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ASYMPTOTIC EXPANSIONS FOR THE COMPACT QUOTIENTS
OF PROPERLY DISCONTINUOUS GROUP ACTIONS

BY

HAROLD DONNELLY

1 Introduction

Let M be a connected Riemannian manifold and F a group acting
isometrically, effectively, and properly discontinuously on M with compact
quotient space M F\M. The orbit space M is not necessarily a manifold.
Suppose that r" M--> M denotes the associated projection. A function f
defined on /(/ is said to be of class CZ(//) if r CZ(M). Since F acts
isometrically, the Laplacian A of M is F-invariant and A induces an operator
on C(hT/).
The Laplacian has a self-ad]oint extension to L(hT/) with pure point

spectrum -< he-< ’- Our main result, Theorem 4.8, is the asymptotic
formula as $ 0:

e-’X,---(4crt)-"nY a,t’
i=l =0

where n dim (M). Here ao vol (M), the volume of M. The higher order
terms ai may be computed by the method of the author’s earlier paper [5].

If M G/K, a symmetric space, and F c G is as above, then the first term
of our asymptotic formula was obtained by N. Wallach [13]:

)". e-’x,-- (4rt)-"n vol (/Qr).

His method relied on the algebraic fact that for symmetric spaces the
F-action may be factored through a finite group action on a compact
Riemannian manifold [3]. As shown below, this technique is not available in
the general case, when M need not be symmetric.
The author thanks John Boardman for helpful conversations during the

development of this work.
The results of this paper generalize easily to the Laplacian with coeffi-

cients in a bundle.

2 Properly discontinuous actions

Let M be a cOnnected manifold and F a group acting differentiably and
properly discontinuously on M with compact quotient M F\M. Recall that
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486 HAROLD DONNELLY

a group is said to act properly discontinuously if each compact set in M
intersects only a finite number of its translates.
We will need to use some elementary facts concerning properly discon-

tinuous actions [3]"

PROPOSITION 2.1. There is a relatively compact open set C in M such that
FC=M.

PROPOSITION 2.2. The group F is finitely generated. In particular F is a
countable set.

One may apply Proposition 2.1 to construct a F-invariant Riemannian
metric on M. We now assume that M is endowed with a suitable metric so
that F acts by isometrics.
A function 4(x) C(M) such that for all x M one has Y.r 4(/x) 1 is

called a partition of unity relative to F. To obtain such a 4, let C(M) be
a non-negative function whose support contains C with FC M, as in
Proposition 2.1. Then choose

(x)

We may define a measure on M by using a partition of unity relative to F:

DEFINrrlON 2.3. Let f be a continuous function on M and a partition
of unity relative to r. Then set f()d=Mc(x)f(x)dx where
r" M--+ M is the usual projection. The integral on the right is taken with
respect to the measure induced by the Riemannian metric of M.

Properly discontinuous actions on symmetric spaces M=G/K were
studied in [3]. A subgroup F c G is discrete if and only if it acts properly
discontinuously on M [3, p. 112]. If M r\G/K is compact then r has a
normal subgroup Fo of finite index so that Fo\G/K is a manifold M’.
Consequently, the projection =’M-M factors as r=rlr2 where
"trx: M’--> M, "/r2: M--+ M’. In particular, M is the orbit space of the finite
group r/ro acting on the manifold M’.

It will be important to see that not every projection r: M-- M, associated
to a properly discontinuous action, factors through a finite group action on a
compact manifold. This fact follows from Propositions 2.4, 2.5 below. For
the construction of these examples, the author is indebted to John
Boardman.

