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A CHARACTER TABLE BOUND FOR THE
SCHUR INDEX

BY

DAVID GLUCK

Introduction

Although there can be no universal formula giving the Schur index of an
irreducible character of a finite group as a function of the character values (see
[5]), various estimates for Schur indices have been obtained. Most recent work
on the Schur index is based on the Brauer-Witt reduction, which relates the
Schur index of an irreducible character of a group G to Schur indices of
irreducible characters of certain hyperelementary sections of G. Our approach
has nothing to do with the Brauer-Witt reduction, but unlike other results,
excepting perhaps [7], it gives a useful bound for Schur indices from the charac-
ter table alone.

1. Main theorem and corollaries

We let G be a finite group, p a prime number, and x a p’-element of G. We
define the rational p’-section Sx as the set {9 G gp, " (x}, where
denotes G-conjugacy. The characteristic function of S,, is denoted by ls. For an
irreducible character of G we abbreviate the inner product (g, lsx) by Sx(z),
and denote by re(Z) the rational Schur index of g. Finally, if r is a rational
number, rp will denote the p-part of r. We can now state the main theorem.

THEOREM. For any p’-element x in G, lsx is a p-integral linear combination of
permutation characters. Consequently Sx(Z) is a p-integral rational numberfor all
X Irr (G), and m(x)p divides Sx(z)p.

The second sentence follows from the first by a standard property of Schur
indices [4, Corollary 10.2(c)], so we do get a bound for m(Z)p.
We therefore concentrate on the proof of the first assertion. To this end we

introduce the Burnside ring (G), which may be defined as the Grothendieck
ring of the category of finite G-sets. Thus (G) consists of all formal integral
linear combinations of transitive G-sets, with multiplication given by decom-
posing the cartesian product of 2 transitive G-sets into its transitive orbits. If we
let L*(G) be a set of representatives of the conjugate classes of subgroups of G
and denote by u, the transitive G-set of left cosets of H, then {un H L*(G)} is
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the natural basis of f(G). Furthermore there is a ring homomorphism Char
from f(G) to the ring of generalized characters of G which sends u/to the
permutation character 1/.
We next compare the primitive idempotents in two coefficient ring exten-

sions of f(G), and their images under Char. These images will be class func-
tions on G, but not usually generalized characters.

In the Burnside algebra Q (R) (G), the primitive idempotents en again corre-
spond to the elements of L*(G). It is easy to see that Char (e/) is 0 when H is
non-cyclic and Char (e/) is the characteristic function of the set of conjugates
of generators of H when H is cyclic. See [8] for these and other facts about the
Burnside algebra.
We next consider the ring (G)p Zp @ f(G), where Zp denotes the integers

localized at p. We call subgroups H and K of G p-equivalent if OP(H), c,

OP(K), where Op denotes the smallest normal subgroup of p-power index.
The next lemma describes the primitive idempotents of (G)p.

LEMMA. For H L*(G) let i K eK, where K ranges over all subgroups in
L*(G) which are p-equivalent to H and the sum is taken in Q (R) f(G). Then the On
are the primitive idempotents of(G)p.

Proof This is a somewhat disguised version of the main results of [2], and a
fuller discussion may be found in [3]. We sketch the proof for the reader’s
convenience.
The prime ideals of f(G)p are of two types. There are minimal prime ideals

p(n, 0)= n(a) l <e,,, 0},
def

where (,) denotes the natural bilinear form on Q (R) f(G) determined by the
primitive idempotents of Q (R) f(G), and there are maximal ideals

p(H, p)= {x e f(a)p (e,,, x) _= 0 mod p}.
def

The p(H, 0) are distinct for distinct H e L*(G) but p(H, p) p(K, p)if and only
if H and K are p-equivalent. Each p-equivalence class thereby determines a
connected component of Spec f(G)p consisting of one maximal ideal p(H, p)
and the minimal prime ideals p(K, 0) for those K in L*(G)which are p-
equivalent to H. All the above p(K, 0) are contained in p(H, p).
On the other hand, for any commutative ring R the connected components

of Spec R correspond to the primitive idempotents of R; the connected com-
ponent of Spec R corresponding to a primitive idempotent e in R consists of all
prime ideals of R which contain 1 e, so if e is the primitive idempotent of
’)(G)p corresponding to the connected component of Spec ’)(G)p described in
the previous paragraph, 1 e is contained in p(K, 0) if and only if K is p-
equivalent to H. The statement of the lemma follows.
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To complete the proof of the theorem we consider the primitive idempotent
’<x> of )(G)p. By our earlier remarks on Char (eta)it follows that
Char (O<x>)= lsx. The theorem then follows from the fact that k<> is a p-
integral combination of the u//s.

