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EXTREME INVARIANT EXTENSIONS OF PROBABILITY
MEASURES AND PROBABILITY CONTENTS

BY
HARALD LUSCHGY

1. Introduction

Let G be a semigroup which acts from the left on a set X and let o/ and & be
invariant g-algebras on X with # < /. In this paper we characterize the
extreme points of the convex set of all invariant probability measures on .o/
which extend a given probability measure P on # and we give an extremal
integral representation in this set. This problem has been investigated by Far-
rell [8] and by several other authors for # = {0, X} and by Plachky [17] for
G = {idy}.

Starting with a known characterization by an approximation property [14]
we clarify its relation to the notion of pairwise sufficient s-subalgebras of .«/.
For a wide class of measurable spaces (X, &) and semigroups G the extreme
invariant extensions of P turn out to be those invariant extensions whose
conditional probabilities with respect to the o-algebra of P-almost invariant
%-measurable sets are multiplicative modulo an averaging process. As an
application of a Choquet type theorem of v. Weizsicker and Winkler [20] we
obtain an extremal integral representation in the set of invariant extensions
of P.

Finally, given invariant algebras &/ and # with # < &/ we derive characteri-
zations of the extreme points of the convex set of all invariant probability
contents on &/ which extend a given probability content on Z.

2. Preliminaries

Let X be a set, let G be a semigroup which acts from the left on X, and let &/
be an invariant algebra on X, ie.

g 'A={xeX:gxeAlesd forallgeG, Ae.

An additive set function u: o/ — R is called invariant if u(g~'A4) = p(A) for all
g€G, Aesf. By ba(</) we denote the space of all bounded, (finitely) additive
real set functions on o/ and by ba(</); we denote the subspace of all invariant
elements. Then ba(«/)g is an order complete Banach sublattice of ba(/). We
may identify ba(2/) with the topological dual B(</) of B(«/), where B(</)
denotes the closed linear hull of the set {1 ,: A€/} in the Banach lattice B(X)
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28 HARALD LUSCHGY

of all bounded real functions on X. An additive real set function with values in
[0, 1] is called probability content; nba(s#) is the set of all probability contents
on .

Given an invariant subalgebra # of &/ and Penba(%); we set
F(P)g = {Qenba(/)s: Q| # = P}.

Obviously F(P)g is a convex set. Let F; denote the space of all set functions
H € ba(B)s such that F(|u|)s # 0. Furthermore, let

Ag={Aesd: g 'A=A for all geG},
A()g={AeA: Qg 'AA A)=0for all geG, Qel} for I < nba(f)g,
and

A (Q)g = (Q})s for Qenba()s.

When dealing with o-additive set functions we shall always assume that .o/
and # are invariant g-algebras. Let ca(«/) denote the space of all o-additive
real set functions on «/. Then ca(s )¢ is an order complete Banach sublattice of

ca(s#). By nca(/) we denote the set of all probability measures on /. Given
Penca(B); we set

E(P)g = {Qenca(/)s: Q| % = P}.

Let Eg denote the space of all set functions u € ca(#)g such that E(|u|)s # 0.
For the following information see [14].

PROPOSITION 2.1. (a) Fg (resp. Eg) is a band in ba(%B)g (resp. ca(#)g).

(b) Suppose po < ueFg (resp. Eg) for poeba,(#B)g (resp. ca (#)g). Then
for each veF(u)g (resp. E(u)g) there exists voe F(uo)g (resp. E(uo)g) that
satisfies vy < v.

Given a convex set K we shall denote by ex K the set of all extreme points
of K.

A semigroup G is called left amenable (LA) if there exists a left invariant
mean on G, ie. a positive linear form m on B(G) satisfying m(15) =1 (or
equivalently, a probability content on P(G)) which is invariant under the left
translation operators. By interchanging “right” and “left” we obtain the
definition of right amenable (RA) semigroups. A semigroup G is called ex-
tremely left amenable (ELA) if there exists a left invariant mean on G which is
multiplicative.

