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QUILLEN’S C-THEORY AND ALGEBRAIC CYCLES
ON ALMOST NON-SINGULAR VARIETIES

BY

ALBERTO COLLINO

Introduction

Let X denote an irreducible quasi-projective variety defined over an alge-
braically closed field, Xo a distinguished closed point of X. We say that (X, x0)
is almost non-singular if X Xo is non-singular, and make this assumption in
the following discussion.

Let X be the set of points (i.e., irreducible cycles) of codimension in X and
let X’ {x X: Xo q }. Set

Ci= LI Z, and C’i= LI Z,,.
Xi X*i

Define R to be the subgroup of C which is generated by the elements of the
form (s, f), where s is in Xi- , f is an element of k(s)*, the group of invertible
elements in the function field of s, and (s, f) denotes the cycle ((f)o- (f))
computed on X. We refer to the elements of R as "relations". The group
C/R= CHi(X) is the ith graded part of the covariant Chow group (of. [2]).

Quillen [5] has associated sheaves ,Yfix with any scheme X, and proved that
if X is a non-singular quasi-projective variety then

CHi(X) Hi(x, ,)ix).
If X is any variety, Hi(X, ix) still has a geometric interpretation, indeed
-Yx ((’,; therefore H(X,-glx) Pic (X). It is a natural question to inquire
about the geometrical meaning of the groups Hi(X, ,Yix).

Define R*i to be the subgroup of C*i generated by the relations (s, f) with the
further requirement s X’_ 1, i.e., by the relations which avoid the distin-
guished point. Set CHi(X, Xo)= C*i/R *i. Our interpretation is:

(0.2) THEOREM. If X is almost non-singular then

CHi(X, Xo)" Hi(X, ’)/{’ix) > 1.

Note that if X is non-singular, (0.1) and (0.2) together provide a highbrow
proof that CHi(X)

_
CHi(X, Xo), > 1.
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When X is non-singular one introduces a topological filtration in the group
KoX of vector bundles on X; let Gi(Ko X) denote the associated graded
groups. It is a consequence of Riemann-Roch (cf. [6, XIV]), that

(0.3) CH2(X) G2(Ko X)
(0.4) CW(X)

_
G(KoX) mod torsion, i> 2.

If X is almost non-singular we also introduce a filtration of topological nature
on K0 X and still let Gi(Ko X) denote the associated graded groups. Our next
interpretation is:

(0.5) THEOREM. (a) CH2(X, Xo) G2(KoX).
(b) CHi(X, Xo)- Gi(Ko X) mod torsion, > 2.

If X is an affine surface this result appears in [4].
I would like to thank the referee for proposing crucial simplifications to a

previous redaction of the paper.

1. Plan of work

We keep the notations of the introduction and assume that (X, Xo) is almost
non-singular. Let ///(X) be the category of finitely generated coherent modules
on X, +(X) the exact subcategory of (X) with objects the modules of finite
projective dimension, (X) the category of locally free sheaves, //(X, Xo) the
Serre subcategory of/if(X)with objects the modules M which are torsion at
Xo, namely mxo 0. Note that //(X, Xo) is also a subcategory of .+(X),
because X Xo is non-singular. On /(X, x o) there is a decreasing filtration by
codimension of the support:

(1.1) For > 0, let /i(X, Xo) be the full subcategory of /(X, Xo) whose
objects are the modules M such that codim (supp M, X) > + 1.

Similarly one introduces filtrations on////(X) and (X)
(1.2) //(X)- /(X), //’(X)-- g///(X, Xo), /g’+ x(X)- /i(X, Xo).
(1.3) F(X) (X), F’+ (X)= dd,(X, Xo).
We recall the standard notations K,X K,((X)), K’X K,(//(X))and

the isomorphism Ki X
_

K,((R)(X)). The natural functors

FiflJooo(X --+

induce homomorphisms

a: Kj(U+(X))--+ KX,
For later reference we set

(1.4) SiKjX image (a),
(1.5) GiKjX SiKjX/Si+ XKjX,

b: K(/’(X))-+ KX.