PROPOSITION 2.4. There exists a finitely generated group r and an element
to F such that:

(i) o3= 1
(ii) Any subgroup of finite index in F contains to.
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Proof. We may take F to be the subgroup of permutations of the integers
generated by a,/3 where a is the shift a(]) j + 1 and/3 is the cycle/3(1) 2,
/3(2)= 1, /3(])= if ]: 1, 2.
The group F contains as a normal subgroup the infinite alternating group

A which is generated by all three cycles. Now let R c F be any subgroup of
finite index, IF: R]<0. Intersecting R with all its conjugates we find a
normal subgroup P c F with IF: P] < 0% p c R. By the Second Isomorphism
Theorem of Group Theory [11, p. 26] one has

A AP
Pf3A P

So [A-P fq AJ< o. Since A is simple [11, p. 46] this forces A P tqA, so
A c P. Let to be the three-cycle (1 2 3).
Suppose that H is a cyclic group of order p with generator to. Then H acts

on the standard sphere S(2k) by

o z, (ox z,
\ p /

where we regard S(2k) as the set of points (z,x)CR satisfying
[z[+ xz= 1. If k > 1, the orbit space H\S(2k) is not a manifold. This is
because of the fixed points (0, +1) for the H action on S(2k).

PRoeosrrIo 2.5. Let F be a finitely generated group containing a cyclic
group H of order p. Then F acts properly discontinuously on a connected
2k-manifold M with F\M not a manifold.

Proof. Let {hH} be an enumeration of the cosets of H in F. We may
assume that the /, i-< l, generate F.
Suppose that X is the countable disjoint union of copies of S S(2k),

indexed by the various cosets hH. Then F acts on X by /(s, /H)=
(’/?l’yiS 6H) for /hH 6H and s S. Clearly F\X H\S.
One obtains M by adding suitable tubes to X. Choose 21 points O,

1 <_i<_21, on S-(0, +1) so that no two O lie in the same orbit of H. For
<- cut out a small neighborhood of O, hO+t and join (S, 1) to (S, h) by a

basic tube starting about O and ending about /O/t. Now add in all F
translates of these basic tubes, near the translates of O. This gives a
connected manifold M and the F action extends in a natural way. The orbit
space F\M is H\S with tubes attached away from the singular points.
Using Propositions 2.4, 2.5 together one deduces’.

PROPOSITION 2.6. There exists a properly discontinuous action of a group r
on a connected manifold M so that the pro]ection r: M ---, F\M does not factor
as r rr2 where (i) r2 is the projection associated to a regular covering
M M’ with deck group Fo c F ojf finite index and (ii) r is the pro]ection
associated to the action of the finite group F/Fo on M’.
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3 Heat equation--the total space

P3.
P4.

The usual construction of a fundamental solution for the heat equation
[1, pp. 204-215] uses repeatedly the hypothesis that one is working on a
compact manifold. However, if M is any connected Riemannian manifold
admitting a properly discontinuous group of isometrics F with compact
quotient F\M, the method of [1] with small modifications gives a good
fundamental solution on M. The main point is that M FC with C relatively
compact, according to Proposition 2.1, and this fact can be utilized to obtain
the necessary estimates.
Let A be the Laplacian for M. A function E(t, x, y) on (0,)M M is

called a fundamental solution of the heat equation if it satisfies the following
properties:

P1. E(t, x, y) is C in and C2 in (x, y).
P2. (O/Ot + A2)E(t, x, y)=0 where A2 is the Laplacian acting in the sec-

ond variable.
lim,_o E(t, x, y)= $(x, y) where (x, y) is the Dirac measure.
For T> 0 arbitrary and 0 < t--< T one has, when M is of dimension

Ct-n/2--- (.-d2(x, Y))[[d,d,dE(t, x, y)ll < exp
4t

for 0--< i, , k _< 1 and d denoting the exterior derivative. Here C1 depends
only on T.

We now outline the construction of E by following through the steps in
[1, pp. 204-215] but indicating the necessary modifications since M may not
be compact. Since M FC with C relatively compact, we may choose e > 0
so that d(x, y)< e implies that y lies in a normal coordinate neighborhood of
X.

II we let U {(x, y) M M d(x, y) < e) and r d(x,.y) then we may
define

S,(t,x,y)=(4"rrt)-"/2exp(---) .
i=O

where u(x, y) are smooth functions on U. We obtain a parametrix for
E(t, x, y) by requiring the u to satisfy:

Uo(X, x)= 1,

’u-- + ()u=O’or(3.1)

4- u +- Au_t O.
Or 0 r/ r.

for i_> 1. Here we use the notation of [1, p..208]. The equations (3.!)