3. Extreme invariant extensions of measures

Throughout this section # and &/ are invariant o-algebras on X with # < o/
and P is an invariant probability measure on 4.
The proof of our first observation is also suitable for probability contents.
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PROPOSITION 3.1.  Assume ex E(P)g # 0. Then the following statements are
equivalent :

(@) ex E(P)g = E(P)g N ex nca()g.

(b) P is an extreme point of nca(#)g.

(c) The cone R, - E(P)g is hereditary to the left in the cone ca (), ie.
veca,(¥)g ne Ry - E(P)g, v<pimplyveR, - E(P).

(d) E(P)g is a face of nca()g, ie. Qe E(P)s, Qi Q€ nca()g,
Q= (Q: + Q,)/2 imply @4, Q, € E(P)g.

Proof. (a)=>(b) If P= (P, + P,)/2 with P,, P, e nca(#); and Q € ex
E(P)g, then according to Proposition 2.1 there exists a measure Q, € E(P,)q
such that Q, <2Q. Defining Q,=2Q — Q, we have Q,e E(P,)¢ and
0 = (0, + Q,)/2. Since, by (a), Q € ex nca(«)g, it follows that Q, = Q, and
hence, P, = P,.

(b)=(c) Assume ve ca,(«)g, pe R, E(P)g withv<puand0#v#p
Let o = v(X) and B = p(X). Defining invariant probability measures on .o/ by

Q=p8""u, Qu=a"'v and Q,=p(B-0a) Q- F"V)

we obtain Q € E(P)g and Q = af™!'Q, + (1 — «p~!)Q,. According to (b) this
implies Q,, Q, € E(P)g; hence v € R, + E(P)g.
(c)=(d)=>(a) is obvious.

The following generalization of the characterization of extreme invariant
probability measures as ergodic measures is due to the author [14, Theorem 7].

THEOREM 3.2. Let Q € E(P)¢. Then Q is an extreme point of E(P) if and only
if for each A € o4(Q)g there exists B € # with Q(A A B)=0.

In a situation treated by Bierlein [3] (without invariance considerations) we
can conclude the existence of extreme points.

COROLLARY 3.3. Let o/ be the c-algebra generated by # U {A,: n € N},
where A,, n€ N are disjoint invariant subsets of X. Then ex E(P); # 0.

Proof. We may assume ( )i, 4, = X. Obviously
¢ o)
o ={{J) (4, N B,): B, € # for all n e N}
n=1

is invariant. For the #-measurable kernel C,(resp. hull D,) of 4, we have C,,
D, € #(P)¢. Defining 6, =1, — 1¢,,

A= )' = ()“n)neN:
A, is a real #(P)g-measurable function on X such that

0<i,<land Y (lc, + 4,6,) =1 P-ae.
n=1
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and

o]

S [ (e, + ) dP for €A,

n=1°B,

Q‘(El(AnF\BJ)=

we have according to Bierlein [3, Satz 24] and some simple invariance con-
siderations E(P)g = {Q*: 4 € A}.
We will show

ex E(P)g = {Q* 1 € Ao),
where

Ao=

{A = (Anen: 4 € A, 4, | D,\C, is an indicator function P-a.e. for all ne N}.

If Q* e ex E(P)g, then according to Theorem 3.2 there exist B, e # with
0*A, A B,) =0 for all n e N. Since

Q"4 AB) = [ (lo,+4o)dP+ [ [1~(l,+13,)] dP

we obtain 4,|D,\C, = 13 | D,\C, P-a.e.; hence A = (4,),cn € Ao. If, conversely,
A = (A,)nen € Ao, then by definition of A, there exist B, € #, B, < D,\C, such
that

A|D\C, = 15 |D,\C, P-ae.forallneN.

Setting B, = B, u C, we obtain Q*(4, A B;) =0 for all n e N. According to
Theorem 3.2 this yields Q* € ex E(P)s. From [3, Satz 2B] and obvious invar-
iance considerations it now follows that ex E(P); # 0.