S KjX image (b),

a’ c x s’  x/s’+
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Let Xxo denote spec (6YX,xo). Then the category /[(Xxo) is equivalent to the
quotient category (X)fi/(X, Xo). By Theorem 5 of [5], there is the exact
sequence of localization

(1.6) - K, (/J’(X))+ K’,X + K’,Xxo + Ki- l(/(X))-
Similarly, for p > 0,

(1.7)p
---} K,(//*+ I(X)) K,(d(X))-, LI K,k(x) K,_ l(/p+ I(X))

X*p

where we have used the isomorphism

* * (X))’-’ LI K,k(x),Ki(’[p (X)/d/[p+
X*p

which follows from Theorem 4, Corollary 1 of [5]. For KX, we produce, in
Section 3, an exact sequence

(1.8) K,(floo(X)) KiX -* K, Xxo K,_ l(Floo(X))
while (1.7)can be rewritten as

(1.9)n K,(F+(X)) Ki(F(X))’".
By a standard process (cf. proof of (.4) in Section 7 [5]), the exact sequences
(1.8), (1.9)give rise to a spectral sequence

Eq(X)K_,X, pO,p+qO,nO.

Similarly (1.6), (1.7)give rise to

where

Eq K_qXxo, E7 K’_Xxo, E= EZ= Li K_p_qk(x).
X*p

Using the preceding notations we have E GPK_p_qX, Eq GPK’_p_qX.
Following [5] we next identify Eq.

re(x, re(x,
Our procedure is to produce exact sequences of sheaves,

(1.11) 0 ix i(Xxo) .i- l(X, Xo) O,

(1.11)’ 0 + f’ix + fti(Xxo)+ fi-1(X, Xo)+ 0,

where

_
I(X, Xo)is obtained from K_ ((X, Xo))by means ofa sheafifying

process, while (X,o shall be conveniently defined. Now the sheaves (X,



QUILLEN’S S-THEORY 657

Xo) have the following exact resolution by flabby sheaves, which we call the
Gersten resolution"

(GR) 0 5:U,,(X, Xo) LI (ix),K,,k(x)
X*I

Therefore

LI (ix), K._ k(x)--+ "".

X*2

(GR*) 0 - Jgix di(Xxo)- LI (ix),Ki-, k(x)""
xX*l

is also exact.
The associated complex of global sections can be written as

(c) 0 H(X, ,x) E-’(X) EI-’(X)-* E-’(X)’".
The differential in (C) turns out to be the differential dl in the spectral
sequence, hence E-i is the pth cohomology group of (C). On the other hand we
shall prove that Yi(Xx0) is acyclic, hence GR* is an acyclic resolution of #{ix.
Therefore E-i= HP(X, ix). The same argument works for ,)Y"ix. Further-
more by explicitly identifying the differential dl in El-,-i_+ E]-i of (C) one
gets Ei-i(X)= C*i, image d R*i, if > 1. Hence

Hi(x, ix) CHi(X, Xo). > 1.

Hi(X, g5;x)’" CHi(X, Xo), i> 1; we chose formulation (0.1) because both
functors are contravariant in the category or pointed almost non-singular
varieties.

2. The sheaf s.(X, Xo)
Let Y denote a constructible subset of X, g/(Y) the category of finitely

generated coherent modules on Y, #(Y, Xo) the exact subcategory of./(Y)
with objects modules M having the property that Xo does not belong to the
closure in X of the support ofM. Note that if Y is closed and Xo is not in Y then
/[ Y, xo /// Y).

(2.1) LEMMA. /[/(Y, Xo) is a Serre subcategory of /(r).

Proof If 0 M M’ - M"--* 0 is exact then

supp (M’)= supp (M)+ supp (M"),
hence cl (supp (M’)) cl (supp (M)) + cl (supp (M")). Using this remark it is
straightforward to check that//{(Y, Xo) is closed under subobjects, quotients
and extensions.

(2.2) Given an open set U in X we denote K,(U, Xo)- K,((U, Xo)).
Filtering /(U, Xo) by codimension of the support in X we obtain categories
’,(U, Xo) defined as in (1.1. K.(U, Xo) is filtered by the images of the groups
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K,,(//p( U, Xo)), which we denote by SPK,,(U, Xo). By means of the localization
theorem of [5] one gets long exact sequences which provide a spectral sequence

(2.3) E’Pq( u) =:, K_,( U, Xo), p >_ O, p + q <_ O, -n >_ O,

where

E]’P(U) LI K_p_qk(x)
U*p

and Up*+ denotes the set of points of codimension (p + 1) in U which have the
property that Xo is not in . By looking at the construction of the spectral
sequence we find an augmented complex

d

(2.4) 0 K,(U, Xo) I] K,,k(x)- I] K,_ k(x)- ".’.
U* U*2

We sheafify the presheaf K,( Xo) and let :.(X, Xo) be the corresponding
sheaf. Note that

,(X, Xo)o 0, ,(X, Xo) lim K,(V, Xo)for x .
Complex (2.4) yields a complex of sheaves (GR)which we have written in (1).

