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1. Introduction

Let G be a semigroup which acts from the left on a set X and let /and be
invariant a-algebras on X with c . In this paper we characterize the
extreme points of the convex set of all invariant probability measures on ’which extend a given probability measure P on and we give an extremal
integral representation in this set. This problem has been investigated by Far-
rell [8] and by several other authors for {0, X} and by Plachky [17] for
G {idx}.

Starting with a known characterization by an approximation property [14]
we clarify its relation to the notion of pairwise sufficient t-subalgebras of /.
For a wide class of measurable spaces (X, ) and semigroups G the extreme
invariant extensions of P turn out to be those invariant extensions whose
conditional probabilities with respect to the a-algebra of P-almost invariant
-measurable sets are multiplicative modulo an averaging process. As an
application of a Choquet type theorem of v. Weizs/icker and Winkler [20] we
obtain an extremal integral representation in the set of invariant extensions
of P.

Finally, given invariant algebras and with c we derive characteri-
zations of the extreme points of the convex set of all invariant probability
contents on which extend a given probability content on

2. Preliminaries

Let X be a set, let G be a semigroup which acts from the left on X, and let
be an invariant algebra on X, i.e.

g-A={xX:gxA}d for allgG,A.

An additive set function #: a’ R is called invariant if #(g-A) #(A) for all
g G, A /. By ba(l) we denote the space of all bounded, (finitely) additive
real set functions on a’ and by ba(l)6 we denote the subspace of all invariant
elements. Then ba(d)6 is an order complete Banach sublattice of ba(sl). We
may identify ha(M) with the topological dual B(M’)’ of B(a’), where B(a’)
denotes the closed linear hull of the set {1 A: A a’} in the Banach lattice B(X)
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28 HARALD LUSCHGY

of all bounded real functions on X. An additive real set function with values in
[0, 1] is called probability content; nba(,,q) is the set of all probability contents
on .
Given an invariant subalgebra of and P nba( ) we set

F(P) {Qnba(z/): Q I. P}.
Obviously F(P) is a convex set. Let F denote the space of all set functions
! ba() such that 0, Furthermore, let

{A6: /-A A for all /6G},
(I) {A: Q(t-A A A)=0 for all #G, QI} for I nba(),

and

a’(Q) ({Q}) for Qnba(l).
When dealing with a-additive set functions we shall always assume that a

and are invariant a-algebras. Let ca(l) denote the space of all a-additive
real set functions on. Then ca(C)is an order complete Banach sublattice of
ca(l). By nca(l) we denote the set of all probability measures on . Given
P nca() we set

E(P) (Q nca(l): Q lt P}.
Let E denote the space of all set functions/ ca(#$)o such that E(II) 0.
For the following information see [14].

PROPOSITION 2.1. (a) Fo (resp. Eo) is a band in ba()o (resp. ca()o).
(b) Suppose !o < #6Fo (resp. Eo) for #oba+()o (resp. ca+()o). Then

for each vF(#)o (resp. E(#)) there exists voF(#o)o (resp. E(lo)o) that
satisfies Vo <_ v.

Given a convex set K we shall denote by ex K the set of all extreme points
of K.
A semigroup G is called left amenable (LA) if there exists a left invariant

mean on G, i.e. a positive linear form m on B(G) satisfying m(l)= 1 (or
equivalently, a probability content on (G)) which is invariant under the left
translation operators. By interchanging "right" and "left" we obtain the
definition of right amenable (RA) semigroups. A semigroup G is called ex-
tremely left amenable (ELA) if there exists a left invariant mean on G which is
multiplicative.

3. Extreme invariant extensions of measures

Throughout this section anda are invariant a-algebras on X with a
and P is an invariant probability measure on .
The proof of our first observation is also suitable for probability contents.
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PROPOSITION 3.1. Assume ex E(P) # O. Then the following statements are
equivalent"

(a) ex E(P)o E(P)o ex nca(/)z.
(b) P is an extreme point of nca(g).
(c) The cone R+ E(P)o is hereditary to the left in the cone ca+(), i.e.

v ca+ (z/), # R+. E(P), v imply v R+. E(P).
(d) E(P) is a face of nca(), i.e. Q E(P), Q, Q2 nca(),

Q (Q + Q2)/2 imply Q, Q2 E(P)z.