The following slightly more general result is an immediate consequence of
Corollary 3.3 and arguments of Ascherl and Lehn [1].

COROLLARY 34. Let of be the g-algebra generated by # v {A.: te T},
where T is any indexing set and A, t € T are disjoint invariant subsets of X. Then
ex E(P); # 0.

If G is ELA, then &/(Q); = «/ for any invariant probability content Q on </ ;
see Granirer [10, p. 58]. Hence, one obtains from Theorem 3.2:

COROLLARY 3.5. Assume that G is ELA and Q € E(P)¢. Then Q is an extreme
point of E(P)g if and only if for each A€ of there exists Be # with
0(4 A B)=0.

We will weaken the approximation assertion of Theorem 3.2 using the
notion of pairwise sufficient g-subalgebras. The latter were studied in this
setting by Plachky [17] for G = {idy}, while Farrell [8] used the notion of
sufficient g-subalgebras in the case Z = {0, X}.
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Given a g-subalgebra € of o we set

H(%) = {Q € E(P);: for each A4 € € there exists B € # with Q(4 A B) = 0}.

THEOREM 3.6. For a g-subalgebra € of </(E(P)¢)g consider the following
statements :

(a) ex E(P)s = H(¥).

(b) % is pairwise sufficient for H(%).

(c) % is a determining o-algebra for H(%),i.e.Q,,Q, € H(¥),Q,|% = Q,|¥
imply Q; = Q,.
Then (b)=> (c) = (a) and if B(P)¢ < ¥, then all statements are equivalent.

Proof. (b)=(c) Let Q,, Q, € H(%) such that Q,|% = Q,|¥. Then for
A € o/ we obtain

0.(4) = [ E(14]%) 4@, = [ E(L,|€) d@, = 04(4),

where E(1,|%) denotes a simultaneous version of the #-conditional probabili-
ties of A with respect to Q, and Q,.

(c)=>(a) According to Theorem 3.2 clearly ex E(P)s = H(%) holds. If con-
versely Q € H(%), Q = (Q; + Q,)/2 with Q,, 0, € E(P)g, then @4, Q, € H(¥)
and Q,|% = Q,|%. By hypothesis this implies @, = Q, and hence, Q € ex
E(P)g.

(@)=>(b) Let us now assume that #(P); = ¥. Let Q,, Q, € H(¥) and
Q = (Q, + Q,)/2. Define measures Q; on &/ by

Q)
Ld0]9)°

Then Q) and Q) are invariant probability measures on & such that Q;|¢ =
Qi|%, i=1, 2. Since B(P); = ¥, this implies Q, Q> € E(P)s [16, 10.2] and
hence, Q}, 0, € H(¥) and moreover (Q; + Q;)/2 € H(¥), i = 1, 2. According to
(a) we obtain Q; = Q;, and it follows that

g, _ d(Q:|%)
o ~ d(Q]%)
This implies that € is sufficient for {Q;, Q,} (cf. [22, Satz 3.21]).

=12

Q-ae. fori=1,2

The following example shows that in general ex E(P); = H(%) for a o-
algebra € with #(P); = ¢ < o (E(P)g)g does not imply that € is pairwise
sufficient for E(P)g, even in the case 4 = {0, X}.

Example 3.7. Let X =(—1,0) u (0, 1), o/ the Borel g-algebra on X, and
= {0, X}. For x € (0, 1) define bijective mappings g,: X — X by

gx = idxl{_x’ x}e + xl{_x) - xl(x)
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and let G denote the group generated by {g,: x € (0, 1)}. Then

Ag=do(nca(f)g)s={AeA: A= —A}.
Clearly we have

{6+ 0_,)/2:xe (0, 1)} < ex nca(sf)g < H(A ),
where d, denotes the unit mass on &/ placed at the point x. To see that
H(g) = {0, + -,)/2: x e (0, 1)}

let Q € H(« ;) and denote the {0, 1}-valued measure Q|.2/; by Q,. Since Q is
inner regular with respect to compact sets it is easily verified that Q is inner
regular, i.e.

