ON THE QUADRATIC VARIATION PROCESS OF A CONTINUOUS MARTINGALE

BY

RAJEEVA L. KARANDIKAR

In this article we give a simple proof of the existence of the quadratic variation process of a continuous local martingale by providing an explicit expression for it.

Let (Ω, \mathcal{B}) be a fixed measurable space and let $\mathcal{G} = (\mathcal{G}_t)_{t\geq 0}$ be an increasing family of sub σ -fields of \mathcal{B} . Let M be a continuous \mathcal{G} adapted process such that M(0) = 0.

Let $K_n(t, w) = j$, if there exists t_i such that

$$0 = t_o < t_1 < \dots < t_j \le t < t_{j+1},$$

$$|M(t_i) - M(t_{i+1})| = 2^{-n}, \quad 0 \le i < j,$$

and,

$$|M(t_i) - M(s)| < 2^{-n}$$
 if $s \in [t_i, t_{i+1}), 0 \le i \le j$.

Let

$$X'(t, w) = \lim_{n} \sup \frac{K_{n}(t, w)}{2^{2n}},$$

$$U(w) = \inf\{t > 0 : X'(t-, w) \neq X'(t^{+}, w)\}$$

$$X''(t, w) = X'(t-, w), \text{ and}$$

$$X(t, w) = X''(t \wedge U(w), w).$$

THEOREM. X is a continuous \mathcal{G} adapted increasing process. Further, for all P such that $(M(t), \mathcal{G}_t, P)$ is a local martingale,

$$(M^2(t) - X(t), \mathcal{G}_t, P)$$

is also a local martingale.

Proof. Fix a P such that M is a P-local Martingale.

Let $\{T_i^n : i \ge 1\}$, $n \ge 1$, be defined by

$$T_o^n = 0$$
, $T_{i+1}^n = \inf\{t \ge T_i^n : |M(t) - M(T_i^n)| \ge 2^{-n}\}$.

Received March 10, 1981.

Let

$$X_n(t,\cdot) = \sum_{i=0}^{\infty} (M(t \wedge T_{i+1}^n) - M(t \wedge T_i^n))^2,$$

$$Y_n(t,\cdot) = M^2(t) - X_n(t).$$

Observe that $K_n(t, w) = j$ iff $T_j^n \le t < T_{j+1}^n$, so that

$$\frac{K_n(t, w)}{2^{2n}} \leq X_n(t, w) < \frac{K_n(t, w) + 1}{2^{2n}},$$

and hence $X'(t, w) = \lim \sup_{n} X_n(t, w)$.

It is easy to see that $X'(t, \omega)$ is an increasing process and hence $X'(t-, \omega)$ and $X'(t+, \omega)$ are well defined. Thus U is well defined. Also, it follows easily that $X(t, \omega)$ is a continuous process.

Let $\mathscr{F} = (\mathscr{F}_t)_{t\geq 0}$ be defined by $\mathscr{F}_t = \mathscr{G}_{t+}$. Then T_i^n are \mathscr{F} stop times and hence X_n is \mathscr{F} adapted for all n, so that X' is \mathscr{F} -adapted. Right continuity of (\mathscr{F}_t) implies that U is an \mathscr{F} -stop time so that X is also \mathscr{F} adapted. Since X is a continuous process, this implies that X is \mathscr{G} -adapted.

In order to show that $M^2 - X$ is a local martingale, it suffices to show that

(1) Y_n converges a.s. to a continuous local martingale Y (in the u.c.c. topology on $C[0, \infty)$).

This will imply that X' is continuous a.s. so that X = X' a.s. and hence that $Y = M^2 - X$.

To prove (1) suffices to consider the special case when M is bounded. Since in general we can get stop times $S_k \uparrow \infty$ such that M^{S_n} (defined by $M^{S_n}(t) = M(t \land S_n)$) is bounded, the general case will follow.

Now, if M is bounded (by K say), then $(M(t), \mathcal{G}_t, P)$ is a martingale. Writing

$$M^{2}(t) = \sum_{i=0}^{\infty} (M^{2}(t \wedge T_{i+1}^{n}) - M^{2}(t \wedge T_{i}^{n}))$$

we get

$$Y_n(t) = \sum_{i=0}^{\infty} 2M(t \wedge T_i^n)(M(t \wedge T_{i+1}^n) - M(t \wedge T_i^n)).$$

$$= \sum_{i=0}^{\infty} Z_{n,i}(t) \quad (\text{say}).$$

(Observe that for each (t, w), these are actually finite sums.) The fact that $(M(t), \mathcal{G}_t, P)$ is a bounded martingale implies $(Z_{n,i}(t), \mathcal{G}_t, P)$ is a martingale for all n, i.