Proofl (a)(b) If P= (P + P2)/2 with P, P2 nca()z and Q ex
E(P), then according to Proposition 2.1 there exists a measure Q E(P)z
such that Q2Q. Defining Q2=2Q-Q we have Q2sE(P2) and
Q= (Q + Q2)/2. Sin, by (a), Q ex nca()o, it follows that Q Q2 and
hence, P P2.

(b) (c) Assume v ca+()o, R+. E(P)z with v and 0 # v # .
Let v(X) and fl g(X). Defining invariant probability measures on by

Q=fl-#, Qt=-v and Q2=fl(fl-a)-(Q-fl-v)
we obtain Q E(P) and Q fl-Q + (1 -fl-)Q2. According to (b)this
implies Q, Q2 s E(P)z; hence v s R+ E(P).

(c) (d) (a) is obvious.

The following generalization of the characterization of extreme invariant
probability measures as ergodic measures is due to the author [14, Theorem 7].

THEOREM 3.2. Let Q E(P)z. Then Q is an extreme point ofE(P)z ifand only
iffor each A zC(Q)z there exists B with Q(A A B)= O.

In a situation treated by Bierlein [3] (without invariance considerations)we
can conclude the existence of extreme points.

COROLLARY 3.3. Let / be the a-algebra generated by w {A." n N},
where An, n N are disjoint invariant subsets of X. Then ex E(P) # O.

Proof We may assume U= A. X. Obviously

/={ (A.c B.)’BnforallnN}
n=l

is invariant. For the -masurable kernel C.(resp. hull D.) of A we have C,
D 6 (P). Defining di 1.- lc.,

A . is a real (P)z-measurable function on X such that

0 < 2 < 1 and (lc + 2)-- 1 P-a.e.
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and

n=l n=l B

we have according to Bierlein [3, Satz 2A] and some simple invariance con-
siderations E(P) {Q: e A).
We will show

ex E(P) {Q: 2 e Ao},
where

A0

{2-= (2n)n N: 2 A, 2n D\C is an indicator function P-a.e. for all n N}.
If Q ex E(P)G, then according to Theorem 3.2 there exist B with
Q(An A B)= 0 for all n N. Since

Z(An A B)= f (lc, + gi)dP + f [1 -(lc, + ;Ln)] dP
.B

we obtain 2ID\C ln, ID/C,P-a.e.; hence 2 (2,)s e Ao. If, conversely,
2 (2)s e Ao, then by definition of Ao there exist B e , B c D,C, such
that

2 DC lz, DC P-a.e. for all n N.

Setting B’ B w C we obtain Q(A, A B’)= 0 for all n N. According to
Theorem 3.2 this yields Qa e ex E(P). From [3, Satz 2B] and obvious invar-
iance considerations it now follows that ex E(P) O.
The following slightly more general result is an immediate consequen of

Corollary 3.3 and arguments of Ascherl and Lehn [1].

ROLLARY 3.4. Let be the a-algebra generated by w {A," e T},
where T is any indexin# set and A T are disjoint invariant subsets ofX. Then
ex E(P)a O.

If G is ELA, then (Q)a for any invariant probability content Q on;
see Granirer [10, p. 58]. Hence, one obtains from Theorem 3.2:

ROLLAR 3.5. Assu that G is ELA and E(P)a. Then is an extreme
point of E(P)a and only for each A there exists B with
O(A O.

We will weaken the approximation assertion of Theorem 3.2 using the
notion of pairwise sufficient a-subalgebras. The latter were studied in this
setting by Plachky [17] for G (idx), while Farrell [8] used the notion of
sufficient a-subalgebras in the case {0, X).
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Given a a-subalgebra cg of we set

n(rg) {Q E(P)o" for each A rg there exists B with Q(A A B)= 0}.

THEOREM 3.6. For a a-subalffebra cg of I(E(P)o)o consider the following
statements:

(a) ex E(P)o H(cg).
(b) rg is pairwise suf.ficient for H(cg).
(c)

imply
Then (b)= (c)=,, (a)and if(P)z c rg, then all statements are equivalent.