Q0(A) = sup {Qo(K): K = A, K compact, K € o/} forall 4 e .

This implies that Q({x, —x}) = 1 for some x € X. In view of the invariance of
Q we obtain Q = (J, + 6_,)/2. But according to Luschgy [13, Example 2], /¢
is not pairwise sufficient for nca(/)g.

Next we will show that for certain LA semigroups G the extreme points of
E(P); are those invariant extensions of P whose %(P)s-conditional probabili-
ties are multiplicative modulo an averaging process with respect to any left
invariant mean on G.

Let us introduce some more notations. For a subset H of G, set

g 'H={heG:ghe H}.

A measurable space (X, /) is called Blackwell space if </ is countably gen-
erated and the range of every real measurable function on X is Souslin (i.e. a
continuous image of a polish space). If (X, /) is a Blackwell space, then there
exists a regular 4(P)g-conditional probability of any probability measure Q on
&/ denoted by R,. Furthermore, let Q, denote inner measure of Q.

THEOREM 3.8. Suppose that (X, o) is a Blackwell space, that G is LA, and
that the following conditions are satisfied:

(i) There exists a left invariant o-algebra % on G such that the action
GxX-X, (9 x)—gx is (¢ ® «, o)measurable and a non-zero, o-finite
quasi-left invariant measure w on %, i.e. (H) = 0 implies w*(H) = w(g~'H) =0
forallge G,He %.

(i) There exists a countably generated c-subalgebra € of s (nca(sf)g)g that
is pairwise sufficient for nca ().

Then for Q € E(P)¢ the following assertions are equivalent :

(@) Q is an extreme point of E(P)g.

(b) For each left invariant mean m on G we have

Q.({x € X: m(Ry(x, g™'4 n B)) = Ry(x, A)Rg(x, B)}) = 1
forall A,Be .
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(c) For some mean m on G we have
0.({x € X: m(Ry(x, g~"4 N B)) = Ry(x, A)Ry(x, B)}) = 1
for all A, Be «.

Proof. We may assume that  is a probability measure. For shorter nota-
tion set R = R, We will show that R(x, - ) is an invariant probability measure
on & for all x in some P-null set. It is easily seen that the function

G x X—[0,1}, (9, x)—R(x,g"'4)
is ¥ ® #(P)g-measurable for all A4 € o/. Furthermore,
R(', g 'A)=R(:, A) P-ae.
is valid for allg € G, A € /. For A € o set
S(4)={(g, x) € G x X: R(x, g~ *4) # R(x, A)};
then S(4) e ¥ ® #(P)s and P(S(A),) = O for all g € G. Setting
N(A) = {x € X: o(S(4),) > 0}

we obtain according to Fubini’s theorem N(4) e #(P); and P(N(A))=0.
Define

Ro(x, A) = I R(x, g7 'A) dw(g) forxe X, Ae .
Then Ry(-, A) is B(P)s-measurable for all A € o and R(x, - ) € nca(</) for all

xeX. Let &/, be a countable algebra that generates ./ and set
No ={Jacuwo N(A). Then P(N,) = 0 and since

N(A) = {x € X: Ro(x, A) = R(x, g~ '4) w-ae.}
we obtain

Ro(x, h™4) = [ R(x, (hg)™"4) doo(g)

= j R(x, g~ 'A4) do"(g) = J. Ro(x, A) do*(g)

= Ry(x, A) forall xe Nj, Ae Ay, heG.
This implies Ry(x, - ) € nca(/)g for all x € N§. Finally, since
N(AY = {x € X: R(x, A) = Ry(x, A)}

we have R(x, A) = Ro(x, A) for all x e N, 4 e o, This yields R(x, -) =
Ro(x, -) for all x € N§ and hence, R(x, ) € nca(«); for all x € N§,.

