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MULTIPLIERS OF TENSOR PRODUCTS OF CMA’S
AND RADON-NIKODYM DERIVATIVES

BY

DAVID L. JOHNSON AND CHARLES D. LAHR

I. Introduction

Throughout this paper, the expression (A, F) will denote a commutative
semisimple convolution measure algebra (CMA) A with structure semigroup F.
In particular, this means that A is a Banach algebra, F is a compact abelian
topological semigroup, and there is an isometric algebra isomorphism ofA into
M(F), the Banach algebra (under convolution product and total variation
norm 1]" II) of all complex-valued finite regular Borel measures on F. A multi-
plier of a CMA A is a linear operator T" A A satisfying T(a b) T(a) b,
for all a, b in A. Each multiplier of A is a bounded operator on A, and, as a
result the set ///(A) of all multipliers of A is a Banach algebra with composition
as product. It will be assumed that A has a weak approximate identity ofnorm
one [9, 10]. Hence, there is an isometric algebra isomorphism of (A) into
M(F) which extends the aforementioned imbedding of A in M(F). Thus, we
can, and will, regard A and //(A) as norm-closed subalgebras of the measure
algebra M(F). So regarded, A, being a CMA, is a complex L-subspace (defined
below) of M(F). Although not true in general, it will be assumed that /4’(A) is
also an L-subspace of M(F); this is equivalent to assuming that //(A) is a
CMA. These and other results about multipliers ofCMA’s can be found in [10],
[17], while the comprehensive monograph [13] deals with CMA’s in general.

If X is a compact Hausdorff space, then an L-subspace 5 of the measure
space M(X) is a norm-closed complex linear subspace of M(X) such that, if
v , # M(X), and / is absolutely continuous with respect to v, written
/ , v, then / 50. Thus, a measure / 50 if and only if its total variation
measure I/1 50. In all that follows, X and X2 denote compact Hausdorff
spaces, and 50 and 50 2 denote L-subspaces ofM(X 1) and M(X2), respectively.
Then the projective tensor product 50 52 of 501 and 502 may be regarded
as the completion in M(X x X2) of the usual algebraic tensor product
501 (R)502 [13, Prop. 2.5.2]. Thus, since M(X1), M(X2) are L-spaces, the
inclusions

(R) =__ =_

always obtain.
Our interest is in the multipliers of the projective tensor product Ax ) A2 of

two semisimple commutative CMA’s A1, A2. It has been shown [16] that, if
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(A1, F1) and (A2, 1-’2) are two such CMA’s, then A1 )A2 is a semisimple
commutative CMA whose structure semigroup is F1 x F2. Our standing
assumptions on A2, A2, (A1), /(A2)imply that (A1))/(A2) imbeds
isometrically in /{(A1 ) A2) --- M(F1 x F2). The main purpose of this paper is
to characterize ///(A) #(A2) as a multiplier-subspace of {(A ) A2) and
M(F1 x F2).

Although the assumptions placed upon A 1, A 2 and /{(A 1), /(A 2) may seem
unduly restrictive, they are satisfied for the following classical example. Let G 1,

G2 be arbitrary locally compact abelian groups, and let LI(G 1), LI(G2) be the
usual group algebras of G1, G2, respectively. Then LI(G1), LI(G2)are semi-
simple commutative CMA’s with approximate identities of norm one, and the
multiplier algebras //{(LI(G1))= M(G1), ///(LI(G2)) M(G2)[15] are also
CMA’s. The structure semigroups of L (G1) and L1(G2) are the Bohr
compactifications G1 and G2 of G1 and G2, respectively [12, Example 4(i),
p. 163], while LI(G1))LI(G2)- LX(G1 x G2)[5, Corollary 4, p. 61]. Thus,

//g(LI(G1) LI(G2))= (LI(G1 x G2))= M(G1 x G2),
and we seek to describe those measures in M(G1 x G2) or more generally in
M(G1 x G2), which are contained in M(G1))M(G2). In the context of this
example, it is shown that

M(G1) M(G2) M(G1 x G2) c (M((I)) M((2)).
In particular, if G G2 R, then the space M(R) ) M(R) is properly con-
tained in M(R x R) by [4, pp. 784-785]; however, the characterization
M(R) ) M(R) M(R x R) c (M(R-) M(R--)) appears to be new.
The major results of the paper appear in Section III. We open that section by

giving characterizations (in Theorem 3.1, Corollary 3.2, and Corollary 3.3) of
Qgl () ’2 in the general setting of arbitrary L-subspaces 51, 92 of measure
spaces M(X), M(X2) respectively. These results are presented in terms of the
well-known fact that M(X1 x X2) is isometrically isomorphic to the Banach
space M(X, M(X2))of all countably-additive vector-valued measures of finite
variation from the Borel field 3(X) of X into M(X2). Since each vector-
valued measure ml in M(X1, M(X2)) has an associated positive variation
measure/ml in M(X1), the idea of m possessing a (strong) Radon-Nikodym
(RN) derivative with respect to /ml is quite natural. These general L-space
results are then applied to multiplier questions. For example, a multiplier
min //(A1 A2)--M(F1 x F2) is shown to belong to //(A1))/’(A2)if and
only if, as a vector-valued measure ml, it has a strong RN derivative with
respect to its variation measure p" (Theorem 3.4).