Proof. (b) = (c)
A we obtain

Let Q1, Qz 6 H(cg) such that QI= QzlCg. Then for

Qx(A) f E(I I’)dQl f E(lal c)d2 Q2(A),

where E(1a leg) denotes a simultaneous version of the Cg-conditional probabili-
ties of A with respect to Q1 and Q2.

(c) =:, (a) According to Theorem 3.2 clearly ex E(P)o H(cg) holds. If con-
versely Q H(rg), Q (Q1 + Q2)/2 with Q1, Q2 - E(P), then Q1, Q2 H(cg)
and Q11 rg Q21 cg. By hypothesis this implies Q1 Q2 and hence, Q ex
E(P).
(a)=(b) Let us now assume that (e) c . Let Q1, Q2 H()and

Q (Q1 + Q2)/2. Define measures Q’i on by

Q’,(,4) fa d(Q,l )
d(Q )dQ, i= 1, 2.

Then Q’ and Qz are invariant probability measures on such that Q,Icg
Q, lrg, i= 1, 2. Since (P)t; cg, this implies Q’x, Q’2 E(P) [16, 10.2] and
hence, Q’, Qz H(rg) and moreover (Q’ + Q.)/2 s H(rg), 1, 2. According to
(a) we obtain Q’ Q, and it follows that

a(QI ) Q-a.e. for i= 1, 2.

This implies that cg is sufficient for {Q, Q2} (el. [22, Satz 3.21]).

The following example Shows that in general ex E(P)o H(rg) for a a-
algebra cg with ’(P) c rg c I(E(P)o)o does not imply that rg is pairwise
sufficient for E(P), even in the case ’ {0, X}.

Example 3.7. Let X (-1, 0) w (0, 1), z’ the Borel a-algebra on X, and
{0, X}. For x (0, 1) define bijective mappings fix" X ---} X by

fix idxl{_, } + xl{_x}- xl{}
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and let G denote the group generated by {#,,: x (0, 1)}. Then

(nca(dd)) {A : A -A}.
Clearly we have

{(6x + 6_x)/2: x (0, 1)} ex nca()o
where fix denotes the unit mass on placed at the point x. To see that

H(la) {(, + di_,)/2: x (0, 1))
let Q n(M’a) and denote the {0, 1}-valued measure Q Ia by Qo. Since Q is
inner regular with respect to compact sets it is easily verified that Qo is inner
regular, i.e.

Qo(A) sup {Qo(K): K A, K compact, K a} for all A

This implies that Qo({X, -x}) 1 for some x x. In view of the invariance of
Q we obtain Q (di + i_x)/2. But according to Luschgy [13, Example 2],
is not pairwise sufficient for nca()a.

Next we will show that for certain LA semigroups G the extreme points of
E(P)a are those invariant extensions of P whose ’(P)a-conditional probabili-
ties are multiplicative modulo an averaging process with respect to any left
invariant mean on G.

Let us introduce some more notations. For a subset H of G, set

g-H {h G gh H}.
A measurable space (X, ) is called Blackwell space if M’ is countably gen-
erated and the range of every real measurable function on X is Souslin (i.e. a
continuous image of a polish space). If (X, ) is a Blackwell space, then there
exists a regular (P)wconditional probability of any probability measure Q on

denoted by Re. Furthermore, let Q. denote inner measure of Q.

THEOREM 3.8. Suppose that (X, ) is a Blackwell space, that G is LA, and
that the following conditions are satisfied:

(i) There exists a left invariant a-algebra (# on G such that the action
G x X X, (g, x)--gx is (ff (R) , l)-measurable and a non-zero, a-finite
quasi-left invariant measure 09 on (9, i.e. og(H) 0 implies ogg(n) o(#- n) 0
for all # G, H c.

(ii) There exists a countably generated tr-subalgebra c ofC(nca()) that
is pairwise sufficient for nca ().