The theorem has several striking applications to Schur indices. We give two
simple ones, the first of which has already appeared in [7].

COROLLARY 1 (L. Solomon). Let Z Irr (G) have p-defect O. Then pXm(z).

Proof The p-elements of G comprise a rational p’-section $1. Since Z van-
ishes on non-identity p-elements, SI(Z)- z(1)/IGI is not divisible by p.

The theory of blocks with cyclic defect group [1] can be used to get corol-
laries of the main theorem which are more widely applicable than Corollary 1.
One considers elements x of G which are p-regular and q-singular for some
prime q 4: P. Here one should keep in mind the case where G is simple and q is a
large prime divisor of ]G]. If ;t is an irreducible character of G whose q-defect
group is cyclic and contains x, one can express S,(Z) in terms of the irreducible
q-Brauer characters of C(x). The following corollary considers only the sim-
plest case of this type, but one which occurs frequently.

COROLLARY 2. Let q be a prime which divides G] to the first power and
suppose that a q-Sylow ofG is self-centralizing. Let Z be an irreducible character
of G such that qz(1). Then re(Z)- 1 if z is exceptional, and m(z divides the
number of conjugate classes of elements of order q in G if Z is non-exceptional.

Proof Let x be an element of order q in G, and let p be a prime different
from q. Then the conjugates of (x {1} form a rational p’-section S,. Let x, x",
xb,..., be a full set of non-conjugate powers of x, and let N N(x).

If g is exceptional, there is a non-principal character 2 of (x) so that

Sx(Z)-- + (1/q)(2N(x) + 2(X") + 2N(xb) + "’’)--- +/- 1/q.

Therefore pXm()) for any prime p different from q. Since qx(1), it follows that
m(z) 1.

If g is non-exceptional, then Sx(Z)= + (1/q)(e 4-"" 4- e), where e + and
one e appears for each of x, x", xb The result follows.

2. Examples

We shall apply the main theorem to PSL(3, 3) and M11. These are the two
simple groups having an involution with centralizer isomorphic to GL(2, 3). In
both examples we take p 2 and use rational 2’-sections to estimate the 2-parts
of Schur indices. In both examples it is clear that no odd prime can divide any
Schur indices; the groups do not have the appropriate hyperelementary sec-
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tions. We shall omit trivial calculations and merely state the results. The char-
acter tables can be found, for example, in [4] and [9].

Example 1. G PSL(3, 3).

First note that PSL(3, 3), SL(3, 3) and PGL(3, 3) are all isomorphic. In the
notation of Steinberg [9], G has 12 conjugate classes, one each of type A 1, A 2,

A3, A4 and As, three of type B1, and four of type C1. There are four rational
T-sections, one consisting of the two classes of type A 2 and A 5, the second
consisting of the single class of type A 3, the third consisting of the four classes
of type C1, and the fourth (the 2-elements)consisting of the remaining classes.
There are eight characters of even degree:four exceptional characters of degree
16 in the principal 13-block, three characters of degree 26, and an irreducible
character ,t12"tz) of degree 12. All but the last of these can be shown to have odd
Schur index by considering the rational T-section consisting of the single class
of type A 3. No rational T-section eliminates ;t]22), but 1 + ]22) is the character
of the doubly transitive action of G on the 13-point projective space over GF(3),
so Z22 has Schur index 1.

Example 2. G M11.

Here, Corollary 2 shows that a character with Schur index greater than 1
must have degree divisible by 10. There are three such characters, all of degree
exactly 10. Our method eliminates one (the permutation character of M 11 on
11 points), but fails to eliminate the other two, which are algebraically conju-
gate. One can restrict the latter characters to GL(2, 3) <_ M11 and find that the
restrictions are multiplicity-free and contain characters of

GL(2, 3)/Z(GL(2, 3))= $4.

By a basic property of Schur indices [4, Lemma 10.4] this proves that the two
algebraically conjugate characters of M ll of degree 10 actually have Schur
index 1.

Finally, it should be pointed out that there is an important case in which our
method fails completely; namely when p] IZ(G)I. In this case all S,() are 0
unless ;t contains the p-Sylow of Z(G) in its kernel.
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