II. Preliminaries

A semicharacter on the structure semigroup F of the CMA A is a nonzero
continuous function from F into the complex unit disc such that 7.(st)
for all s, t in F. The set F of all semicharacters on 1" can be identified with the
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maximal ideal space of A. If Arc M(F) denotes the canonical image of A in
M(F), then each e 1 determines a complex homomorphism on A by the
map

for p in At, and each complex homomorphism ofA may be so expressed. Now,
if C(F)denotes the Banach space of all continuous complex-valued functions
on F endowed with the sup norm [1. oo, then it turns out that C(F)is the closed
linear span of in C(F). h measure p in M(F) will be regarded both as a
countably additive set function on the Borel field 3(F) of F and as a linear
functional on (F). Thus, we will use the symbols p(E), for E in 3(F), and
(f, p), forf in C(F), where, as is customary,

(f’ P)= fr f(s) dp(s).

In general, the notation (., ) will denote the action of a dual Banach space on
its pre-dual Banach space. Of course, M(F) becomes a CMA by defining a
convolution product

where #, v M(F), E e (r), and Ke is the characteristic function of E.
A major portion of our analysis relies upon the interplay between vector-

valued measures and tensor products developed in [3], [4]. We begin with a
result of Grothendieck. Let v M(X1) be a positive measure, and an L-
subspace of M(X2). If L (v, ’) denotes the Banach space of all strongly v-
measurable, Bochner-integrable functions from X1 to L’, then
L(v, ) L(v) , the projective tensor product of L(v) and , where L(v)
is the Banach space of all v-integrable scalar-valued functions on X [5,
Theorem 2, p. 59]. Thus, L(v, ’) can be regarded as the Banach space of all
’-valued measures in M(Xt, M(X2))= M(XI x X2)[4, p. 784] that have
strong RN derivatives with respect to v. For standard definitions and facts
about the various kinds of measurability and integrability for vector-valued
measures, consult [7, Sec. III, 1].

The isometric isomorphisms

M(X x X2)= M(X, M(X2)) and M(X x X2)= M(X2, M(Xt))

are implemented via the mappings m-+ mx and m--} m2, m M(X x X2),
where m: 3(X)--* M(X2) and m2: 3(X2) M(Xa) are defined by

m(E)(F) m(E x F) m2(F)(E), E e (X,), F + 3(X2);
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in terms of linear functionals,

(g, ml(E)) f g(x2) dm(xl, x2), g C(X2), E 3(X),
E X2

and similarly for m2(F), F 3(X2). Associated with m M(X x X2)are its
variation measures/’ M(X) and/m, M(X2)defined by

ml(E) Iml(E x x)= Iml(x)(E), E (x,),
pmz(F) [ml(Xx x F)= [mI(X1)(F), F (Xz).

Caearay, Ilml(E)ll m(E) for all E 6 (X), and it turns out [2, p. 532] that
ml is the least positive measure in M(X) for which this is true. Now, theno
ofml M(Xt, M(X2))(m2 M(X2, M(Xx)))is lima IIml[ Ilmll (llm
I111 Ilmll), establishing the isometry

(x x:)= (x, tx)) t= (xz, (x))).
Also iff6 L(X, #m), then

fx f(xt) dltm’(x)= f f(xt) dlml (x,
X X2

and similarly for # 6 LI(x2, #m2).
Each m M(X1 x X2) determines a bounded linear transformation

Tml: LI(X1, ]ml) M(X2
defined by

Tml(f)(F f f(xl) dm(xx, x2) f6 LI(X1, flint), F 3(X2).
XIxF

This integral is well defined since ml2(F)_< m12(X2)=#mt, for all
F 6 3(X2). As a linear functional, Tm satisfies.

