FINITE GROUPS THAT ACT ON SPHERES IN WHICH A CENTRAL ELEMENT ACTS FREELY

BY

LARRY W. CUSICK

Introduction

It is known that if a finite group, G, acts freely on a homotopy (2N-1)-sphere then $H^*(G; Z)$ has period 2N. In this paper we show that if G is a finite group with a central element T of order p (p a prime) and if G acts on a homotopy (2N-1)-sphere in such a way that T acts freely then this puts certain restrictions on the Hochschild-Serre spectral sequence for computing $H^*(G; Z_p)$, and in particular we obtain an element

$$\xi \in H^{2p^{\mu(N)}}(G; Z_p)$$
 where $\mu(N) = \max \{i: p^i | N\},$

such that ξ is a non-zero divisor in the ring $H^*(G; \mathbb{Z}_p)$. We can use this to prove that $H^*(G; \mathbb{Z}_p)$ has period $2p^{\mu(N)}$ in the case that G acts freely.

In Section 1 we establish some relevant homological algebra. In Section 2 we describe a splitting lemma: namely if K acts on a homotopy lense space L then $H^*(EK \times_K L; Z_p)$ is a $H^*(K; Z_p)$ direct summand of $H^*(G; Z_p)$ where G and G are related by an extension $1 \to Z_p \to G \to K \to 1$. In Section 3 we prove the main theorems of the paper and discuss the example of extraspecial 2-groups acting on a homotopy sphere in which the central element of order 2 acts freely.

1. Homological algebra

Let K be a field and Λ a finitely generated augmented K-algebra, assumed to be commutative. Let C_* always denote a Λ -chain complex such that each C_n is a finitely generated free Λ -module. Let H_*C_* be the usual homology groups of C_* .

We will let $C_*^{[N]}$ denote the free Λ -chain complex constructed by killing off the cycles of C_* in dimensions N+1 and larger [1]. Then $C_*^{[N]}$ comes equipped with a chain map

$$j\colon C_* \longrightarrow C_*^{[N]}$$

and satisfies the following properties.

Received August 23, 1982.

- (1.1) (a) $H_i C_*^{[N]} = 0$ for i > N.
- (b) j_{*}: H_iC_{*}→ H_iC^[N] is an isomorphism for i ≤ N.
 (c) j: C_{*}→ C^[N] satisfies the following universal mapping property: Suppose D_* is a Λ -chain complex and $H_iD_*=0$ for i>N and $\phi:C_*\to D_*$ is a Λ -chain map, then there is a factorization, $\bar{\phi}$,

such that $\bar{\phi} \circ j = \phi$. Furthermore if $\phi' : C_*^{[N]} \to D_*$ is any other chain map with $\phi' i \simeq \phi$ then $\phi' \simeq \phi$

Spectral Sequences. For C_* , K and Λ as above let H^*C_* (resp. $H_{\Lambda}^*C_*$) denote the cohomology of the cochain complex $\operatorname{Hom}_K(C_*, K)$ (resp. $\operatorname{Hom}_\Lambda$ $(C_*, K) \cong \operatorname{Hom}_K(K \otimes_{\Lambda} C_*, K)$. Then, by [2], there is a spectral sequence of $\operatorname{Ext}_{\Lambda}^{*}(K, K)$ -modules

$$(1.2) E_2^{**} = \operatorname{Ext}_{\Lambda}^* (K, H^*C_{\star}) \Rightarrow H_{\Lambda}^* C_{\star}.$$

Furthermore this spectral sequence is natural with respect to maps of Λ -chain complexes.

If X is a CW-complex endowed with a free cellular action by a finite group G and $C_{\star}(X; K)$ is the CW-chain complex of X, $\Lambda = K[G]$ the group ring, then we may identify

$$K \otimes_{K[G]} C_*(X; K) \cong C_*(X/G; K)$$
 and $X/G \simeq EG \times_G X$.

Then the spectral sequence (1.2) coincides with the Serre spectral sequence associated to the fibration

$$X \longrightarrow EG \times_G X \longrightarrow BG.$$

To establish notation we recall the mod p cohomology rings of the cyclic groups.

