ON A PROBLEM SUGGESTED BY OLGA TAUSSKY-TODD¹

BY Morris Newman

Abstract

The problem considered is to characterize those integers m such that $m = \det(C)$, C an integral $n \times n$ circulant. It is shown that if (m, n) = 1 then such circulants always exist, and if (m, n) > 1 and p is a prime dividing (m, n) such that $p^t || n$, then $p^{t+1} || m$. This implies for example, that n never occurs as the determinant of an integral $n \times n$ circulant, if n > 1.

The problem considered here was suggested by Olga Taussky-Todd at the meeting of the American Mathematical Society in Hayward, California (April, 1977): namely, to characterize the integers which can occur as the determinant of an integral circulant.

Let P be the $n \times n$ full cycle

$$\begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ & & & \cdots & & \\ 0 & 0 & 0 & \cdots & 1 \\ 1 & 0 & 0 & \cdots & 0 \end{bmatrix}.$$

Let J be the $n \times n$ matrix all of whose entries are 1, so that

$$J = I + P + P^2 + \cdots + P^{n-1}$$
.

Let $a_0, a_1, \ldots, a_{n-1}$ be integers, and let C be the circulant

$$a_0I + a_1P + \cdots + a_{n-1}P^{n-1}$$

Let f(x) be the polynomial $a_0 + a_1 x + \cdots + a_{n-1} x^{n-1}$. Then the eigenvalues of C are $f(\zeta_n^k)$, $1 \le k \le n$, $\zeta_n = \exp(2\pi i/n)$. Hence the determinant of C is given by det $C = \prod_{k=1}^n f(\zeta_n^k)$.

The set of numbers $\{k\}$ coincides with the set $\{n\mu/d\}$. Here k runs over the integers $1, 2, \ldots, n, d$ over the divisors of n (written $d \mid n$), and μ over the integers less than or equal to d and relatively prime to d (written μ : d). It follows that

$$\det (C) = \prod_{d|n} \prod_{\mu:d} f(\zeta_n^{n\mu/d}) = \prod_{d|n} \prod_{\mu:d} f(\zeta_d^{\mu}) = \prod_{d|n} Nf(\zeta_d),$$

Received March 9, 1978.

© 1980 by the Board of Trustees of the University of Illinois Manufactured in the United States of America

¹ This work was supported by a National Science Foundation grant, the Institute for Interdisciplinary Applications of Algebra and Combinatorics, and the Department of Mathematics of the University of California, Santa Barbara.

where $Nf(\zeta_d)$ is the norm of $f(\zeta_d)$ in the cyclotomic field $Q(\zeta_d)$, and hence a rational integer. Thus we have a factorization of the determinant of C into $\sigma_0(n)$ rational integers. Some of these, of course, may be +1.

We are interested in those m such that an integral $n \times n$ circulant C exists for which

$$\det (C) = m.$$

We may assume that m > 0, since det (-P) = -1, so that det (C) = m if and only if det (-PC) = -m. We may also assume that n > 1.

We first prove:

THEOREM 1. Suppose that (m, n) = 1. Then equation (1) always has solutions.

Proof. Write
$$m = nq + r$$
, $0 \le r \le n - 1$. Then also $(n, r) = 1$. Put
$$C = qJ + I + P + \cdots + P^{r-1}.$$

Then the eigenvalues of C are

$$nq + r = m$$
, $1 + \zeta_n^k + \zeta_n^{2k} + \cdots + \zeta_n^{(r-1)k}$, $1 \le k \le n-1$.

It follows that the determinant of C is given by

$$\det (C) = m \prod_{k=1}^{n-1} \frac{1 - \zeta_n^{rk}}{1 - \zeta_n^k}.$$

Now ζ_n^k and ζ_n^{rk} simultaneously run over all *n*th roots of unity other than 1, since (r, n) = 1. Thus $\prod_{k=1}^{n-1} (1 - \zeta_n^{rk}) = \prod_{k=1}^{n-1} (1 - \zeta_n^k) = n$, and so det (C) = m. This concludes the proof.

The next result provides a characterization of those numbers m for which (1) may have a solution, in the remaining case when (m, n) > 1.