(9, Trot(f)) fx f(xl)O(x2) dm(xx’ x2)’ f6 L(XI’ //m,), 0 G C(X2).
xX2

Of course, there exists a map Tin2: LI(X2, [m2)+ M(X1), defined analogously.
For allf6 C(X1), # 6 C(X2), and m M(X1 x X2), Tm and Tm are related by
<g, Tml(f))= <f(R) g, m> (
We conclude the prelinaries with certain key results about L-subspaces

and RN derivatives. Since and 2 are L-subspaces of M(X) and M(X2)
respectively, 2 imbeds in M(X1 x X2). A straightforward generaliza-
tion of [4, eorem 6.3] yields the following characterization of 2. Let
m M(X x X2). If m 6 x 2, then #ml 1, mt 6 M(X1, 2) and m
has a strong RN derivative with respect to gm. Conversely, ifm 6 and m
has a strong z-valued RN derivative with resct to, then m 6 a .
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In particular, if 2 has the RN property (see [1]), then M(Xx, 502)
M(X) 2. Moreover, it is a consequence of [5, Theorem 11, p. 141] that

’ v {I T,(f)l f c(x,), IIf[Ioo <- 1).
Further, m: M(Xa, 2)ir and only ir ir and only ir Iml
M(X, 52). (Of course, analogous statements hold when the indices 1 and 2
are interchanged.)

III. Multipliers and Radon-Nikodym derivatives

We begin the section with some additional characterizations of 50:
The measure space 50 ’2 is

{mM(X xX2):mv(R)z,v50,z502} [12, pp. 155-6].
The next theorem offers natural choices for v and z.

THEOREM 3.1. The subspace 50 q92 ofM(X x X2)consists precisely of
those measures m in M(X, x X2) which satisfy the followin9 three conditions:

(2)
(3)

m M(X,, 2) or, equivalently, am 502.
m2 M(X2, ’91) or, equivalently, Z"I 50.
m L’(lal) ) L’(!a-) or, equivalently, m kt1 (R) a.

Proof First, for both conditions (1) and (2), results from Section II imply
that the stated equivalences obtain, while the equivalence of the two statements
in (3)follows from the fact that LX(/?’) ) L(/) La(/ (R)//":) [5, Corollary
4, p. 61].
Now, suppose that m 5, )502. From the preliminaries, (1) and (2) are

both clearly satisfied; in fact, since m )w2, the vector-valued measure
m, has a strong RN derivative with respect to/g"’. Thus, m, L (//" 1, 5o2), or
equivalently,

Now by similar reasoning, the vector-valued measure m2 is in M(X2, L’(t’l)),
and has a strong RN derivative with respect to//". Thus,

m2 L’(/m2,
or, equivalently, m L(/’) ) L’(ff"2); that is, (3) is satisfied.

Conversely, if m is a measure in M(X, x X2) for which (1), (2), and (3)are
satisfied, then m is clearly contained in

50, -q2 {m M(Xx X2)" m, v(R) z, v -9,, ’2}. |

Theorem 3.1 may be restated simply as the identity

502 {m M(X, x X2): m . ft.1(R)//.,/t,. 50,,/.t,. 502}.
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The next result shows that if m x (R) z2, then pro1(R) #,,2 is the "least"
product measure with respect to which m is absolutely continuous.

COROLLARY 3.2. Ifm M(Xx x X2) and m , v (R) z, where v M(X) and
M(X2) then pro1 , V, Itm2 " Z, lml Q lm2 < V Q Z, and m

Proof Let a=La(v) and L2=LI(z). Then, by hypothesis,
m LX(v (R) z) 5x ( ’2; hence, all of the conclusions follow immediately
from Theorem 3.1. |

Corollary 3.2 yields an alternate (equivalent) formulation of condition (3)in
Theorem 3.1, which is often easier to apply.

COROLLARY 3.3. If m M(Xx x X2) then m , pml(R)2 if and only if
m
We now apply the accumulated results on L-subspaces to multipliers. A

consequence of our standing assumptions about the CMA-semigroup pairs
(Aa, F)and (A2, F2)is that the inclusions

/(aa) (a2) (ax a2) m(r x r2)
obtain, and that the results on L-spaces are applicable.
Our first multiplier theorem implies that a multiplier measure m in

(A, A2) M(F, x F2)
belongs to (Ax) (A2) if and only if it possesses a strong RN derivative
with respect to .
THEOREM 3.4.

then"
If a measure m in M(1-" x 1-’2) is a multiplier of A A2,

(1)
(2)
m m(r, /(A2))or, equivalently, 1m2 ’(A2).
m2 M(F, (A,))or, equivalently, ml //(A,).

Proof By symmetry, it clearly suffices to show that (1) holds. The equi-
valence of the two assertions in (1) follows from Section II. Now, for each b in
’x, define 00" M(Fa x F2) M(F2) by setting

<0, (R) 0, O e

for/ in M(F x F). Then, since m e /’(A @ A) by hypothesis,

m.(a(R)a)eAx)A for allaeA,i=l, 2.