Then for Q E(P) the following assertions are equivalent:
(a) Q is an extreme point of E(P).
(b) For each left invariant mean m on G we have

Q,({x s X: m(RQ(X, 0-iA c B))= RQ(X, A)RQ(X, B)})= 1

for all A, B .
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(c) For some mean m on G we hae

Q.({x 6 X: m(RQ(X, 9-1A c B))= Re.(x, A)Ro.(x, B)})= 1

for all A, B

Proof. We may assume that co is a probability measure. For shorter nota-
tion set R Ro. We will show that R(x, .) is an invariant probability measure
on /for all x in some P-null set. It is easily seen that the function

G X -[0, 1],
is (# (R) (P)-measurable for all A 6 a’. Furthermore,

R(., 9-1A)= R(., A) n-a.e.
is valid for all 9 6 G, A 6 /. For A 6 /set

S(A) {(9, x) G x X: R(x, 9-’A) =fi R(x, A)};
then S(A) ( (R) (n)o and P(S(A)) 0 for all 9 6 G. Setting

N(A) {x X: co(S(A ),) > 0}
we obtain according to Fubini’s theorem N(A) (n)a and P(N(A))=O.
Define

Ro(x, A)=

Then Ro(’, A)is (P)-measurable for all A 6 /and Ro(X, ") nca(l)for all
x6X. Let /o be a countable algebra that generates and set
No L.)Ao N(A). Then P(No)= 0 and since

u(a) = {x X: Ro(x, A)= R(x, 9-’a)co-a.e.}
we obtain

Ro(x, h-’A)= f R(x, (hg)- ’A) dco(9)

f R(x, 9-’A)dcoh(9)= f Ro(x, A)dcoh(9)

Ro(x, A) for all x 6 N, A o, h G.

This implies Ro(x, ") nca() for all x 6 N. Finally, since

N(A) = {x + X" R(x, A)= Ro(x, a)}
we have R(x, A)= Ro(x, A) for all x N), A s /o. This yields R(x,.)=
Ro(x," for all x N) and hence, R(x, .) nca(l) for all x N).
(a) (b) Note first that R(x, .) ex nca(,.l)for all x in some Q-null set. In

fact, if A c, then according to Theorem 3.2 there exists B with
Q(A A B)= R(x, a A B) dQ O, which yields R(., A 1A Q-a.e. Since ff is
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countably generated, this implies R(x, .)leg 6x [cg for all x in some Q-null set
N, thus according to Theorem 3.6 R(x,. ex nca(.)o for all x N, where

0.
Now let m be a left invariant mean on G and x e Nc. For A, B e define

U(x, A)= m(R(x, O-’A B))- R(x, A)R(x, B).
It is easily seen that R(x, .) +_ U(x, .) are invariant probability contents on a
and R(x, .) + U(x .) <_ 2R(x, .)ensures that R(x, .) +_ U(x, .) are a-additive. This
implies U(x, .)= O.

(b) =., (c) Clear.
(c)= (a) Let C c. Since c c l(nca(z)), we have, by (c),

R(., C A)= R(., C)R(., A)Q-a.e. for all A .
This implies Q(C c A)= R(x, C)la dQ for all A and hence, R(., C)=
lc Q-a.e. Setting B {R(., C) 1} we obtain B (P) and Q(C A B) O.
Thus Q ex E(P) follows from Theorem 3.6.

Remarks. (1) If G is a locally compact second countable Hausdorff group or
an Abelian locally compact second countable Hausdorff semigroup which
admits a non-zero sub-invariant measure co with co(K)< oo for all compact
subsets K of G such that the action of G on X is measurable with respect to the
Borel a-algebra on G, then condition (i) and (ii) are satisfied; see Farrell [8,
Theorem 3].

(2) It is not without interest to observe that in general the extreme points of
E(P) are not pairwise orthogonal, in contrast to the case {0, X}; compare
Blum and Hanson [4] Corollary 2, for {0, X}.

4. Extremal integral representations

In this section X is a topological Hausdorff space with its Borel a-algebra
and is a a-subalgebra of. G is a semigroup which acts from the left on X
such that and are invariant a-algebras and P is an invariant probability
measure on. Let nca(l, r) denote the set of all Borel probability measures on
X which are inner regular with respect to compact sets. We set E(P, r)o
E(P) nca(l, r); then ex E(P, r) ex E(P) c nca(l, r). As an applica-
tion of an integral representation theorem of v. Weizs/icker and Winkler [20]
for convex non-compact sets of inner regular measures we will give an integral
representation for every Q E(P, r)6.