(a)=>(b) Note first that R(x, - ) € ex nca(« )¢ for all x in some Q-null set. In
fact, if A € ¢, then according to Theorem 3.2 there exists B e # with
Q0(4 A B)= | R(x, A A B) dQ = 0, which yields R(-, A) = 1,Q-a.e. Since ¥ is
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countably generated, this implies R(x, - )| € = 6,|¥ for all x in some Q-null set
N, thus according to Theorem 3.6 R(x, * ) € ex nca(&/); for all x € N¢, where
N=Ny,uU N, Q(N)=0.

Now let m be a left invariant mean on G and x € N°. For A, B € &/ define

U(x, A)=m(R(x, g"'A n B)) — R(x, A)R(x, B).

It is easily seen that R(x, - ) + U(x, - ) are invariant probability contents on &/
and R(x, ") + U(x;) < 2R(x, *) ensures that R(x, ‘) + U(x, -) are g-additive. This
implies U(x, ) = 0.

(b)=(c) Clear.

(c)=>(a) Let C e ®. Since ¢ = o (nca(«/)s)g, We have, by (c),

R(-,Cn A)=R(:, C)R(", A) Q-ae. forallAde .

This implies Q(C n A) = | R(x, C)1,, dQ for all A € &/ and hence, R(, C) =
1¢ Q-ae. Setting B={R(-, C) = 1} we obtain B € #(P); and Q(C A B) =0.
Thus Q € ex E(P); follows from Theorem 3.6.

Remarks. (1) If G is a locally compact second countable Hausdorff group or
an Abelian locally compact second countable Hausdorff semigroup which
admits a non-zero sub-invariant measure w with (K) < oo for all compact
subsets K of G such that the action of G on X is measurable with respect to the
Borel g-algebra on G, then condition (i) and (ii) are satisfied; see Farrell [8,
Theorem 3].

(2) TItis not without interest to observe that in general the extreme points of
E(P)g are not pairwise orthogonal, in contrast to the case # = {0, X}; compare
Blum and Hanson [4] Corollary 2, for # = {0, X}.

4. Extremal integral representations

In this section X is a topological Hausdorff space with its Borel o-algebra &/
and 4 is a o-subalgebra of &/. G is a semigroup which acts from the left on X
such that # and ¢ are invariant g-algebras and P is an invariant probability
measure on 4. Let nca(/, r) denote the set of all Borel probability measures on
X which are inner regular with respect to compact sets. We set E(P, r)g =
E(P)g n nca(</, r); then ex E(P, r);g = ex E(P)g N nca(«, r)g. As an applica-
tion of an integral representation theorem of v. Weizsdcker and Winkler [20]
for convex non-compact sets of inner regular measures we will give an integral
representation for every Q € E(P, r)g.

Let t denote the narrow topology on nca(</, r). Then t is Hausdorff (cf. [19,
p. 371]). For a family # of bounded real Borel functions on X let o(#) be the
initial topology on nca(/, r) of the functions Qi { fdQ, fe F; by 1(F) we
denote the topology generated by t and ¢(# ). The Hausdorff topology t(#) is
called admissible if # is countable. Let ) (ex E(P, r)s) denote the -algebra on
ex E(P, r) generated by the functions Q+— Q(4), A € .
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PROPOSITION 4.1.  Suppose that at least one of the conditions (i)-(iv) and one
of the conditions (v)-(viii) is satisfied :

(i) 4 is countably generated.

(i) 4 is generated by a family of bounded real continuous functions on X.

(iil) 2 = ¢~ (&) for some continuous mapping ¢: X — Y, where Y is a topo-
logical Hausdorff space with its Borel g-algebra €.

(iv) P is inner regular, i.e.

P(B) = sup {P(K): K = B, K compact, K € 8} for all Be #.

(v) G acts continuously on X.

(vi) G is countable and of is countably generated.

(vii) G has a countable dense subsemigroup with respect to the initial topology
on G of the mappings g gx, x€ X, X is metrizable, and </ is countably
generated.