(1.3) Proposition [2]. (a) If p = 2 then

$$H^*(Z_2; Z_2) \cong \operatorname{Ext}_{Z_2[Z_2]}^*(Z_2, Z_2) \cong Z_2[x_1]$$

where $x_1 \in H^1(Z_2; Z_2)$.

(b) If p is an odd prime then

$$H^*(Z_p; Z_p) \cong \operatorname{Ext}_{Z_p[Z_p]}^*(Z_p, Z_p) \cong Z_p[x_2] \otimes \Lambda(x_1)$$

where $x_i \in H^i(Z_p; Z_p)$ and $\beta x_1 = x_2$ where β is the Bockstein operator.

2. A splitting lemma

Fix a natural number N and a prime p. Let L be a finite CW-complex with $\pi_1 X \cong Z_p$ and

$$H^*(L; Z_p) \cong \begin{cases} Z_2[x_1]/(x_1^{2N}) & \text{if } p = 2, \\ Z_p[x_2]/(x_2^{N}) \otimes \Lambda(x_1) & \text{if } p \text{ is odd} \end{cases}$$

and $\beta x_1 = x_2$ in the latter case. Assume that K is a finite group and that K acts cellularly on L in such a way that the induced K action on $\pi_1 L$ is trivial. K acts diagonally on $EK \times L$ and it is a free action. Let $\omega \in H^2(K; \mathbb{Z}_p)$ be the k-invariant [1] associated to the above free action. Let $K(\mathbb{Z}_p, 1, \omega)$ be the K-Eilenberg-MacLane space with k-invariant ω . Then there is an equivariant map

$$(2.1) f: EK \times L \longrightarrow K(Z_p, 1, \omega)$$

that induces an isomorphism on fundamental groups. It follows that the induced map f^* on (non-equivariant) mod p cohomology is an epimorphism with kernel (x_1^{2N}) for p = 2 and (x_2^{N}) for odd primes.

We will let $\mathcal{L}(\omega) = C_*(K(Z_p, 1, \omega); Z_p)$, regarded as a free $Z_p[K]$ -chain complex. $\mathcal{L}^{[N]}(\omega)$ is the construction described in Section 1.

We define a map θ by the commutative diagram

where j is defined in Section 1.

(2.2) Proposition. θ is a $Z_p[K]$ -chain homotopy equivalence.

Proof. Since both chain complexes are free $Z_p[K]$ -complexes it is enough to show that θ induces an isomorphism on non-equivariant cohomology. We have already seen that f^* is an isomorphism in the range where $H^*(L; Z_p)$ is non-zero. Furthermore in this range j^* is the dual to an isomorphism (1.1). This proves the proposition.

For a free $Z_p[K]$ -chain complex C_* let $E_r(C_*)$ be the spectral sequence (1.2) for computing $H^*(Z_p \otimes_{Z_p[K]} C_*)$. For convenience let $C_* = C_*(EK \times L; Z_p)$. By naturality we have maps of spectral sequences

$$E_{r}(\mathscr{L}^{[2N-1]}(\omega)) \xrightarrow{f^{*}} E_{r}(\mathscr{L}(\omega)) \xrightarrow{f^{*}} E_{r}(C_{*})$$

$$\theta^{*}$$

that commute with the action of $H^*(K; \mathbb{Z}_p)$ and where θ^* is an isomorphism for all $r \geq 2$.

(2.3) COROLLARY (SPLITTING LEMMA). For each $r \geq 2$, f^* : $E_r(\mathcal{L}(\omega)) \to E_r(C_*)$ is a split epimorphic map of bigraded $H^*(K; \mathbb{Z}_p)$ -chain complexes.

The orbit space $K(\mathbb{Z}_p, 1, \omega)/K$ is an Eilenberg-MacLane space of type (G, 1) where G is the group given by the extension

$$1 \longrightarrow Z_p \longrightarrow G \longrightarrow K \longrightarrow 1$$

classified by $\omega \in H^2(K; \mathbb{Z}_p)$.

