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L(X) AS A SUBALGEBRA OF K(X)**

BY JULIEN HENNEFELD

1. Introduction

For X and Y Banach spaces let L(Y, X) and K(Y, X) denote respectively
the spaces of bounded and compact operators from Y into X. The relation-
ship of L(Y, X) and K(Y, X) as Banach spaces has long been of interest. In
some special cases, L(Y, X) is actually equal to K(Y, X) while in others
L(Y, X) is equal to K(Y, X)**. See [8], [10] and [2], [5], [6], [11]. Recently,
Jerry Johnson [9] has extended a weaker result in [6] and shown that if X
has the bounded approximation property (metric approximation property),
then L(Y, X) can be imbedded isomorphically (isometrically) in K(Y, X)**.
The purpose of this paper is to study Johnson’s imbedding for the case
Y X in which K(X) and L(X) are Banach algebras.
For a Banach of Algebra M, the Arens products (see Section 2) give two

ways of regarding M** as a Banach algebra so that the canonical image of M
in M** is subalgebra of M**. Specializing Johnson’s imbedding to the case
Y X, it is natural to consider the operator induced multiplication on the
image of L(X) in K(X)**. In Section 3, we discuss the imbedding of L(X)
into K(X)** under the assumption that X has the bounded approximation
property and present an example in which neither Arens product coincides
with operator induced multiplication. Hence, the imbedding need not be a
Banach algebra isomorphism. In Section 4, under the assumption that K(X)
has a bounded two-sided weak identity, we show that the Johnson imbed-
ding can be defined as a Banach algebra isomorphism, using the first Arens
product on K(X)**. We also give a characterization of the image of L(X)
which leads to an isomorphic copy of L(X) from K(X), without reference to
the underlying Banach space.

2. The Arens products

The two Arens products are defined in stages according to the following
rules. Let M be a Banach algebra. Let A, B M; 1’ M*; F, G s**.
DEFIrrIor 2.1. (]’ "1 A)B =[(AB). This defines f "1 A as an element

of M*.
(G "1 f)A G(f*l A). This defines F "1 f as an element of M*.
(F "1 G)f F(G "1 f). This defines F , G as an element of M**.
We will call F "1 G the first or m product.
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DEFINITION 2.2. (f *2 A)B f(BA), (F *2 f)A F(f *2 A) (F *2 G)f=
G(F * f).
We will call F "2 G the second or m2 product.

DFINrrION 2.3. A net Ai in is called a weak identity if for each B
BAi and AB both approach B in the weak topology on

The following proposition summarizes some important properties of the
Arens products.

PaoPosrrIoN 2.1. (1) The first Arens product is left weak star continuous,
that is,

FFr(**, *) implies F "1 G--F "1 Gr(**, *).

(2) The second Arens product is right weak star continuous, that is,

F--Fr(**, s*) implies G "2 F -- G "2 Fr(**, *).

(3) The two Arens products agree if one of the factors is in
(4) If has a weak identity A which converges r(**, *) to an

element J **, then J is a right identity for the first Arens product and a left
identity for the second Arens product.

Proof. See [1], [3].

3. Assuming X has the bounded approximation property

The following theorem is a special case of Johnson’s imbedding of
L(Y, X) into K(Y, X)**.
THEOREM 3.1 (J. Johnson). Let X have the A bounded approximation

property. Then there exists an isomorphism (isometry if A = 1) of L(X) into
K(X)** whose restriction to K(X) is the canonical imbedding.

The imbedding is constructed by taking a bounded net of finite rank
operators {A,} which is r(K**, K*)-convergent and converges to the iden-
tity operator in the strong operator topology. For T e L(X), define
K(X)** by (f)= lim f(AiT) where f K*.See [9] for the details. It follows
easily that is the r(K**, K*)-limit of {A}.

Unfortunately, when Y X, this imbedding is not necessarily a Banach
algebra isomorphism.

Example. Let X 11, {e} be the standard basis, and A, be the operator
whose matrix has ones in the first n places of the diagonal and zeroes
everywhere else. An converges to I in the strong operator topology and is
easily seen to be a Cauchy sequence in the r(K, K*) topology. Using An to
define an imbedding, as described above, A, converges to r(K**, K*).

Let B be the operator whose matrix has all ones in the first row and
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zeroes everywhere else. Let Dn be the operator which sends en to el and e
to 0 for iS n. Let f K* be 0 on the closed linear span of the Dn and
non-zero on B. Then,

(/ *2 )f= (/ * )f by Proposition 2.1(3)
,1 f)

(- "1 f)B since K is imbedded canonically in K**.
=i(f B)

li.m ([ * B)An li.rn f(BAn)
0 since BAn has only n non-zero entries.

But (BI)^(f) ](f)= f(B) 0
Thus, (BI) is not equal to either/ , or/ , .

4. Main results

Throughout this section we assume that K(X) has a bounded weak
identity. Under this assumption we show that L(X) can be imbedded as a
subalgebra of K(X)** and we characterize the image of L(X).

PROPOSITION 4.1. Let A be a bounded weak identity in K(X). Then A--> I
in the weak operator topology.

Proof. Let xX and y* X* be arbitrary. Define fK* by f(C)=
y*(Cx) for C K. Select a finite rank operator B" Bx x. Then

y*(x) f(B) lira f(A,B) lim y*(A,x).