(viii) G is a locally compact second countable Hausdorff group, the action
G x X - X,(g9,x)—gxis (9 ® o, )-measurable (9 is the Borel -algebra), and
& is countably generated.

Then for every Q € E(P, r)g there exists a probability measure p on ). (ex
E(P, r)g) such that

0(4) = j Q'(4) dp(Q) forall Ae o.

Proof. According to v. Weizsdcker and Winkler [20, Theorem 1] it suffices
to prove that E(P, r)¢ is closed with respect to some admissible topology on
nca(</, r). We show first that under any one of the conditions (i}-(iv) E(P, r)is
closed with respect to some admissible topology.

Assume (i). Set # = {15: B € %}, where &, is a countable algebra generat-
ing 4. Clearly E(P, r) is (¥ )-closed.

Assume (ii). Then 4 is generated by & = Cy(X). Let & denote the smallest
vector sublattice of C,(X) that contains & and 1. Since & = B(#) N CyX), #
is generated by &. Now let (Q,), be a net in E(P, r), Q € nca(s, r) such that
lim, Q, = Q with respect to 7. Then lim, [ fdQ,= [ fdQ for all fe CyX)
which yields | f dP = [ f dQ for all f € &. This implies Q € E(P, r) (cf. [2, 39.3])
and hence, E(P, r) is t-closed.

Assume (iii). Consider a net (Q,), in E(P,r), Q € nca(</, r) such that
lim, Q, = Q with respect to 7. Then lim, Q% = Q¢ narrowly in nca(%, r) (cf. [19,
p. 372]). Since Q¢ = P? for all «, we obtain Q? = P? and hence, Q € E(P, r).
Thus E(P, r) is t-closed.

Assume (iv). Let (Q,), be a net in E(P,r), Q€ nca(+,r) such that
lim, Q, = Q with respect to 1. Then lim, Q(K) < Q(K) for every compact set
K which yields P(K) < Q(K) for all K € 4, K compact. Inner regularity of P
and Q implies Q € E(P, r) and hence, E(P, r) is 7-closed.

To complete the proof we remark that under any one of the conditions
(v)-(viii) nca(<#, r)g is closed with respect to some admissible topology. For (v)
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and (vi) compare v. Weizsécker and Winkler [21, Proposition 8]. For (vii) (resp.
(viii)) let G, be a countable dense subsemigroup (resp. subgroup) of G, </, a
countable algebra generating ./, and set

9={19—1A: A edo,g € Go}.

Consider the limit Q of a net in nca(«, r)¢ with respect to the admissible
topology (). It is obvious that Q is G i-invariant and according to arguments
of Farrell [8] (proofs of Corollary 3 and Corollary 4) Q is invariant. Hence,
nca(<f, r)g is ©(F )-closed.

Remarks. (1) For the existence of extreme points and hence, for the integral
representation in-E(P, r)¢ the assumptions for # and G cannot be dropped. For
4 see fe. Plachky [18]. For G let X = R and consider the semigroup

G={geX*: #{xe X:gx # x} < o0}

and # = {0, X}. Then nca(<, r)g = nca(4)s = {Q € nca(#): Q is non-atomic}
but ex nca(«/)g = 0.

(2) It is easily seen by simple examples that the above integral representa-
tion is in general not unique.

5. Extreme invariant extensions of contents

Throughout this section # and ./ are invariant algebras on X with # < &/
and P is an invariant probability content on 4. Then the convex set F(P) of all
invariant probability contents on ./ which extend P is o(ba(«/), B())-
compact. Hence, according to the theorem of Krein-Milman, ex F(P)g # 0 iff
F(P)s # 0. Moreover, according to the theorem of Bishop-de Leeuw, for every
Q € F(P); there exists a (non-unique) probability measure p on Y’ (ex F(P))
(cf. Section 4) such that Q(4) = | Q'(4) dp(Q’) for all 4 € .

Analogous to Proposition 3.1 we have:

PROPOSITION 5.1. Assume F(P)g # 0. Then the following statements are
equivalent :

(a) ex F(P)g = F(P)g ~ ex nba()g.