(2.4) COROLLARY. $f^*: H^*(G; Z_p) \to H^*(EK \times_K L; Z_p)$ is a split epimorphic map of $H^*(K; Z_p)$ -modules.

3. Periodicity

We assume that Σ^{2N-1} is a finite CW-complex, the homotopy type of a (2N-1)-sphere, and endowed with a cellular action by a finite group, G, containing an element, T, of order p (p a prime) and such that

- (a) T is in the center of G and
- (b) $T: \Sigma^{2N-1} \to \Sigma^{2N-1}$ is fixed point free.

T generates a normal subgroup $Z_p \triangleleft G$. Let L denote the orbit space Σ^{2N-1}/Z_p .

(3.1) Proposition. (a) For p=2, $H^*(L; \mathbb{Z}_2)\cong \mathbb{Z}_2[z_1]/(z_1^{2N})$, (b) For p odd,

$$H^*(L; Z_p) \cong Z_p[z_2)/(z_2^N) \otimes \Lambda(z_1)$$

where $\beta z_1 = z_2$ and $z_i \in H^i(L; Z_p)$.

Proof. This is routine from the Serre spectral sequence associated to the fibration

$$\Sigma^{2N-1} \longrightarrow EZ_n \times_{Z_n} \Sigma^{2N-1} \longrightarrow BZ_n$$

and (1.3).

Let $\{E_r\}$ be the spectral sequence for the group extension

$$1 \longrightarrow Z_p \longrightarrow G \longrightarrow K \longrightarrow 1$$

where Z_p is generated by T. We recall that the transgression operator, τ , commutes with the action of the Steenrod algebra.

Since

$$x_1^{2i} = Sq^{2i-1}(x_1^{2i-1})$$
 for $p = 2$

and

$$x_2^{p^i} = \mathcal{P}^{p^{i-1}}(x_2^{p^{i-1}})$$
 for p odd

in $H^*(Z_p; Z_p)$, an inductive argument establishes that $x_1^{2^i}$ (resp. $x_2^{p^i}$) is transgressive in the above group extension spectral sequence.

(3.2) Proposition. (a) If p = 2 and $t \ge 0$ then the map induced by cup product

$$x_1^{2i} \cup -: E_{2i-t}^{*i} \longrightarrow E_{2i-t}^{*i+2i}$$

is a first quadrant chain complex isomorphism.

(b) If p is odd and $t \ge 0$ then

$$x_2^{pi} \cup -: E_{2p^{i-t}}^{*,*} \longrightarrow E_{2p^{i-t}}^{*,*+2p^i}$$

is a first quadrant chain complex isomorphism.

Proof. Since part (a) is similar to (b) we prove only (b). Since $x_2^{p^i}$ is transgressive it follows that $x_2^{p^i} \cup -$ is a chain map in the stated range by the derivation property of the differentials. It is clearly an isomorphism because $x_2 \cup -$ is an isomorphism. This completes the proof.

(3.3) COROLLARY. (a) For p = 2,

$$x_1^{2i} \cup \cdots \colon E_{2^{i+1}} \longrightarrow E_{2^{i+1}}$$

is a first quadrant vector space isomorphism.

(b) For p odd,

$$x_2^{p^i} \cup \cdots \colon E_{2p^i+1} \longrightarrow E_{2p^i+1}$$

is a first quadrant vector space isomorphism.

Let $\mu_p(k) = \max\{i: p^i | k\}$. Recall that we are assuming that G acts on Σ^{2N-1} as described above and τ is the transgression operator in the group extension spectral sequence.

- (3.4) Proposition. (a) If p = 2 then $\tau(x_1^{2\mu_2(N)+1}) = 0$.
- (b) If p is odd then $\tau(x_2^{p\mu_p(N)}) = 0$.