Hence, Ax -.--> x weakly.

THEOREM 4.1. Let A be a bounded weak identity in K(X) which con-
verges tr(K**, K*). Then L can be imbedded isomorphically (isometrically, if
IIA,,II- 1 for some subnet of Ai) in K**.

Proof. For T L, define , as before, by (f)=lim f(AT). This limit
exists by essentially the same technique as in [9], since limi (AiT) limt g(Ai)
where g is the functional in K* defined by g(C) f(CT) for C K. It follows
easily from Proposition 4.1 that I1’[I > I[T[I. Also, the image of B is the
canonical image since/(f) lim, f(AB) f(B).

PROPOSITION 4.2. Let A, be as in Theorem 4.1. Then, using the imbedding
determined by A,"

(1) A--> tr(K**, K*).
(2) If T--> T in the weak operator topology and T--> : (K**, K*) where

S L, then S T.
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Proof. Similar to Proposition 4.1 and Theorem 4.1.

Remark. Unfortunately, if a net Ti K converges to T in L(X) even in
the strong operator topology and to F K** in the r(K**, K*) topology, it
is not necessarily true that F. For example, let A, be the operator in
K(co) with ones in the first n entries down the diagonal and zeros elsewhere,
and let Ti have entries 1/i in the first entries of the first row and zeros
elsewhere. Then under the imbedding defined by the weak identity A,, Ti
converges to 0 in the strong operator topology but to a non-zero element
tr(K**, K*).0

PROPOSITION 4.3. Let A be as in Theorem 4.1. Then, for B K, T L,
f K*, limj f(BAjT) f(BI).

Proof. Define g K* by g(C) f(CT) for C K. Then

lim f(BAT) lim g(BA) g(B) f(BT).

THEOREM 4.2. Let A, be as in Theorem 4.1. Then, for S, T L, S

Proof. Let f K*.

’(f) lim f(AST),

( "1 ’)(f)= :(" "1 f)= lim [(" f)(A,S)]

lim ’(f A,S) lim lim[(f A,S)AiT]

lim lim f(AiSAT)

lim f(AST) by Proposition 4.3

COROLLARY 4.1. is a two-sided identity with respect to the first Arens
product, on the image of L.

We now give a characterization of the image of L(X) under the imbed-
ding.

THEOREM 4.3. Let A be as in Theorem 4.1. The image of L under the
associated imbedding is equal to

{F K**" F A, A F are in K for all i, and F F}.

Proof. Suppose F satisfies the stated conditions. We must associate an
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operator T with F such that = F. First, define T on {Ax" all i, x} by
T(Aix)=weakjlim (Aj F)(Ax). This limit exists since Aj(F A)x con-
verges weakly by Proposition 4.1. Note that T is well defined on this set
since if Ax AkZ, then (Aj F)(Ax)= (Ai F)AkZ for-all ]. Extend T to
finite linear combinations by

T(AilXl + A2x2 +" +A,x) weak lim Ai F(Aiixl +. + A,x,).

T is bounded in norm by sup IIA, I[fll on this weakly dense, convex set. Thus
T can be extended to X.
Now we must show that F . For f e K*,

F(f) (f "1 F)f by the condition on F.

lim (A F)f by the left weak star continuity of ml.

lim f(Ai F),

(f) lim f(AiT) by the definition of T.

Thus, it is sufficient to show Ai F AiT, for each . For each i,

tr(K**, K*)-lim (A F Ai)=

_
"1 (F A)=F * A by Corollary 4.1

Also, Aj F. A T. A in the weak operator topology. Hence, by
Proposition 4.2(2), F A T Ai, for each i. This implies that Aj F and
A T agree on finite linear combinations of elements from the set {Ax:
all i, x}. hence, A F A T, and this concludes the proof.

PROPOSITIOn 4.4. Let K be the space of compact operators in some Banach
space X. Let J be an element of K** such that J C= C * J= C for all
C K, and let B, J tr(K**, K*) with B K and IIBII <-IIJII. Then B, is a
weak identity.

Proof. C= J C implies f(C)= f(J "1 C)= lim, f(B,C); and C= C "1 J
implies f(C) f(C "1 J) f(C *2 J) lim, f(CB,) by Proposition 2.1(2).

TIEOREM 4.4. Let K, the space of all compact operators on some Banach
space X, have a weak identity. Then an isomorphic copy of L can be
constructed from K without reference to the underlying Banach space X.

Proof. Let J be any element of K** such that J C C J C, for all
C e K. There is at least one such element J, namely, the image of I under
the imbedding determined by any weak identity. Let B,---Jtr(K**, K*).
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Then

L {F K**" F Bi, Bi F are in K for all i, and B F--For(K**, K*)}.

Note that for this construction it is not necessary for the weak identity to
be explicitly given. Also, the isomorphism is an isometry if IIJII 1.

DEFINITION 4.1. A basis {x} for a Banach space X is called shrinking if
the coordinate functionals {x*} form a basis for X*.
We then have the following straightforward theorem whose proof we

omit.

THEOREM 4.5. Let X have a shrinking basis, and E,, be the operator with
ones down the first n entries of the diagonal and zeros elsewhere. Then E, is
an approximate identity (and afortiori a weak identity) for K(X).
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