ASYMPTOTIC EXPANSIONS FOR COMPACT QUOTIENTS 489

guarantee that

-+A2 S(t, x, y) (4’)-’t-"2

Let C(Mx M) be equal to 1 on U.14 and 0 on MxM- Ue,[2. Then if
Hz IS, l> n/2, the function Hz is a parametrix for E, using the terminol-
ogy of [1, p. 209].
For A, B C((0, oo) xMx M), one defines

A B(t, x, y)= I dsLA(s, x, z)B(t-s, z, y) dz

where the interior integral is with respect to the volume element induced by
the Riemannian metric of M. To guarantee convergence of the integral we
may assume that for each fixed y the functions Bt (z, y) B (t, z, y) are all
supported in a fixed compact set for z. We will use the notation A*
A A A... A where the convolution is taken ] times.
Now set R(t, x, y) (O/Ot + A2)H(t, x, y).

LEMMA 3.2. If l>n/2 then the function Q==I (-1)i/lR*i is well

defined and lies in C" ((0, oo) M M) for m < n/2. Moreover, one has,
when 0 < <- T, estimate

y))IO(t, x, y)[-< C2t-"/2 exp \ 4t

Proof. Let V be an upper bound on the volume of a ball of radius e in
M. Using the elementary inequality

dZ(x, z) dZ(x, y) dZ(y, z)_< 0<s<t
4t 4s 4(t-s)

which follows from the triangle inequality, and the argument of [1, p. 212]
one shows that

C3tl-n/2+i-lfJ4-1 wJ-1 Y))IR* (t’ x’ Y)l<--(l n n .-- exp("d2(x:
-+1)...(/-+1--1) 4t

for j--> 2. Similarly one estimates the derivatives of the R*. The lemma
follows.
A fundamental solution for the heat equation is obtained by setting

E H-Qz * H. Moreover, we have:

T-IEOREM 3.3. Let M be a connected Riemannian manifold which admits
a properly discontinuous group of isometrics F with compact quotient F\M.
There is a unique fundamental solution E(t, x, y) for the heat equation on M.
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In fact E(t, x, y) is contained in

C((O, oo) xMxM)

and E satisfies E(t, x, y)= E(t, y, x). One has an asymptotic expansion

E(t,x, y)-(4rt)-/2exp[-771 tiut(x, y)

valid on a suciently small neighborhood of the diagonal in Mx M. Further-
more, E(t, x, y) satisfies the semigroup proper E(t + s, x, y)
$ E(t, x, z)E(s, z, y) dz.

Proof. The main point is to establish the uniqueness. Let E, E2 be 0
undamental solutions or the heat equation. Set F2(t, x, y)=E(t, y,x).
Following [10, p. 49], we may ite

F:(t, x, y)-E(t, x, y)

a F(, x, z)(t-, z, y) az

This shows the uniqueness and smetw N(t, x, y)= N(t, y, x).
If is sucienfly large in the above construction one deduces

s c ((0, ) xMxM)

for any given m. So uniqueness shows that N C((0, ) xMx M). e
asptotic expansion and semioup property follow simarly from unique-

4 Heat equationmthe quotient space

Suppose that the group F acts properly discontinuously and isometrically
on the Riemannian manifold M with compact quotient M=F\M. Let
r" M--M denote the projection. Since F does not necessarily act freely, M
may not be a manifold. However, we can define C (//) by setting a function
f C(//) if and only if f r C(M). Since F acts isometrically on M, the
Laplacian A o M is F-invariant. Thus A induces an operator on C2(/
which we call the Laplacian o M.
A fUnction E on (0, ) xM M is said to be a fundamental solution for

the heat equation on M if E satisfies properties analogous to P1, P2, P3 of
Section 3. To obtain E one takes, the fundamental solution E on M and
sums over F to obtain a F-invariant expression. This requires some esti-
mates-
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LE/m 4.1. Let M be a manifold whose sectional curvatures are bounded
rom below by D1. Then i[ B(x,r) is any ball o[ radius r in M, i.e.
B(x, r)--{yMI d(x, y)<r}, [or some xM, one has vol (B(x, r))<--D2e03"
[or constants DE, D3 depending only on DI and the dimension o[ M.