(2.5) PROPOSITION. Sequence (GR) is exact.

(2.6) COROLLARY.

(2.7) COROLLARY.

Et’ (X) re(X,

re(X, Cm+

Proof of (2.5). We imitate the proof of exactness for the Gersten resolution
of ,x when X is non-singular (cf. [5]) and indicate only the variations needed
for the present case.

Let A denote the local ring (gx,x, /p(A, Xo) the category of finitely generated
modules M on A such that (i) Xo q cl (supp M) and (ii)codim (cl (supp M),
X)

___
p + 1. Note that ,(X, Xo), K,,(//o(A, Xo)). By the same argument as

in [5], the proposition holds if we prove that the inclusion

Xo). p _> 0.
induces the zero map on K-groups. If x Xo then #p(A, Xo) is the zero
category and everything is trivial, so take x 4: X o. Since X is quasi-projective
there is an affine open subspace of X, say spec (R), to which both x and x0
belong; without restriction we can assume X spec (R). By Section 2, (9) of

K,(/p+ ,(A, Xo))= lim K.(/p+ ,(Ry, Xo))
where f runs over the regular elements of R for which f(x)4: O. We need to
show that #p+ a(Rs, Xo)--, p(A, Xo), p >_ O, induces zero on K-groups.



QUILLEN’S ,-THEORY 659

For a constructible subscheme Z in X let #,(Z) be the full subcategory of
#(Z) with objects modules M such that codim (supp M, Z) > p + 1; note the
shift in indexes. With this notation,

Kn(p+ I(Ry, Xo))= lim K,(p(Ry/tRy)),
where runs over the regular elements of R with t(Xo) :P O. Given f and t, it
suffices to show that there is a multiplef’ =fh withf’(x) 4:0 for which (*)the
functor M My, from //p(Ry/tRy) to /p(Ry,, x0)induces zero on K-groups.

Set Z spec (R/t), Zy spec (Ry/t) and note that Xo q Z because t(Xo) :/= O.
With M as in (*) above, let W cl (supp M). Then

(+) Xo q W and codim (W, Z) _> p + 1 > 0.

(2.9) LEMMA. Let Z be a divisor in X spec (R), W a proper subvariety ofZ
as in (+). Suppose that X is regular at x and let r dim Z. There is a morphism
u :X Ar, where A is the affine space, so that (i)U/z: Z A" is finite, (ii)u is
smooth at x and (iii) U(Xo q u( W).

Proof Say X is embedded in the affine space A". The set of linear maps
from A" to A is itself an affine space A’; it is standard to check that (i), (ii) and
(iii) each impose open, non-empty conditions on A’, hence there is a linear map
of the required type.

Take u as in the lemma and build a cartesian diagram

spec (R+)= X +

Z

b

u/z

For any Z-module M there is an exact sequence of X-modules

+ + 0 Kernel --, a*M M O.

If supp M
_

W, then by (iii) of (2.9), Xo q supp (a’M), hence (+ +)is a
sequence of functors from /(W) to /p(X, Xo). By the same argument as in [5,
p. 50] we can take a functionf’ =fh in R withf’(x) 4:0 such that (i)X},is flat
over Z and (ii)sequence (+ +) becomes

(s) 0 If, (R)z M a*Mf, Mr, 0

where If, is isomorphic to R}, as an Rf,-module. Sequence (s) is therefore an
exact sequence of exact functors from //(W) to //p(Rf,, Xo); this allows us to
conclude that the functorfrom //(Wf) to .////p(Rf,, Xo) induces the zero map on
K-groups. To complete the proof we remark that K,(#(Rf/tRf)= lim
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K,(/(WI) where Wy runs over the set of subschemes of Zy of codimension at
least p + 1 in Z (cf. (5.1)[5]).

Proof of (2.6). The proof of Proposition 5.8 in [5] applies.

