A CHARACTER TABLE BOUND FOR THE SCHUR INDEX

BY DAVID GLUCK

Introduction

Although there can be no universal formula giving the Schur index of an irreducible character of a finite group as a function of the character values (see [5]), various estimates for Schur indices have been obtained. Most recent work on the Schur index is based on the Brauer-Witt reduction, which relates the Schur index of an irreducible character of a group G to Schur indices of irreducible characters of certain hyperelementary sections of G. Our approach has nothing to do with the Brauer-Witt reduction, but unlike other results, excepting perhaps [7], it gives a useful bound for Schur indices from the character table alone.

1. Main theorem and corollaries

We let G be a finite group, p a prime number, and x a p'-element of G. We define the rational p'-section S_x as the set $\{g \in G \mid \langle g_p \rangle \sim_G \langle x \rangle\}$, where \sim_G denotes G-conjugacy. The characteristic function of S_x is denoted by 1_{S_x} . For an irreducible character χ of G we abbreviate the inner product $(\chi, 1_{S_x})_G$ by $S_x(\chi)$, and denote by $m(\chi)$ the rational Schur index of χ . Finally, if r is a rational number, r_p will denote the p-part of r. We can now state the main theorem.

THEOREM. For any p'-element x in G, 1_{S_x} is a p-integral linear combination of permutation characters. Consequently $S_x(\chi)$ is a p-integral rational number for all $\chi \in \text{Irr }(G)$, and $m(\chi)_n$ divides $S_x(\chi)_n$.

The second sentence follows from the first by a standard property of Schur indices [4, Corollary 10.2(c)], so we do get a bound for $m(\chi)_p$.

We therefore concentrate on the proof of the first assertion. To this end we introduce the Burnside ring $\Omega(G)$, which may be defined as the Grothendieck ring of the category of finite G-sets. Thus $\Omega(G)$ consists of all formal integral linear combinations of transitive G-sets, with multiplication given by decomposing the cartesian product of 2 transitive G-sets into its transitive orbits. If we let $L^*(G)$ be a set of representatives of the conjugate classes of subgroups of G and denote by u_H the transitive G-set of left cosets of H, then $\{u_H | H \in L^*(G)\}$ is

Received January 11, 1980.

the natural basis of $\Omega(G)$. Furthermore there is a ring homomorphism Char from $\Omega(G)$ to the ring of generalized characters of G which sends u_H to the permutation character 1_H^G .

We next compare the primitive idempotents in two coefficient ring extensions of $\Omega(G)$, and their images under Char. These images will be class functions on G, but not usually generalized characters.

In the Burnside algebra $\mathbf{Q} \otimes \Omega(G)$, the primitive idempotents e_H again correspond to the elements of $L^*(G)$. It is easy to see that Char (e_H) is 0 when H is non-cyclic and Char (e_H) is the characteristic function of the set of conjugates of generators of H when H is cyclic. See [8] for these and other facts about the Burnside algebra.

We next consider the ring $\Omega(G)_p = \mathbb{Z}_p \otimes \Omega(G)$, where \mathbb{Z}_p denotes the integers localized at p. We call subgroups H and K of G p-equivalent if $\mathbb{O}^p(H) \sim G$ $\mathbb{O}^p(K)$, where \mathbb{O}^p denotes the smallest normal subgroup of p-power index. The next lemma describes the primitive idempotents of $\Omega(G)_p$.

LEMMA. For $H \in L^*(G)$ let $\tilde{e}_H = \sum_K e_K$, where K ranges over all subgroups in $L^*(G)$ which are p-equivalent to H and the sum is taken in $\mathbb{Q} \otimes \Omega(G)$. Then the \tilde{e}_H are the primitive idempotents of $\Omega(G)_n$.

Proof. This is a somewhat disguised version of the main results of [2], and a fuller discussion may be found in [3]. We sketch the proof for the reader's convenience.