Proof. Follows by comparison with a space of constant curvature
[2, p. 253].

LEMMA 4.2. Suppose that C is a relatively compact set in M which
intersects precisely N of its F-translates. Let W=vol (C) and suppose that
r>diam(C). Then for each x, y C, B(x, r) contains at most
(N/W) vol (B(x, 2r)) F-translates o[ y.

Proo[. Suppose that B(x, r) contains p F-translates of y. Then B(x, 2r)
contains p translates of C since r >diam (C). However, any point of M is
contained in at most N translates of C. Consequently, pW<-N vol (B(x, 2r)).
One may deduce:

THEOREM 4.3. Let F act properly discontinuously on M with compact
quotient 1 F\M. Choose a relatively compact C in M with M= YC. I[ .,
M then set

(4.4) /(t, x, y)= E(t, x, /y)

where x, y C, or(x), and r(y). I[ E is the [undamental solution [or
the heat equation o[ M, the sum on the right converges uni[ormly on [h, t2] X
C C, 0 < h <-t2, to the [undamental solution [or the heat equation on M.
The [undamental solution E(t, , ) is unique and satisfies the semigroup

property

E(t + s, , ) E(t, ; )E(s, e, ) dz.

Proo[. The existence of C is guaranteed by Proposition 2.1. The main
point is to check that the sum converges uniformly on [h, t2]C C. By
Property P4, Section 3, of E(t, x, y),. E(t,x,/y)<--Ct-’v2 exp(.-d2(x’ /y))

r vr 4t

1 vol (B(x, 2it))< CI -n
N

i=

exp (T(i "4tl)er
<-- CxD2t-"/2 e2’3’ exp ..,(i- 1)zra

,= 4 "/

using Lemmas 4.1, 4.2. Similarly, one obtains uniform convergence for the
derivatives of E. It is then easy to show that E is a fundamental solution on
M.
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Uniqueness and the semigroup property follows as in the proof of
Theorem 3.3.

It is now standard to deduce"

TnEORE 4.5. The Laplacian h on M is a symmetric operator on C(M)
which has a self-ad]oint extension to L2(/Q). The operator has pure point
spectrum {h}’=, hi <- A2 <-" ’l’, with corresponding eigenfunctions tb ()
C(M). Moreover, we may write

(4.6) /(t, :,

and

(4.7) e-’X’ I_ E(t, , ) d.

Proof. For each fixed t, the kernel E(t, 2, ) defines a self-adjoint com-
pact operator on L2(h7/), since / is continuous in (, ) and /(t, , )=
E(t, ,2) [7, p. 13]. Moreover, the semigroup property of Theorem 4.3
implies that the E’s form a commuting family of compact operators,
parameterized by t, and can therefore be simultaneously diagonalized
[7, p. 12].
Let b() be an orthonormal basis for L(h7/) so that

(t)4,() E(t, , f)4(f) dr.

Since E is smooth in t, , the (t), 4() are smooth. Furthermore, since E
is a fundamental solution of the heat equation on M, one has

Since tx(t) is non-zero for small we see that () is an eigenfunction of Z,, ,kd. The fact that 7 has a self-adjoint extension to L(//) is im-
mediate [7, p. 370].
The expansions (4.6), (4.7) follow as in [1, p. 205].
Our main result is:

THEOREM 4.8. Suppose that F acts properly discontinuously isometrically,
and effectively on the Riemannian manifold M with compact orbit space

Let {A} be the spectrum of the Laplacian A of M. en them is an
asymptotic expansion as 0:

(4.9) e-’X(gt)-"/2 t
=1 =0

where coBstaBts aBd B dim (M). One has ao vol (M).
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Proof. Using formulas (4.4) and-(4,7) we may conclude that

Y’. e-’ ,(, x, x)6(x) dx
i=l

where b(x) is a partition of unity relative to F.
Recall that t0(x) is compactly supported, Let /1, /2,..., /,, be the finite

collection of / F which have a fixed point contained in the support of b. It
ollows from estimates similar to those used in the proo o Theorem 4.4
that

i=l

It is shown in [5] that

E(t, x, ,jx)d(x) dx.