Proof of (2.7). The proof of Theorem 5.19 of [5] applies, One should recall
that if Xo q Z, Z closed, then/g(Z, x0)= ///(Z).

3. The sheaves .(X,o)and
Consider the morphism i: Sp R- X where R CX,xo. Let .(Xxo

i,(5/n,Sp R), "’n(Xxo)--i,(’;,Sp R)" Our aim is to produce exact sequences

(3.1) 0 .Y",x ,;(Xo) ,-(X, Xo) 0,

(3.2) 0 X,x ,Y,(Xxo) ,.- ,(X, Xo) O.

We start with the first one. For V open in X let K’,(Vo denote the group
K,((V)/g(V, Xo)). Observe that this notation is coherent with our conven-
tion Xo Sp R, because K;(Xxo)= K;(Sp R).

LEMMA. ,’;(Xxo)y limyv K;(Vxo).

Let U be an open set containing Xo, D X U. By the localizationProof.
theorem,

K’, +, U V) --+ K’,(D c V) --+ K’, V -+ K’,( U c V)
is exact, Taking limit over the U’s gives

(a) K’,+ ,(Vxo)--+ K’,(V, Xo)-+ K’, V--+ K’,(V,o).
The right hand side of the equation in the lemma is then the limit of
K’,(U V), where U and V vary as indicated above. Now +ug’.(X,o)r is also the
limit of the same family.

Sequence (a) gives rise to a long exact sequence of sheaves

(b) Z+,(X, Xo)--+ ff;x-+ +ug,(X:o)-+ #g.-,(X, Xo).

(3.3) PROPOSITION. Sequence (b) splits in short exact sequences of type (3.1).

Proof By looking at stalks in (b) it suffices to show that the functor gg(Xx,
Xo)-+ /g(X)induces the zero map on K-groups. If x Xo then gg(Xxo, Xo)is
the zero category and everything is clear. If x 4: Xo then the above map factors
into

/U(Xx, /+,(Xx)-+
By (5.10) of [5] we know that a induces the zero map on K-groups because
is regular.
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In order to find (3.2) write the diagram with exact rows

o-+ , o.
We know that the vertical maps are isomorphisms except possibly for the stalk
at Xo; moreover

:,_,(x, o, X.x, o
Therefore (3.2) is exact.
An alternative way of finding (3.2) is to imitate what we have done for

#f’,(Xxo). We do not give the complete argument but produce only the global
localization sequence which we promised in (1.8).

Since +(X) is not an abelian category we cannot use the localization
theorem used previously. In [3] we find the following result.

(3.4) For any affine open subscheme U of X there is an exact sequence

(+) Kq+ U--. KqH KqX Kq U-+’",
where H is the category of quasi-coherent sheaves on X which are zero on U
and admit a resolution of length one by vector bundles on X.

Building on (3.4) we shall recover the exact sequence we want. Set
D X U and assume furthermore that x0 is in U and that D is a divisor. Let
/(D) be the category of coherent modules on D; note that any object in //(D)
admits a finite projective resolution by vector bundles on X, since X Xo is
non-singular.

(3.5) LEMMA. KH - K(/Z(D)).

Proof Apply Theorem 3 of [5] to the pair of exact categories (H,, H,+ ,),
n > 0, where H. denotes the subcategory of U//(D) whose objects are modules
M of X-homological dimension at most n. A routine argument shows that
condition (i) of the theorem holds. To prove that condition (ii) is satisfied, for
M" in H,+ we produce a resolution 0 M’--, M M" 0 with M in H,.
There is a resolution in V/(X),
(r) O K-o P M"- O,

where P is projective. Since Xo q D then (9(- D) is invertible and the restriction
Po P(R)Oo is in H1, hence in H,. Now tensoring (r) with O o gives
OM’PoM"O.

Sequence (+) of (3.4) can be written as

(3.6) -* Kq+ U --. KqD KqX -+ Kq U -+"’.
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Recall that X,, limxo t U, where U runs over the family of affine open
neighborhoods of Xo. Then by Proposition 2.2 of [5], Kq(Xxo) lim Kq U; by
[5, (9)p. 20], Kq(X, Xo) Kq(lim //(D))= lim K’qD. Taking direct limits, (3.6)
gives the exact sequence

(3.7) - K+ X K,+ Xxo - K(X, Xo) K,X
In Section 5 below we need the following result.