Let z denote the narrow topology on nca(, r). Then z is Hausdorff (cf. [19,
p. 371]). For a family of bounded real Borel functions on X let a(-) be the
initial topology on nca(l, r) of the functions Q++ fdQ, f -; by z() we
denote the topology generated by z and tr(). The Hausdorfftopology z(-)is
called admissible if " is countable. Let ’.(ex E(P, r)o) denote the a-algebra on
ex E(P, r)o generated by the functions Q-+ Q(A), A
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PROPOSITION 4.1. Suppose that at least one of the conditions (i)--(iv) and one
of the conditions (v)-(viii)is satisfied"

(i) is countably generated.
(ii) is generated by a family of bounded real continuous functions on X.
(iii) qb- (rg)for some continuous mapping ok" X Y, where Y is a topo-

logical Hausdorff space with its Borel g-algebra rg.
(iv) P is inner regular, i.e.

P(B) sup {P(K)" K c B, K compact, K 6 } :for all B .
(v) G acts continuously on X.
(vi) G is countable and / is countably generated.
(vii) G has a countable dense subsemigroup with respect to the initial topology

on G of the mappings ggx, x X, X is metrizable, and / is countably
generated.

(viii) G is a locally compact second countable Hausdorff group, the action
G x X X, (g,x)-- gx is ( (R) ,sC)-measurable(f# is the Borel a-algebra), and
s is countably generated.
Then for every Q e E(P, r)a there exists a probability measure p on (ex

E(P, r)a) such that

Q(A) Q’(A) dp(Q’) for all a e .
Proof. According to v. Weizs/icker and Winkler [20, Theorem 1] it suffices

to prove that E(P, r) is closed with respect to some admissible topology on
nca(, r). We show first that under any one of the conditions (i)-(iv) E(P, r)is
closed with respect to some admissible topology.
Assume (i). Set - {1 a: B e No}, where No is a countable algebra generat-

ing N. Clearly E(P, r)is z(’)-closed.
Assume (ii). Then N is generated by f C(X). Let denote the smallest

vector sublatticz of C(X) that contains o and 1 x. Since c B() c Cb(X),
is generated by . Now let (Q) be a net in E(P, r), Q nca(, r) such that
lim Q Q with respect to z. Then lim fdQ fdQ for all fe Cb(X)
which yields f dR f dQ for allf e . This implies Q E(P, r) (cf. [2, 39.3])
and hence, E(P, r) is z-closed.
Assume (iii). Consider a net (Q) in E(P, r), Q nca(s, r)such that

lim Q Q with respect to z. Then lim Q Q* narrowly in nca(, r) (cf. [19,
p. 372]). Since Q Pe for all a, we obtain Qe Pe and hence, Q E(P, r).
Thus E(P, r) is z-closed.
Assume (iv). Let (Q) be a net in E(P, r), Q nca(, r)such that

lim Q Q with respect to . Then li-- Q(K) <_ Q(K) for every compact set
K which yields P(K) <_ Q(K) for all K 3, K compact. Inner regularity of P
and Q implies Q E(P, r) and hence, E(P, r) is z-closed.
To complete the proof we remark that under any one of the conditions

(v)-(viii) nca(, r) is closed with respect to some admissible topology. For (v)
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and (vi) compare v. Weizs/icker and Winkler [21, Proposition 8]. For (vii) (resp.
(viii)) let Go be a countable dense subsemigroup (resp. subgroup) of G, 0 a
countable algebra generating , and set

" {I-xA: A /o, g Go}.
Consider the limit Q of a net in nca(l, r) with respect to the admissible
topology (). It is obvious that Q is G o-invariant and according to arguments
of Farrell [8] (proofs of Corollary 3 and Corollary 4) Q is invariant. Hence,
nca(, r) is z()-closed.