Also, for fixed t, n, $\{Z_{n,i}(t) : i \ge 1\}$ is a centered sequence, so that

$$E\left(\sum_{i=r}^{s} Z_{n,i}(t)\right)^{2} = \sum_{i=r}^{s} E Z_{n,i}^{2}(t)$$

$$\leq 4K^{2} \sum_{i=r}^{s} E(M(t \wedge T_{i+1}^{n}) - M(t \wedge T_{i}^{n}))^{2}$$

$$= 4K^{2} E(M^{2}(t \wedge T_{s+1}^{n}) - M^{2}(t \wedge T_{r}^{n}))$$

$$\to 0 \quad \text{as } r, s \to \infty.$$

Thus $\sum_{i=0}^{\infty} Z_{n,i}(t)$ converges in L^2 so that, for all n, $(Y_n(t), \mathcal{G}_t, P)$ is a martingale.

For each n, let M_n be the process defined by

$$M_n(t) = M(T_i^n)$$
 if $T_i^n \le t < T_{i+1}^n$

It is not difficult to verify that for all w, n

$$\{T_i^n(w): i \ge 1\} \subset \{T_i^{n+1}(w): i \ge 1\}.$$

Thus

$$Y_{n-1}(t) = \sum_{j=0}^{\infty} 2 M_{n-1}(t \wedge T_j^n) (M(t \wedge T_{j+1}^n) - M(t \wedge T_j^n)).$$

Hence

$$\begin{split} E(Y_{n}(t) - Y_{n-1}(t))^{2} \\ &= E \left[2 \sum_{j=0}^{\infty} (M(t \wedge T_{j}^{n}) - M_{n-1}(t \wedge T_{j}^{n}))(M(t \wedge T_{j+1}^{n}) - M(t \wedge T_{j}^{n})) \right]^{2} \\ &\leq 4 \sum_{j=0}^{\infty} E(M(t \wedge T_{j}^{n}) - M_{n-1}(t \wedge T_{j}^{n}))^{2} (M(t \wedge T_{j+1}^{n}) - M(t \wedge T_{j}^{n}))^{2} \\ &\qquad \qquad (\text{as the summands form a centered sequence}) \\ &\leq \frac{4}{2^{2(n-1)}} \sum_{j=0}^{\infty} E(M^{2}(t \wedge T_{j+1}^{n}) - M^{2}(t \wedge T_{j}^{n})) \\ &= \frac{16}{2^{2n}} E M^{2}(t). \end{split}$$

Now by Doob's maximal inequality,

$$E \sup_{s \le t} |Y_n(s) - Y_{n-1}(s)|^2 \le \frac{64}{2^{2n}} E M^2(t).$$

By Borel-cantelli lemma, this implies that $Y_n(\cdot)$ converges a.s in the u.c.c. topology to some process Y (say). Further $Y_n(t)$ converges to Y(t) in L^2 for each t. Thus $(Y(t), \mathcal{G}_t, P)$ is a continuous martingale.

As remarked earlier, this completes the proof.

Remark 1. If M is a continuous process of bounded variation and M(0)

= 0 then observe that

$$\left|X_n(t,w)\right| \leq \frac{1}{2^n} \operatorname{Var}(M(u,w):0 \leq u \leq t)$$

so that $X \equiv 0$. If moreover M is a P-local martingale then, by the theorem, M^2 is also a P-local martingale so that $M \equiv 0$ a.s. P.

- Remark 2. The quadratic variation process X is usually denoted by $\langle M \rangle$. If A is a continuous increasing process such that M and $M^2 A$ are P-local martingales, then $A \langle M \rangle$ is a P-Local Martingale and hence (by Remark 1) $A = \langle M \rangle$ a.s. P. Existence and uniqueness of $\langle M \rangle$, for right continuous martingales M, was first proved by P. A. Meyer [3], [4].
- Remark 3. Kunita Watanabe proved in Theorem 1.3 of [2] that if $\{T_i^n, i \ge 1\}$ is a $1/2^n$ partition for M, $\langle M \rangle$, t and if moreover these partitions form a chain then X_n defined as above converges a.s. to $\langle M \rangle$. Thus the existence of $\langle M \rangle$ is assumed in their proof.
- Remark 4. In [1] we had arrived at exactly the same (pathwise) formula for $\langle M \rangle$ as given here, but again that proof assumed the existence of $\langle M \rangle$.
- Remark 5. Observe that we have defined X(t, w) explicitly in terms of $\{M(u, w) : 0 \le u \le t\}$ so that $\langle M \rangle$ neither depends upon the underlying probability measure P nor on the underlying σ fields \mathcal{G} .

Acknowledgement. The author wishes to thank Professor B. V. Rao for his useful suggestions and fruitful discussions.

REFERENCES

- 1. R. L. KARANDIKAR, Pathwise solutions of stochastic differential equations, Sankhya,
- 2. H. Kunita and S. Watanabe, On square integrable martingales, Nagoya Math. J., vol. 30 (1967), pp. 209-245.
- 3. P. A. MEYER, A decomposition theorem for supermartingales, Illinois J. Math., vol. 6 (1962), pp. 193-205.
- 4. ——, Decompositions of supermartingales; the uniqueness theorem, Illinois J. Math., vol. 7 (1963), pp. 1-17.

Indian Statistical Institute Calcutta, India