(3.8) LEMMA. K,X, - H(X, X’,(Xxo))is an isomorphism; similarlyfor K’,.

Proof

we have the isomorphism (*) because any open set containing the closed point
of X,, Sp R must contain all of Sp R.

4. ::/r.(Xxo and ,(Xxo) are acyclic sheaves

We prove this only for t.; the proof for oU’. is similar. The global sections
functor on Sp R is exact, so sheaves there have no higher cohomology. Thus to
show that i,(,,Sp R) is acyclic, it suffices to show that the higher derived
images are zero, i.e.,

(+) R"i.(,,Sp R) 0, m > 0.

Looking at stalks we see that equality holds trivially at x if x Sp R. If
x Sp R, then to prove (+) at x amounts to proving that the Gersten-Quillen
resolution is exact for the ring R(x, Xo), the quotient ring of R (90 obtained
by inverting all the functions which do not vanish at x.

Remark. This last statement depends on the property that the G-Q resolu-
tion of the sheaf ,v is exact if Xo q U, U open in Sp R, U a regular scheme.

LEMMA. If X is a non-singular point of X, the Gersten-Quillen resolution of
K.(g(x, Xo)) is exact.

Proof We assume x q Sp R, the other case being obvious because R(x,
x0) Cx if x Sp R. Following Quillen we need to prove that for any p > 0,
the inclusion /,+ l(R(x, Xo))- /p(R(x, Xo))induces zero on K-groups. Let
Z’ :/: b be a divisor in Sp R(x, Xo) of equation t’ 0. It suffices to show that the
functor /,(Z’) //p(R(x, Xo))induces zero on K-groups. We may assume
that X is affine, say X Sp C, and take to be an element of C which localizes
to t’. The divisor Z on X with equation t- 0 restricts to Z’ on Sp R(x, Xo),
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hence x and Xo both belong to Z. One has K,(#,(Z’))= lim K,(/,(Z.o)),
where 9 runs over the elements of C which do not vanish at Xo andfruns over
the elements of C which do not vanish at x. Therefore it suffices to show:

(+ +) The functor /p(Zio - #,(R(x, Xo))induces zero on K-groups.

We denote by G the divisor cut on Z by the equation 9 0, by F the divisor
cut on Z by f 0. Without restriction we may assume that no irreducible
component of Z is contained in F or G (otherwise take Z to be the original Z
minus the components contained either in F or G), so that F and G are proper
divisors in Z. By the same argument of Lemma (2.9) we have a diagram

(d)

X + - X=SpC
Z A

where (i) u Iz: Z A’ is finite, (ii)tt is smooth at x, (iii)U(Xo) u(G)and (iv)
u(x) u(F). Now take b to be a function in A’ vanishing along u(F) but not
vanishing at u(x), take 7 to be a function vanishing along u(G) but not vanish-
ing at U(Xo). Localizing diagram (d)at b7 we have

To prove (+ + we replace Z.co by Z; we may do this because Z4, c, Z.
and b(x) :p 0, 7(Xo) :P 0. For any Z-module m we have an exact sequence of

X modules

(s) 0 Kernel aM M O.

Returning for a moment to diagram (d) we recall that by the same argument
as in [5, p. 50] there is a function h in C, not vanishing at x, such that (i) X; is
flat over Z and (ii) the ideal Ih of (Z X;) in X; is principal. Localizing
sequence (s) at h we have

0 Ih (R)z M (aM)h M- 0

which is now an exact sequence of exact functors from /{p(Z4,)to /gp(Xh).
We conclude as in [5].
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5. Another interpretation of CHi(X, Xo)
From (1.4)and (1.10)it follows that

(5.1) SK(X) Ker (KiX H(X, s/fix)),

(5.2) S2Ki_ x(X) Ker (SKi_ I(X) HI(X,
The groups SKi(X, Xo),j 1, 2, have a similar description. From (3.7), using

(3.8), we find the top row in

gis KiXxo Ki_I(X Xo

0 H (X, ’x)-+ H(X, (Xo))--+ H(X, -By chase, one has

SK,_ (X) 0

!
(X, Xo))--+ H’(X, "x)--+ O.

(5.4)0--+ SKiX --+ KiX ---+ H(X, ix)-+ SKi-1(x, x0)-+ S2Ki 1(x) --’+ O.

When 1, the sequence splits because of the following result.

