ is a regular, integral k-scheme of finite type and the canonical
morphism S’ S is a faithfully fiat, finite, radical morphism. Let X’ X x s S’
and b’ b x s S’. Then, b’ is a faithfully fiat, affine morphism of finite type, the
generic fibre of q’ is k(S’)-isomorphic to AktS,), and every fibre of @’ is geomet-
rically integral. Thus, all conditions of Theorem 1 are present for S’, X’, and
Hence X’ is an A-bundle over S’. If p 0, it is clear that X is already an
A:-bundle over S. This completes the proof of Theorem 2.

3. Comments and discussions

Various remarks to Theorems 1 and 2 will be given in this section.

3.1. While the affine line A, and hence the one-dimensional additive group
G, are stable under fiat, geometrically integral specializations as shown in the
text above, the one-dimensional torus Gm may well be specialized into G, as
shown by the following:

Example. Let k[x, u, t] (k[t])[X, U]/(U(1 + tX)- 1), which contains the
polynomial ring k[t] in a natural manner. Let

b: G Spec (k[x, u, t])- A Spec (kit])

be the corresponding morphism. The scheme G is made into an A-group
scheme through the group law defined by

(x, u)(x’, u’)’= (x + x’ + txx’, uu’).
Here, the fibre above (t O) is G, and all other closed fibres as well as the
generic fibre are isomorphic fo GI.
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3.2. If in the example of 3.1 the base ring kit] is replaced by the one-variable
power series ring kt, one can see at once that in Theorem 2 the base scheme S
must be assumed to be of finite type over k.

3.3. A fiat specialization of A" (n > 2) is not necessarily isomorphic to A, as
shown by the next.

Example. Let k be an algebraically closed field, and let C be a smooth affine
plane curve of genus >0 contained as a closed subscheme in
Ak2 .’=Spec (k[x, y]). Let f(x, y)= 0 be an irreducible equation for C. Let
o k[t](,) be the local ring of Ak Spec (kit]) at 0, let K k(t), and let

A o[x, y, z]/(tz-f(x, y)).
Let X Spec (A), S Spec (o), and let : X S be the morphism induced by
the natural inclusion o c_, A. Then, tk is a faithfully flat, affine morphism of finite
type, the genetic fibre Xr of b is isomorphic to A, and the closed fibre is
k-isomorphic to C Ak which could not be isomorphic to Ak2. (Flatness of
follows from [3, IV (14.3.8)].)

3.4. In the characteristic zero case we have the following, superficially
stronger, version of Theorem 2.

Let k be a field ofcharacteristic zero, let S be a locallyfactorial, geometrically
inteoral k-scheme offinite type, and let ok: X S be afaithfully fiat, affine mor-
phism offinite type. Assume that everyfibre ofp is 9eometrically integral. Then,
the following conditions are equivaleht to one another:

O)
(ii)
(iii)
(iv)

X is an At-bundle over S.
X is an affine ruled variety over S.
The general fibres of are k-isomorphic to At.
The generic fibre of ck is k(S)-isomorphic to A(s).

Proof It is obvious that (i) (ii) (iii). (iii) (iv) follows from Lemma
2.2. (iv)= (i)follows from Theorem 1.

3.5. In the positive characteristic case there can be a flat fibration of a curve
in which every closed fibre is At and yet the genetic fibre is nonisomorphic to
A

Example. Let A k[t] c_,R kit, X, Y]/(Y- X tX) be the natural
inclusion, and b: X Spec (R) S Spec (A) be the corresponding
morphism, where k denotes an algebraically closed field of characteristic p > 0.
In this example, the genetic fibre is a purely inseparable k(t)-form ofA studied
in our joint works [7, Section 6], [8], while all closed fibres are k-isomorphic to
A 1"

3.6. In the notation of Theorem 2, if S is rational over k, then X is a
unirational variety over k. It is an interesting problem to find examples of
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unirational, irrational varieties by finding fibrations b" X - S as in Theorem 2.
This is partially done in [10] by making use of quasielliptic fibrations.

3.7. For a fibration tk" X--. S, the property that a fibre is geometrically
integral is not preserved under generalizations, as shown by the following"

Example. Let k be a field, and let

A ,=k.X, Y- R,=A[T, U]/(X2T YU2- U- Y)
be the natural inclusion mapping. For the maximal ideal m of A, R/mR - kiT],
while for a prime ideal p A of height 1 with X p,

(Av/pAv) (A R - (Av/pAv)[T, U]/(YU2 + U + Y),
which is not geometrically integral over A/pAv.

3.8. A very recent announcement of results [12] by Bass, Connell, and
Wright is noteworthy. Their main result asserts that every A-bundle over an
affine scheme in fact arises from a vector bundle over the same base. As a
consequence, the A-bundle X in our Theorem 1 above may now be considered
a line bundle over S, provided S is affine.
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