The prime ideals of $\Omega(G)_p$ are of two types. There are minimal prime ideals

$$\mathfrak{p}(H,0) = \{x \in \Omega(G)_p | \langle e_H, x \rangle = 0\},\$$

where \langle , \rangle denotes the natural bilinear form on $\mathbf{Q} \otimes \Omega(G)$ determined by the primitive idempotents of $\mathbf{Q} \otimes \Omega(G)$, and there are maximal ideals

$$\mathfrak{p}(H, p) = \{x \in \Omega(G)_p | \langle e_H, x \rangle \equiv 0 \mod p \}.$$

The p(H, 0) are distinct for distinct $H \in L^*(G)$ but $\mathfrak{p}(H, p) = \mathfrak{p}(K, p)$ if and only if H and K are p-equivalent. Each p-equivalence class thereby determines a connected component of Spec $\Omega(G)_p$ consisting of one maximal ideal $\mathfrak{p}(H, p)$ and the minimal prime ideals $\mathfrak{p}(K, 0)$ for those K in $L^*(G)$ which are p-equivalent to H. All the above $\mathfrak{p}(K, 0)$ are contained in $\mathfrak{p}(H, p)$.

On the other hand, for any commutative ring R the connected components of Spec R correspond to the primitive idempotents of R; the connected component of Spec R corresponding to a primitive idempotent e in R consists of all prime ideals of R which contain 1 - e, so if e is the primitive idempotent of $\Omega(G)_p$ corresponding to the connected component of Spec $\Omega(G)_p$ described in the previous paragraph, 1 - e is contained in $\mathfrak{p}(K, 0)$ if and only if K is p-equivalent to H. The statement of the lemma follows.

To complete the proof of the theorem we consider the primitive idempotent $\tilde{e}_{\langle x \rangle}$ of $\Omega(G)_p$. By our earlier remarks on Char (e_H) it follows that Char $(\tilde{e}_{\langle x \rangle}) = 1_{S_x}$. The theorem then follows from the fact that $\tilde{e}_{\langle x \rangle}$ is a p-integral combination of the u_H 's.

The theorem has several striking applications to Schur indices. We give two simple ones, the first of which has already appeared in [7].

COROLLARY 1 (L. Solomon). Let $\chi \in Irr(G)$ have p-defect 0. Then $p \nmid m(\chi)$.

Proof. The p-elements of G comprise a rational p'-section S_1 . Since χ vanishes on non-identity p-elements, $S_1(\chi) = \chi(1)/|G|$ is not divisible by p.

The theory of blocks with cyclic defect group [1] can be used to get corollaries of the main theorem which are more widely applicable than Corollary 1. One considers elements x of G which are p-regular and q-singular for some prime $q \neq p$. Here one should keep in mind the case where G is simple and q is a large prime divisor of |G|. If χ is an irreducible character of G whose q-defect group is cyclic and contains x_q , one can express $S_x(\chi)$ in terms of the irreducible q-Brauer characters of $C_G(x_q)$. The following corollary considers only the simplest case of this type, but one which occurs frequently.

COROLLARY 2. Let q be a prime which divides |G| to the first power and suppose that a q-Sylow of G is self-centralizing. Let χ be an irreducible character of G such that $q \nmid \chi(1)$. Then $m(\chi) = 1$ if χ is exceptional, and $m(\chi)$ divides the number of conjugate classes of elements of order q in G if χ is non-exceptional.

Proof. Let x be an element of order q in G, and let p be a prime different from q. Then the conjugates of $\langle x \rangle - \{1\}$ form a rational p'-section S_x . Let x, x^a , x^b, \ldots , be a full set of non-conjugate powers of x, and let $N = N_G \langle x \rangle$.

If χ is exceptional, there is a non-principal character λ of $\langle x \rangle$ so that

$$S_x(\chi) = \pm (1/q)(\lambda^N(x) + \lambda^N(x^a) + \lambda^N(x^b) + \cdots) = \pm 1/q.$$

Therefore $p \nmid m(\chi)$ for any prime p different from q. Since $q \nmid \chi(1)$, it follows that $m(\chi) = 1$.

If χ is non-exceptional, then $S_x(\chi) = \pm (1/q)(\varepsilon + \cdots + \varepsilon)$, where $\varepsilon = \pm 1$ and one ε appears for each of $x, x^a, x^b \dots$. The result follows.