LEMMA. K1 X + H(X, 5Kx) is surjective.

Proof If X is projective or affine the result is clear, since s(x (9,}. A
proof for the general case when X is quasi-projective can be given as follows.
Consider the diagram

=SpB

where B H(X, (9x). Since Z is affine, K Z R* SK Z and clearly
R* H(X, (9). By functoriality, a*K Z c i*K X in KXxo, hence

a*(H(X, C)) i*K X.

A look at (5.3)completes the proof.

(5.5) PROPOSITION. SKo(X, Xo)-- S2Ko X.
Then one has isomorphisms of the graded groups

E/+ 1,-i-l(x Gi+ 1gos Gigo(X, Xo Ei,-i(x), >_ 1.

Our interpretation is"

(5.6) THEOREM. (a) CH2(X, Xo)" G2Ko X.
(b) /fj > 2 then CH2(X, Xo)- GJKo X mod torsion.
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Proof (a) From the spectral sequence E* (cf. (2.3)), we have

E1’- E’’-1 GIKo(X, :go)-- G2Ko X’,

moreover

E1’-1 Hi(X, (1(X, Xo)) H2(X, f’2x) CH2(X, Xo).
(b) Recall the isomorphism CH(X, Xo)- Et- ’-/ ’= E2’-. From the

spectral sequence there is a surjective morphism or" E -2 E2. We show that
is injctive modulo torsion. Lt a’ mi zi, zi X, represent an lemcnt a

in CH2(X, Xo) such that a(a) 0. By the construction of we know that (a) is
represented in E-= GKoX by miT(zi), where 7(zi)= class (ff)in KoX.
Since a(a)= 0, mi 7(zi)is contained in S+’Ko X. In other words

(+) E miY(zi)= E ny(w) in KoX,

where w belongs to X+ , > 0. This equality holds in SKo X, hence it holds in
SJ- XKo(X, Xo) by (5.5). Therefore (+)is true in Ko(X, Xo)also.
From the definition ofKo(X, x o) it follows that there is a closed ,,scheme S

of X, S not necessarily irreducible, so that (i) x0 S, (ii) z, w, are points of S
and (iii) equation (+) holds in K S. At this point we need a basic result from
[1]. Let CH(S) be the group A(S)in [1]; CH(S)is the Chow covariant group
graded by dimension. Then there is an isomorphism

(+ +) z" K S CH(S) mod torsion

with the property that if y(T) then

z(t) class (T) + terms of lower degree.

Applying z to equation (+) one gets

class (Zmz3)= terms in lower degree mod torsion;

hence class (Emz)= 0 in CH(S)e. From the definition of CH(S)we have a
natural map CH(S) CH(X, Xo), hence the above equality holds also in
CH(X, Xo)e.

(5.7) Remark. Since K’x X H(X, ’x)is not surjective in general, (5.6)
does not hold for the group K X.

6. Final remarks

(6.1) If X is non-singular there are two filtrations for the groups K,X, the
topological filtration used in [5] and the one we introduced in (1.4). We want to
show that the two filtrations coincide.

In Section 1 we produced a spectral sequence with the property that
E-q’q= GP-qK_ X, the graded groups associated with the filtration (1.4).q
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Our proof was inspired by [5], where the same result is proved for the topologi-
cal filtration. In a standard way one finds a natural map from our spectral
sequence to Quillen’s one. In both cases EP2q HP(X, :;/#-q,x) (cf. (1.10) and
[5]), hence the two spectral sequences coincide from the EP2q terms on. Con-
sequently the two filtrations on K,,X coincide.

(6.2) We now assume that X contains finitely many singular points x 1,

x,. By analogy to what is done above, one can define groups CHi(X, x 1, x,),
abbreviated CHi(X, x.). Similarly sheaves ,(X, x.) can be introduced. Every-
thing we proved in Sections 1, 2, 3 above can be proved again by the same
arguments properly adapted. The results in Section 4 do not extend. Let X
denote the theta divisor inside the Jacobian variety of a general curve of genus
4; algebraic geometers know that X is a threefold with exactly two singular
points. We have computed H2(X, Kax)= Z, hence :l(Xx.) is not acyclico
Details will appear elsewhere.
The results in Section 5 do not depend on Section 4, in particular Theorem

(0.5) holds for the case of X with finitely many singular points.
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