Hence, by [14, Lemma 2], O,(m (a (19 a))e A, for every 4 in ’. Now, if
b e F1, a e Aa, and a2 e A2, then

(t) O0(m * (ax (R) a2))= (b, aa)(Tm,(dp) * a2).
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To see this, observe that, for F2,

(, O,(m (al (R) a2)))= (b (R) if, rn (a @ a2))

(, a,)(ff, T,,() a2).

From (t) it follows that, for each in , T() a2 e A2, for all a2 in A2.
Thus, T maps into (A2), and, as a result, T maps L(X, )into
(A2). Therefore, m(e)= T(K) (a), for E (F). I

COROLLARY 3.5. For a multiplier m in //(AI A2) M(F x r2),, the fol-
lowing statements are equivalent:

(1)

(3)
(4)

m //I(A,) /(A2).
m has a strong RN derivative with respect to #.
rn M(F,)(R) M(F).

Proof Theorem 3.4 and Corollary 3.3 together yield the equivalence of (1)
and (4), while the equivalence of (3) and (4) follows from Corollary 3.3. Finally
the equivalence of (2)and (3)is proved in [4, Theorem 6.3]. 1

The equivalence of statements (1) and (4) of Corollary 3.5 implies that the
multiplier-subspace ///(A1))/#(A2) has the characterization

//(A1) ) {(A2) {m /(Ax ) A2): m < #ml () ]xm2},

while the equivalence of statements (1)and (3)yields the identity

(A,) (R) /(A) (A, (R) A) c (M(F,)b M(F,.)).

It is natural to ask under what circumstances

//(A,) ) #/(A2)= //(A1 ) A2).

This is the case, for example, if At and A2 are both Ll-algebras under order
convolution [8]. Below, another sufficient condition to effect this decomposi-
tion is given in terms of the notion ofan -algebra. By an -algebra, we mean a
commutative semisimple CMA which, as a Banach space, is isometrically iso-
morphic to l(W), for some set W.

PROPOSITION 3.6. If either /g(A) or //(A2) is an l-algebra, then

/’(A, ) A2)= ’(A,) ./g(A2).
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Proof Suppose that {(A2) is an /x-algebra; then //(A2) has the RN
property [1, p. 31]. Therefore, from Section II, M(Fa, ’(A2))is isometrically
isomorphic to

M(F) (R)/J/(A)
_
M(F) M(rz).

Hence, if m /(Aa A2), then by Theorem 3.4, ml M(F,, o/(Az)), so
m and the conclusion now follows from Corollary 3.5.
Clearly, an analogous argument can be given when /(A) is an l-algebra. |

If S is a commutative separative semigroup, then the Banach algebra a(S)
will be called a semigroup-algebra. Such algebras were among the first
examples of commutative CMA’s to be studied [6]. When a(S) has a weak
approximate identity of norm one, the multiplier algebra //(l(S))is also a
semigroup-algebra; more precisely, /(ll(S))= la((S)), where f(S)is the
translational hull (or multiplier semigroup) of S [10, Theorem 4.9]. Thus,
/(Aa la (S)) ///(aa) /(la (S)) by Proposition 3.6.

It might seem possible for /(A) to be an /-algebra when A is not a
semigroup-algebra. Our final proposition shows that this cannot occur.

PROPOSITION 3.7. Let (A, F) be a commutative semisimple CMA, realized as
an L-subalgebra of M(r’).

(1) Then A is an 1-algebra ifand only ifA is the semigroup-aloebra (S)for
some separative subsemigroup S of F.

(2) If, in addition, A has a weak approximate identity ofnorm one, then A is
an la-aloebra (equivalently, a semigroup-algebra) if and only if ///(A) is an
la-algebra. Moreover, ifA la(S), where S is a subsemioroup ofF, then ///(A)
la(f(S)), and f](S), the translational hull of S, is also a subsemigroup ofF.

Proof (1) Suppose that A is an /a-algebra. Then every measure in A is
discrete; indeed, A la(S), where S {x F: x support ofp, p A}. Since A
is an algebra, 6xr 6 6 A, for all x, y in S, and so S is a subsemigroup of
the commutative semigroup 1-’. Further, the subsemigroup S is separative, be-
cause A is semisimple. Thus, A is a semigroup-algebra. The converse is obvious.

(2) If A is an/L-algebra, then, from (1),a la(S),forsomesubsemigroupS
of F. Thus, /(Ia(S))= Ia(D(S)), where f(S)is a subsemigroup off (containing
S as an ideal) [10], and so, in particular, /(A) is an/a-algebra.

Conversely, suppose that d//(A) is an lL-algebra. Then d/4’(A) has the RN
property, hence, the closed subspace A of t’(A) also has the RN property [1,
p. 30]. Arguing as in the proof of (1), it follows readily that A is the semigroup-
algebra l (S), where

S {x F: x 6 supp/,/ A}.

Finally, from the preceding paragraph, d/t’(a)= la(f(S)). |
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