(4.10) It E(t,x, /ix)b(x) dx-(4rt)-",,- a,it’

where nj is the maximum dimension of any component of the fixed point set
of /i. More precisely, one uses the method of [5] and the fact that 4(x) is
compactly supported. This gives existence for the expansion (4.9).

Since F acts effectively only the identity element has a fixed point set of
dimension n. The formula for a0 follows from Theorem 3.3 and formula
(3.1).
The author’s paper [5] was especially concerned with the problem of

computing the terms in the equivariant expansions (4.10). This then pro-
vides a procedure for computing the terms in (4.9).

If M G/K is a symmetric space, then the first term asymptotic formula

Y e-’,- (4rt)-"/2 vol

was obtained by Wallach [13]. His proof relies on the algebraic fact that if F
is discrete in G with compact quotient F\G/K, then F has a torsion free
normal subgroup Fo of finite index [3, p. 112]. This allows one to factor
qr" M-- F\M as r qrlqr2 where r2" M--* FoM M’ and rl" M’ -- M.Then M is the orbit space of the compact Riemannian manifold M’ by the
finite group F/Fo of isometries. Wallach then applies the usual spectral
theory on the compact manifold M’. This method is not available to prove
Theorem 4.8. As shown in Section 2, Proposition 2.6, it is not possible to
factor every properly discontinuous action through a finite group action.

5 Computations for the Poincard upper half plane

Let H be the upper half plane consisting of points z x +x/’ y, y >0,
endowed with its Poincar6 metric.
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The isometry group of H is SL(2, R) the group of 2 2 real matrices with
determinant one, which acts by

Z-">
cz+d

for z H. A subgroup F c $L(2, R) acts properly discontinuously if and only
if F is discrete in SL(2, R) [3, p. 112].
For F acting on H with compact quotient H= F\H, the terms in the

expansion (4.9) can be computed quite explicitly. This example may serve as
a nice illustration of our Theorem 4.8. We will need the following lemma:

LEMMA 5.1.
H is given by

The heat kernel E(t, z, za) for the Poincar upper half plane

e_,/4x/ (oo be-b2/4’ db
E(t, zl, z2)=

(4,trt)3/2 x/cosh b-cosh a

where a d(zl, z2) is the Riemannian distance from zx to z2.

Proof. [9, p. 233].
An element /e F fixes a point in H only if it is conjugate in SL(2, R) to

an elliptic element /= a/a-, a SL(2, R), [9, p. 228]. Here /is given by

(cos to -sin:)q
\sin to cos

where to r/m for some integer m > 1. Then q has order m and fixes the
unique point z = i. Recall that an element / F is said to be primitive if
/is not a power of any other element in F and /# 1.

THEOREM 5.2. Let F be a discrete subgroup of SL(2, R) acting on the
Poincar. upper half plane H with compact quotient H F\H. Then in the
expansion

X e-’’-(4rt)- X
i=l i=o

of Theorem 5.2, one has

x 1(1))-vol (H) + sin (]/mao =vol (H), a, 3 v-=t

where the sum is over primitive elliptic elements of order m having a fixed point
in the support of a suitably chosen partition of unity for F. The higher order
terms may be obtained by expanding certain elementary functions in their
Taylor series.