(b) P is an extreme point of nba(#)g.

(c) The cone R, - F(P)g is hereditary to the left in the cone ba (< )g.

(d) F(P)g is a face of nba()g.

We need the following information (cf. [7, IV.6.18, IV.9.10 and IV.9.11]). Let
X' be the Stone representation space of <7 so that X may be identified with the
o(ba(«/), B(o/))-compact totally disconnected Hausdorff space of {0, 1}-valued
probability contents on /. Then the evaluation map T: B(«/)— C(X’) is an
isometric lattice isomorphism onto C(X’). Let /" be the algebra of clopen
subsets of X’. Then the map ¢: o — /" defined by ¢(4) = {T(1,) =1} is an
isomorphism of &/ onto &/”. By &/’ we denote the o-algebra generated by



EXTREME INVARIANT EXTENSIONS 37

" (/" is the Baire g-algebra). ¢ induces an isometric lattice isomorphism U of
ba(s/) onto ca(«/') determined by Uu(C) = u(¢~*'C), C € &". G acts contin-
uously from the left on X’, hence «#/” and o/’ are invariant. Since g~ '¢(4) =
d(g~tA)for allg € G, A € o, we obtain U(ba(«/)g) = ca(«/')s. Let ' be the
invariant g-subalgebra of o/’ generated by the invariant algebra #” = ¢(%8)
and let P’ € nca(4#'); be the (uniquely determined) extension of P” defined by
P"(C)=P(¢~'C), C € #". Then U(F(P)g) = E(P')s.

From this facts and Theorem 3.2 we obtain the following generalization of
results of Olshen [15] and Plachky [18].

THEOREM 5.2. For Q € F(P)g the following statements are equivalent:
(@) Q is an extreme point of F(P)g.
(b) For each sequence (A,), in &/ such that

lim Q(4,A A,)=0and lim Q(4,Ag™'4,)=0

n, m— oo n— oo

for all g € G and for each ¢ > 0 there exists B € # with inf, Q(4, A B) <e.

COROLLARY 5.3. Assume that G is ELA and Q € F(P)g. Then Q is an extreme
point of F(P)g if and only if for each A € o and ¢ > 0 there exists B € # with
Q(AAB)<e

Remark. If G is LA, then according to a fixed point theorem of Day [5],
F(P); = 0 and hence, ex F(P)s # 9. If moreover G is ELA, then in view of
Corollary 5.3 there exists Q € F(P); such that the closures of the set of all
values of Q and P are equal. This is an invariant version of a result due to
Sikorski (cf. [12]).

For the following theorem let us remark that G acts from the right on B(=/)
by G x B(«/)— B(«), (9, f) gf such that gf (x) =f(gx), x € X.

THEOREM 54. Assume that G is RA and that at least one of the following
conditions is satisfied :

(i) G admits a discrete right invariant mean.

(i) G is LA, o/ is a o-algebra, and the action of G on B(/) is weakly almost
periodic, i.e. for each f € B(f) the set {gf: g € G} is relatively weakly compact.

Then Q € F(P)g is an extreme point of F(P)g if and only if for each A € o ;
and & > O there exists B € # with Q(A A B) < ¢.

There is an extensive discussion by Granirer [9] of semigroups which satisfy
(i). Theorem 5.4 is an immediate consequence of Theorem 5.2 and the following
lemma. Let D(+/) denote the linear hull of the set {1,-1,—1,: 4 € #, g € G}.

LEMMA 5.5. In the situation of Theorem 5.4, of ; is a determining algebra for
nba(f )g.
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Proof. Assume (i). Then according to Granirer [9, Theorem 4.2 and
Remark 5.4] there exists a discrete right invariant mean m on G such that
H = {h e G: m(h) > 0} is finite (m(h) = m({h})). Observe that Hg = H for all
g € G. To see this consider (Hg)g~' = {k € G: kg € Hg}and {hg}g~'forh € H,
g € G. Then

1 =m(H) < m((Hg)g™') = m(Hg) < 1
and
0 < m(h) < m({hglg™") = m(hg).