Let $q = p^t$, p prime, $t \ge 1$. Then the number $1 - \zeta_q$ is a prime in $Q(\zeta_q)$ of norm p. We shall now prove:

THEOREM 2. Suppose that (m, n) > 1. Let p be a prime which divides (m, n), and let $p^t || n$ (i.e., p^t is the exact power of p dividing n). Then if (1) has solutions, $p^{t+1} || m$.

Proof. Write n = qk, $q = p^t$, (k, p) = 1, and suppose that (1) has solutions. We have

(2)
$$m = \det(C) = \prod_{d|n} Nf(\zeta_d) = \prod_{\delta|k} \prod_{s=0}^t Nf(\zeta_{p^s\delta}),$$

since the divisors of n coincide with the numbers $p^s\delta$, $0 \le s \le t$, $\delta \mid k$.

Since $(\delta + p^s, p^s \delta) = 1$, $Nf(\zeta_{p^s \delta}) = Nf(\zeta_{p^s \delta}^{\delta + p^s}) = Nf(\zeta_{p^s} \zeta_{\delta})$. Also $\zeta_{p^s} = \zeta_q^{p^{t-s}} \equiv 1 \mod 1 - \zeta_q$. It follows that

$$Nf(\zeta_{p^s\delta}) = \prod_{\mu:p^s\delta} f((\zeta_{p^s}\zeta_{\delta})^{\mu})$$

$$= \prod_{\mu_1:p^s, \ \mu_2:\delta} f((\zeta_{p^s}\zeta_{\delta})^{\delta\mu_1+p^s\mu_2}) \equiv \prod_{\mu_1:p^s, \ \mu_2:\delta} f(\zeta_{\delta}^{p^s\mu_2}) \mod 1 - \zeta_q,$$

$$Nf(\zeta_{p^s\delta}) \equiv Nf(\zeta_{\delta})^{\phi(p^s)} \mod 1 - \zeta_q.$$
(3)

In the above, $\mu = \delta \mu_1 + p^s \mu_2$, where μ_1 runs over a reduced set of residues modulo p^s , and μ_2 over a reduced set of residues modulo δ . This is possible, of course, because $(\delta, p^s) = 1$.

Now both sides of (3) are rational integers, and $N(1 - \zeta_q) = p$. It follows that

(4)
$$Nf(\zeta_{p^{s\delta}}) \equiv Nf(\zeta_{\delta})^{\phi(p^{s)}} \mod p.$$

Now suppose that for every $\delta \mid k$, $Nf(\zeta_{\delta}) \not\equiv 0 \mod p$. Then (2) and (4) would imply that $m \not\equiv 0 \mod p$, a contradiction. Hence for some divisor δ of k, $Nf(\zeta_{\delta}) \equiv 0 \mod p$. But then (4) implies that $Nf(\zeta_{p^{s\delta}}) \equiv 0 \mod p$ for all s with $0 \le s \le t$, which in turn implies that $m \equiv 0 \mod p^{t+1}$, by (2). This completes the proof.

As a corollary, we obtain the answer to one of the problems suggested by Olga Taussky-Todd:

THEOREM 3. Suppose that n > 1. Then there is no integral $n \times n$ circulant of determinant n.

This result raises the following question: although n does not occur as the determinant of an integral $n \times n$ circulant, will some power of n occur as such a determinant? The answer to this is supplied by the theorem that follows.

THEOREM 4. There is an integral $n \times n$ circulant of determinant qn^2 , where q is any integer.

Proof. Put
$$C = I - P + qJ$$
. Then the eigenvalues of C are qn , $1 - \zeta_n^k$ $(1 \le k \le n - 1)$. Since $\prod_{k=1}^{n-1} (1 - \zeta_n^k) = n$, det $(C) = qn^2$ and the result follows.

It is easy to show by examples that the conditions on m and n imposed by Theorem 2 are only necessary, but not sufficient, to guarantee the existence of an integral $n \times n$ circulant of determinant m when (m, n) > 1. The general question remains open. However, we have determined necessary and sufficient conditions in the case when n is prime. We have:

THEOREM 5. Suppose that n is prime and that (m, n) > 1. Then in order for $m = \det(C)$ to have solutions, it is necessary and sufficient that $n^2 \mid m$.

Proof. The necessity is a consequence of Theorem 2, and the sufficiency of Theorem 4.