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RELATION WITH THE HOPF INVARIANT
REVISITED

BY

WARREN M. KRUEGER

1. Introduction

The title of this note refers to Section 8 of Adams’ paper On the groups J(X),
IV [4]. There Adams used his results from [2] to establish a formula which
determines the mod p Hopf invariant in terms of the complex e-invariant (Pro-
position 8.2 [4] or Theorem 2 below). As an outgrowth of his 1970 lectures at
Chicago [5], Adams reformulated the results of [2] in an article Chern charac-
ters revisited [1]. When related methods from the Chicago lectures are applied
to a suitable version of the e-invariant, they yield a new proof of Proposition
8.2 which seems conceptually simpler. The object of this note, then, is to refor-
mulate the e-invariant in a more general context and, with this and the Chicago
"technology", revisit Proposition 8.2 in a spirit similar to the one with which
Adams revisited his earlier Chern characters paper [2].

2. Definitions and statement of results

We begin by defining a homotopy invariant in a manner reminiscent of the
definition of the invariant ecwhich uses the Chern character [4; p. 41]. Let E be
a ring spectrum with unit i: So E and let r/L and rlR respectively denote the
homomorphisms

(E/ i)," r,(E)-- z,(E/x S) --* r,(E A E)
and (i/x E)," r,(E)= r,(S/E) r,(E ^ E).

Let f n,(S) be given and let

f
S" SO

Q(f ?f)
C(f)

denote the associated cofiber triangle.
Now suppose that f," E,(S’) E,(S) is zero. (Let k Zk(E A Sk) denote the

E,(S) generator ASk. SO ASk E Ask.) As f*(o) 0, there is an extension
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io EC(f)= [C(f), E]o so that P(f)*(io)= 1o. Similarly, asf,(/,)= 0, there
is a coextension -i, E,/ l(C(f)) so that Q(f),(-i,)= ,. Then the element
2(f)= (E/io),(,) lies in rt,+l(E/xE). Since varying io by an element in
ker P(f)* varies (f) by an element in im r/R and varying i, by an element in
ker Q(f), varies 2(f) by an element in im r/L, 2(f) determines a unique ele-
ment in r,/l(E/E)/indE which we denote by 2E(f). (Here
inde im r/ + im r/R).

Before altering the scope of the definition of 2, a few remarks are in order.
First of all, we emphasize that for maps of the n-stem which are homologically
trivial, 2e(f) is defined without any special assumptions on the ring spectrum E
such as the flatness of E,(E)over E,(S); consequently 2b,,(f)is defined for any
f 2,- 1(S), n > 0, where bu is the connective BU-spectrum. Secondly, 2 is
clearly natural with respect to coefficient maps c: E--, F of ring spectra.
Thirdly, r,,+ (E/xE)/inde can be identified with r,/ l(E A C(i))/im R, where
C(i) is the mapping cone of i: S--, E and in terms of this identification
d’.+ (2e(f))= O, where

d+ 1" n+l (E A C(i)) n+l(E A (C(i))z)
is the Adams differential. Consequently 2(f) lies in E’"+ (S), the E 2 term of
the Adams spectral sequence associated to E and S.
Now whenever we choose to consider a ring spectrum E which is commutative

and for which E,(E) is fiat over E,(S), we may broaden the class of maps we
may consider to those f: X Y which induce 0 on E, homology and whose
domains satisfy the isomorphism condition of [6; p. 609]. In this case there are
elements iy [C(f), E , Y]o and ix [X, E/ C(f)] so that

and

P(f)*(ir) ’r i/ Y [Y, E/ Y]o

Q(f),(x) tx /,,X IX, E/’, X]o.

Thus the element (E /x "ir),(x) e [S, E/x E/x Y]I determines an element 2(f)
in Ext;)(E,(X), E,(Y)).

This invariant is related to Adams’ e-invariant in the following result.

PROPOSITION 1. With the data of the preceding paragraph,

2e(f)- e(f) in Exte;txE)(E,(X), E,(Y)).

The proof resembles Proposition 1 of [6] and is omitted.

The next data will be useful in the statement and proof of Adams’ Proposi-
tion 8.2, given below as Theorem 2. As usual, let H denote the mod p Hopf
invariant, ec the complex e-invariant, HZ, the Zp Eilenberg-MacLane spec-
trum, K the BU spectrum and bu the connective BU-spectrum. Further let



190 WARREN M. KRUEGER

f 2,-1(S) with n k(p 1) > 0 so that 2nzp(f) H(f)and 2t;(f) ec(f)
are defined. Finally, let ZCv) denote the integers localized at p and p’:Zp)
Z/p Zp be reduction.

THEOREM 2 (Adams). With the above data
(i) pkec(f) Z,p)and
(ii) H(f p’(p%c(f ).

3. Proof of Theorem 2

We give the details for p 2 and open the proof of (i) with several prelimin-
ary remarks First, ExtTM (K,(S), K,(S))is the cyclic group of order m(n)K,(K)

generated by (v"- u")/m(n) where re(n)is as in [3, p. 139]. Secondly, let
a: bu- K be the coefficient map. As

(a/x a),: r,(bu /x bu) r,(K /x K)
maps ind,. isomorphically onto ind in positive dimensions and

(a /x a)#(2b,(f )) 2/(/)= ec(f),
the image of any representative x =,(K/ K)of2(f)in Q[u, u-1, v, v- 1] may
be assumed to lie in the image of =,(bu/ bu). Finally we may assume bu and K
are localized at 2.

Consequently, the representative

9(u, v)- M(f u"
m(n) (v"-

of ec(f) may be assumed to lie in Zz)[u/2, v/Z] according to condition (2’) of
17.5 [5;p. 288]. But

g(u, v)= 2"M(/)
m(n) ((v/Z)"-(u/Z)") Ztz)[U/2, v/Z]

implies that 2"M(f)/m(n) Zt2)and (i)is established.
Now let b: bu HZ2 be the coefficient map equal to the composite

fo
bu HZ HZt2

of [5;p. 262]. Recalling that (b/ HZ2), identifies rt,(bu/x HZ2)with the subal-
gebra of t,(HZ2/HZ2) ’, generated by , , 3, 4,-.., we see that
(bu /x b)," rc(bu /x bu) - rc,(bu /x HZ2) maps u/2 - and v/2 O. Thus, if
x rc,(bu/ bu)represents 25u(f)(and projects to 9(u, v)in ZtE)[U/2, v/2]),

(,) (b /x b),(x) H(f)",
according to the coefficient naturality of the invariant it on the one hand, and

(**) (b /x b),(x) p’ (- 2"M(f) 1 " (b HZE),(flE(k))re(n) I
+ /
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according to the methods of 16.5 [5; p. 270] on the other hand. Here 2 is the
moO 2 aockstein f12: r2,+ l(bu/x HZ2)- r2,(bu/x HZ2). Equating (,)and (**),
we obtain the formula (ii).
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