Remarks. (1) For the existence of extreme points and hence, for the integral
representation in E(P, r)o the assumptions for and G cannot be dropped. For

see f.e. Plachky [18]. For G let X R and consider the semigroup

{o xx: + x: <

and {0, X}. Then nca(l, r) nca(/) {Q nca(/): Q is non-atomic}
but ex nca(/) O.

(2) It is easi!y seen by simple examples that the above integral representa-
tion is in general not unique.

5. Extreme invariant extensions of contents

Throughout this section and are invariant algebras on X with M =
and P is an invariant probability content on . Then the convex set F(P) of all
invariant probability contents on which extend P is a(ba(), B(C))-
compact. Hence, according to the theorem of Krein-Milman, ex F(P) 4:0 iff
F(P)c, O. Moreover, according to the theorem of Bishop-de Leeuw, for every
Q F(P)o there exists a (non-unique) probability measure p on (ex F(P))
(cf. Section 4) such that Q(A)= Q’(A)dp(Q’) for all A .
Analogous to Proposition 3.1 we have"

PROPOSITION 5.1. Assume F(P)c, :/: O. Then the following statements are
equivalent"

(a) ex F(P) F(P) c ex nba(l).
(b) P is an extreme point of nba().
(c) The cone R+ F(P) is hereditary to the left in the cone ba+().
(d) F(P) is a face of nba().

We need the following information (cf. [7, IV.6.18, IV.9.10 and IV.9.11]). Let
X’ be the Stone representation space of so that X may be identified with the
a(ba(), B(C))-compact totally disconnected Hausdorff space of {0, 1}-valued
probability contents on . Then the evaluation map T: B(’) C(X’) is an
isometric lattice isomorphism onto C(X’). Let " be the algebra of clopen
subsets of X’. Then the map 4): " defined by b(A)= {T(1a)= 1} is an
isomorphism of onto ". By ’ we denote the a-algebra generated by
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1"(’ is the Baire a-algebra). b induces an isometric lattice isomorphism U of
ba(l) onto ca(l’) determined by U#(C) #(- C), C l". G acts contin-
uously from the left on X’, hence " and " are invariant. Since - b(A)
tk(#-:A) for all G, A , we obtain U(ba(l)o) ca(l’)o. Let ’ be the
invariant a-subalgebra of ’ generated by the invariant algebra :"=
and let P’ nca(’)o be the (uniquely determined) extension of P" defined by
P"(C) P(ck-1C), C ". Then U(F(P)o)= E(P’)o.
From this facts and Theorem 3.2 we obtain the following generalization of

results of Olshen [15] and Plachky [18].

THEOREM 5.2. For Q F(P) the following statements are equivalent:
(a) Q is an extreme point of F(P).
(b) For each sequence (An)n in 1 such that

lim Q(An A Am)= 0 arid lim Q(An A g-tAn)= 0

for all g G and for each e > 0 there exists B 9 with infn Q(An A B) < e.

COROLLARY 5.3. Assume that G is ELA and Q F(P)6. Then Q is an extreme
point of F(P)6 if and only iffor each A / and e > 0 there exists B with
Q(A a B)< .
Remark. If G is LA, then according to a fixed point theorem of Day [5],

F(P)c, 0 and hence, ex F(P) : O. If moreover G is ELA, then in view of
Corollary 5.3 there exists Q F(P)6 such that the closures of the set of all
values of Q and P are equal. This is an invariant version of a result due to
Sikorski (cf. [12]).

For the following theorem let us remark that G acts from the right on B()
by G x B(a’) B(a’), (g, f)-afsuch that af(x)=f(gx), x X.

THEOREM 5.4. Assume that G is RA and that at least one of the following
conditions is satisfied:

(i) G admits a discrete right invariant mean.
(ii) G is LA, 1 is a a-algebra, and the action ofG on B(/) is weakly almost

periodic, i.e. for each f B(/) the set {gf: g G} is relatively weakly compact.
Then Q F(P) is an extreme point of F(P) if and only iffor each A /

and e > 0 there exists B 9 with Q(A A B) < e.