We thus obtain &/ ; = o/ .

As before X' denotes the Stone representation space of o/ and &/’ the o-
algebra generated by /" = ¢(). Let ()" = ¢(o/y) and let (/) be the
o-subalgebra of .o/’ generated by (.« 4)". Then (& )" = (/") and moreover,
(g) = (')y. In fact,

M={Ces': |) h"'Ce(Ly)}
heH
is a monotone class containing «/” and hence, # = &/'. Now suppose that Q ,,
Q, e nba(f)g with Q,|sf y=Q,| oy Then Qy(')y= Qx')y where
Q;=UQ,, i=1, 2. Since («/')y is obviously sufficient for nca(</")¢, we obtain
Q' = Q5 (cf. [8, Theorem 1]) and hence, Q; = Q,. ,

Assume (ii). Then according to a mean ergodic theorem of Dixmier [6] we have
B(«/) = B(# 3) ® D(«/)~, where D(«/)~ denotes the norm closure of D(<).
From this decomposition the assertion follows immediately.

For the reader’s convenience we finally give some statements which are
equivalent to the proposition F(P)s # 0. Let L(</) denote the linear hull of the
set {1,: A € &/} and let M(P, &) denote the linear hull of the set

{1,-14— 14+ 13— P(B)lzg: Ae o, Be B, g € G}.
Define P,: L(«/)— R U {— o0} by
P,(f)=inf {P(h):f<h+d, he L(#B), d e D(¥)}.
PROPOSITION 5.6. The following statements are equivalent :
(a) F(P)g#0.
(b) P,(f)> — oo for some fe L().
() P.(f)> —oo for each f e L().

(d) Whenever n,m>1,(B,,...,B,) e #",(Cy,...,C,) € B™ andd € D(/)
are such that Y-y 15> Y7 1¢,+ d, we have

g P(B) > j‘; P(C))

i=1
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(¢) Whenever hy, h, e L(#) and d € D(</) are such that hy > h, + d, we
have P(hy) = P(h,).

(f) sup {f(x): x € X} > O for each fe M(P, ).

() inf{lf— Lc|:fe MP, )} = 1.

(h) 14 ¢ M(P, /)", where M(P, o/)" denotes the norm closure of M(P, /).

Proof. (a)<>(b)<>(c). This follows from Klee [11].

(@)=>(d) Obvious.

(d)=>(e) Suppose that there exist h,, h,e L(#), d € D() such that
hy > h, +d and P(hy) < P(h,). We may assume that h{X)<=Q, i=1,2.
Hence, there exists n € N such that nh{X) = Z, i = 1, 2. The above inequalities
are valid for nh,, nh, and nd. But this contradicts (d).

(e)=>(f) For fe M(P, ) we can find hy, h, e L(#), d € D(«/) such that
f=d — hy + h, and P(h,) = P(h,). Setting

c=sup {f[x): x € X}

we obtain hy + cly > h, + d and hence, by (€), P(h,) + ¢ > P(h,). This implies
c>0.

(f)= (g)= (h). Obvious.

(h)=>(a) A routine separation argument shows that there exists u € ba(s/)
such that u(f) =0 for all fe M(P, /)~ and u(X) = 1. Then pis invariant and
1|8 = P. Hence, p* is invariant and p*|2# > P. The assertion follows from
Proposition 2.1. ‘

COROLLARY 5.7. Let o/ be the algebra generated by
A L {A = X: A is invariant}.
Then F(P)g # 0.

Proof. Clearly « isinvariant. Let T = {t: t is a finite set of invariant subsets
of X} and let &/, be the invariant algebra generated by # L t. From Lo and
Marczewski [12] follows that for each ¢t € T there exists an invariant probabi-
lity content on ./, which extends P. Since o = | ),.r &, and D(&) = U,
D(s/,), the assertion follows from Proposition 5.6.
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