Proof. Let <b(z) be a partition of unity relative to F so that for each
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primitive 3’ of order m having a fixed point p in the support of one has
,b(z) 1/m on a neighborhood of p. The existence of such a 4 follows easily
from Proposition 2.1 and the fact that F acts properly discontinuously.
We may write

e -’+’--- E(t, z, z)(z) dz + ’. E(t, z, y’z)tb(z) dz
i=1 "vm=l ]=1

where the sum is over primitive elements ,/of order m having a fixed point
in the support of 6(z).
The integral corresponding to the identity element behaves asymptotically

as

Thus

dz vol (ffI)e-t/4(47rt)-3/2f be-b=/4’ db
Z,

o sinh (b/2)

(5.3) z, z)qJ(z) dz vo! (/)(4rt)-1(1-1/2t + O(t2))

The higher order terms may be obtained by expanding b/sinh (b/2) in its
Taylor series about b=0 and using the elementary integral formula
[12, p. 426]

Now let T be a primitive element of order m and denote to 7r/m. Set

I(/, ) f b(x)E(t, z, ,/z) dz for 1 <- -< m 1.

Then

I(3,, ])... l__m L E(t, z, 3,]z) dz

since T has a unique isolated fixed point p and tb(z)=l/m on a
neighborhood of p.

Furthermore

e-’/%/ Io llrr ( 1 )I(y, ])
(4"n’t)3/2

be -i’=/4’ db--m Re
/cosh b- cosh a

dz

where a d(z, Tz) and Re means to take the real part. The interior integral
is computed in [8, p. 245] yielding

e-i/4 to [ /sins (Jto) -sinhz (b12)1 -b2,,,I(y, #) (4rt)3/ sin (#to)
sin-

\sin (#to) + sinh }1 be db.
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Integrating by parts one obtains

e -’/4 (m) Io cosh(b/2) db
1(% ]) (4rt)l/2

e-b/4t

Consequently

(5.5) I(/,]).1( 1 )4 sin2 (]to)
+ O(t)

The higher order terms may be obtained by expanding

cosh (b/2)[sin2 (]to)+sinh2 (b/2)]-1

in its Taylor series about b 0 and using the formula (5.4).
Since

IH m--1

e-’-- E(t, z, z)t(z) dz + I(% j),

the theorem follows by summing the expansions (5.3), (5.5).

sin2 (rio)+sinh2 (b/2)"

1. M. BERGER, P. GAUDUCHON and E. MAZET, Le Spectre d’une Variet Riemannienne, Springer
Lecture Notes in Mathematics No. 194, Springer-Verlag, N.Y., 1971.

2. R. BIsHoP and R. J. CRrrrEND.N, Geometry o[’manifolds, Academic Press, N.Y., 1964.
3. A. BOREL, Compact Clifford-Klein orms of symmetric spaces, Topology, vol. 2 (1963), pp.

111-122.
4. Y. COLIN DE VERDmR, Spectre du Laplacian et Longuers des Geodesiqus Periodiques,

Compositio Math., vol 27 (1973), pp. 83-106,
5. H. DONNELLY, Spectrum and the fixed point setso isometries I, Math. Ann., vol. 224

(1976), pp. 161-170.
6. T. KAWASAKI, The signature theorem for V-manifolds, preprint.
7. S. LANG, SL2(R), Addision-Wesley, Reading, 1975.
8. P. LAX and R. PHILLrPS, Scattering theory or automorphic unctions, Ann. of Math. Studies

No. 87, Princeton University Press, Pdnceton, 1976.
9. H. P. MCKEAN, Selbergs trace ormula as applied to a compact Riemann surface, Comm.

Pure Appl. Math,, vol. 25 (1972), pp. 225-246.
10. and I. M. SINGER, Curoature and the eigenvalues o the Laplacian, J. Diff. Geom.,

vol. 1 (1967), pp. 43-69.
11. J. ROTMAN, The theory o groups, Allyn and Bacon, Boston, 1965.
12. S. SELBY (Editor), Standard mathematical tables, Chemical Rubber Company, Cleveland,

1968.
13. N. WALLACH, The Asymptotic Formula of Gelfand and Gangolli for the Spectrum of F\G, J.

Diff. Geom., vol 11 (1976), pp. 91-101.

THE JOHNS HOPKINS UNIVERSITY
BALTnVORE, MARYLAND