There is an extensive discussion by Granirer [9] of semigroups which satisfy
(i). Theorem 5.4 is an immediate consequence ofTheorem 5.2 and the following
lemma. Let D() denote the linear hull of the set {lg-lA la: A , g G}.

LEMMA 5.5.
nba()a.

In the situation of Theorem 5.4, 1 is a determining algebrafor
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Proof. Assume (i). Then according to Granirer [9, Theorem 4.2 and
Remark 5.4] there exists a discrete right invariant mean m on G such that
H {h e G: m(h)> 0} is finite (m(h)= m({h})). Observe that H# H for all
# G. To see this consider (H#)#- {k e G: k# H#} and {h#}9- for h H,
# e G. Then

and

1 m(H)< m((H9)9-1) m(H9)< 1

0 < m(h) < m({hg}9-1) m(hg).

We thus obtain
As before X’ denotes the Stone representation space of

algebra generated by "= (). Let (n)" (n)and let (n)’ be the
a-subalgebra of ’ generated by (n)". Then (n)" (")n and moreover,
(n)’= (’)n. In fact,

heH

is a monotone class containing" and hence,
Q2 nba() with QIn Q21n. Then Q’(’)n Q’2(’)n, where
Q’ UQ, i= 1, 2. Since (’)n is obviously sufficient for nca(’)a, we obtain
Q’ Q (cf. [8, Theorem 1])and hence, Q Q2.
Assume (ii). Then according to a mean ergodic theorem ofDixmier [6] we have

B() B()D()-, where D()- denotes the norm closure of D().
From this decomposition the assertion follows immediately.

For the reader’s convenience we finally give some statements which are
equivalent to the proposition F(P)o 0. Let L() denote the linear hull of the
set {1‘4" A } and let M(P, ) denote the linear hull of the set

{1,-,‘4 1,4 + ln- P(B)ln: A ,, B , 9 G}.

Define P: L(s) R w {-} by

P(f) inf {P(h): f< h + d, h e L(), d D(,)}.

PROPOSITION 5.6. The followin9 statements are equivalent:
(a) F(P) 4: O.
(b) Pc(f) > O for some f L().
(c) Pc(f) > for each f L().
(d) Whenever n, m > 1, (B1, B,) , (C1, Cm) ’, and d D(/)

are such that ET=I In, > ’j’=l lcj + d, we have

m

P(B,)>_ E P(C).
i=1 j=l
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(e) Whenever h, h2 L() and d D(/) are such that h > h2 + d, we
have P(h > P(h2 ).

(f) sup {f(x): x X} > 0 for each f M(P, /).
(g) inf ([If- ix [1: f M(P, /)) 1.
(h) lx M(P, )-, where M(P, )- denotes the norm closure ofM(P, ).

Proofi (a) (b) (c). This follows from Klee [11].
(a) (d) Obvious.
(d)(e) Suppose that there exist h, h 2 ff L(), d D() such that

ht h2 + d and P(ht) < P(h2). We may assume that hi(X) , i= 1, 2.
Hence, there exists n 6 N such that nh,(X) Z, 1, 2. The above inequalities
are valid for nh, nh2 and nd. But this contradicts (d).
(e)(f) For f6 M(P, )we can find h, h26 L(), d 6 D()such that
f= d- h + h2 and P(h)= P(h2). Setting

c sup {x):. x 6 X}
we obtain ha + clx h2 + d and hence, by (e), P(hx) + c P(hz). This implies
c0.
0 tg) (h). Obvious.
(h) (a) A routine separation argument shows that there exists p e ba(}

such that p(f) 0 for allfe M(P, )- and p(X) 1. Then p is invariant and
p P. Hence, p+ is invariant and p+] P. The assertion follows from
Proposition 2.1.

COROLLARY 5.7. Let be the algebra generated by

w {A X:A is invariant}.
Then f(P)t; :/: O.

Proof. Clearly /is invariant. Let T {t: is a finite set of invariant subsets
of X} and let /t be the invariant algebra generated by w t. From Log and
Marczewski [12] follows that for each t 6 T there exists an invariant probabi-
lity content on t which extends P. Since 1 Jt r t and D()= wt r
D(lt), the assertion follows from Proposition 5.6.
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