2. Examples

We shall apply the main theorem to PSL(3, 3) and M_{11} . These are the two simple groups having an involution with centralizer isomorphic to GL(2, 3). In both examples we take p=2 and use rational 2'-sections to estimate the 2-parts of Schur indices. In both examples it is clear that no odd prime can divide any Schur indices; the groups do not have the appropriate hyperelementary sec-

652 DAVID GLUCK

tions. We shall omit trivial calculations and merely state the results. The character tables can be found, for example, in [4] and [9].

Example 1.
$$G = PSL(3, 3)$$
.

First note that PSL(3, 3), SL(3, 3) and PGL(3, 3) are all isomorphic. In the notation of Steinberg [9], G has 12 conjugate classes, one each of type A_1 , A_2 , A_3 , A_4 and A_5 , three of type B_1 , and four of type C_1 . There are four rational 2'-sections, one consisting of the two classes of type A_2 and A_5 , the second consisting of the single class of type A_3 , the third consisting of the four classes of type C_1 , and the fourth (the 2-elements) consisting of the remaining classes. There are eight characters of even degree: four exceptional characters of degree 16 in the principal 13-block, three characters of degree 26, and an irreducible character $\chi_{12}^{(2)}$ of degree 12. All but the last of these can be shown to have odd Schur index by considering the rational 2'-section consisting of the single class of type A_3 . No rational 2'-section eliminates $\chi_{12}^{(2)}$, but $1_G + \chi_{12}^{(2)}$ is the character of the doubly transitive action of G on the 13-point projective space over GF(3), so $\chi_{12}^{(2)}$ has Schur index 1.

Example 2.
$$G = M_{11}$$
.

Here, Corollary 2 shows that a character with Schur index greater than 1 must have degree divisible by 10. There are three such characters, all of degree exactly 10. Our method eliminates one (the permutation character of M_{11} on 11 points), but fails to eliminate the other two, which are algebraically conjugate. One can restrict the latter characters to $GL(2, 3) \leq M_{11}$ and find that the restrictions are multiplicity-free and contain characters of

$$GL(2, 3)/Z(GL(2, 3)) = S_4.$$

By a basic property of Schur indices [4, Lemma 10.4] this proves that the two algebraically conjugate characters of M_{11} of degree 10 actually have Schur index 1.

Finally, it should be pointed out that there is an important case in which our method fails completely; namely when p | |Z(G)|. In this case all $S_x(\chi)$ are 0 unless χ contains the p-Sylow of Z(G) in its kernel.

REFERENCES

- 1. E. C. Dade, Blocks with cyclic defect groups, Ann. of Math., vol. 84 (1966), pp. 20-48.
- 2. A. Dress, A characterization of solvable groups, Math Zeitschr., vol. 110 (1969), pp. 213-217.
- 3. A. Dress and M. KÜCHLER, Zur Darstellungstheorie Endlicher Gruppen I, Bielefeld, 1971.
- 4. I. M. ISAACS, Character theory of finite groups, Academic Press, New York, 1976.
- K. Kronstein, Character tables and the Schur index, Proceedings of a Symposium on Representation Theory and Related Topics, Irving Reiner, ed., Amer. Math. Soc., Providence, R.I., 1971.
- D. LITTLEWOOD, The theory of group characters and matrix representations of groups, 2nd ed., Oxford Univ. Press, Oxford, 1950.

- 7. L. SOLOMON, On Schur's index and the solutions to $G^n = 1$ in a finite group, Math. Zeitschr., vol. 78 (1962), pp. 122–125.
- 8. ——, The Burnside algebra of a finite group, J. Combinatorial Theory, vol. 2 (1967), pp. 603-615.
- 9. R. STEINBERG, The representations of GL(3, q), GL(4, q), PGL(3, q), and PGL(4, q), Canadian J. Math., vol. 3 (1951), pp. 225-235.

UNIVERSITY OF ILLINOIS
URBANA, ILLINOIS
UNIVERSITY OF WISCONSIN
MADISON, WISCONSIN