Proof. We prove part (b); part (a) is similar. Write $\mu_p(N) = \mu(N)$, and $N = p^{\mu(N)}m$. Thus m is relatively prime to p. Then $d_{2p^{\mu(N)}+1}$ is defined on x_2^N and

$$d_{2n^{\mu(N)}+1}(x_2^{p^{\mu(N)}m})=m\cdot x_2^{p^{\mu(N)}(m-1)}\cup \tau(x_2^{p^{\mu(N)}}).$$

Let $\{E_r(L)\}\$ be the spectral sequence for the fibration

$$L \longrightarrow EK \times_{\kappa} L \longrightarrow BK$$
.

Then according to the splitting lemma (2.3) the map $f^*: E_r \to E_r(L)$ is a split epimorphism, with splitting map $\alpha: E_r(L) \to E_r$.

Now, $f^*(x_2^N) = 0$ for dimension reasons. Thus letting $\gamma = \tau(x_2^{p\mu(N)})$ we have (in $E_{2,p\mu(N)+1}(L)$)

$$0 = d_{2p^{\mu(N)}+1} f^*(x_2^N)$$

= $f^*(m \cdot x_2^{p^{\mu(N)}(m-1)} \cup \gamma)$
= $m \cdot z_2^{p^{\mu(N)}(m-1)} \cup \gamma$,

since f^* is a map of $H^*(K; Z_p)$ -modules and γ is represented by an element of $H^*(K; Z_p)$. Since (m, p) = 1, we have

$$0 = z_2^{p\mu(N)_{(m-1)}} \cup v.$$

Now, α is a map of $H^*(K; \mathbb{Z}_p)$ -modules and $\alpha(z_2^i) = x_2^i$ for i < N. Thus we have (in $E_{2n\mu(N)+1}$)

$$0 = \alpha(z_2^{p\mu(N)_{(m-1)}} \cup \gamma) = x_2^{p\mu(N)_{(m-1)}} \cup \gamma.$$

Now proposition (3.3) implies $\gamma = 0$, proving the proposition.

(3.5) COROLLARY. (a) If
$$p = 2$$
 then
$$x_1^{2[\mu_2(N)+1]} \cup -: E_r \longrightarrow E_r$$

is a first quadrant chain complex isomorphism for all r.

(b) For p odd,

$$x_2^{p[\mu_p(N)]} \cup -: E_r \longrightarrow E_r$$

is the first quadrant chain complex isomorphism for all r.

Now choose $\xi \in H^{2p[\mu_p(N)]}(G; \mathbb{Z}_p)$ that is represented by the infinite cycle $x_1^{2[\mu_2(2N)]}$ if p = 2 or $x_2^{p[\mu_p(2N)]}$ if p is odd.

- (3.6) COROLLARY (Periodicity). (a) Multiplication by ξ in $H^*(G; \mathbb{Z}_p)$ is an injection.
- (b) If the G action on Σ^{2N-1} is free then multiplication by ξ is an isomorphism.
- *Proof.* (a) According to (3.5) there is a filtration on $H^*(G; \mathbb{Z}_p)$ such that multiplication by ξ is filtration preserving and induces an injection on the associated graded groups

$$\xi \cup -: \operatorname{gr} H^*(G; \mathbb{Z}_p) \longrightarrow \operatorname{gr} H^*(G; \mathbb{Z}_p).$$

It follows that $\xi \cup -$ must be an injection on $H^*(G; \mathbb{Z}_p)$.

(b) It is known that if G acts freely then $H^*(G; Z_p)$ has period 2N. Thus $\xi^m \cup -$ injects the finite dimensional vector space $H^i(G; Z_p)$ into a vector space of the same dimension. It follows that $\xi^m \cup -$ is an isomorphism. Consequently $\xi \cup -$ is an isomorphism.

Extra special 2-groups. Suppose G is a group containing a central element, T, of order 2 and such that $G/\langle T \rangle \cong Z_2^l$. These are the extraspecial 2-groups studied in [4]. Pairs (G, T) are classified by the elements of $H^2(Z_2^l; Z_2)$, the vector space of Z_2 -quadratic forms, Q, in l variables.

A subspace of Z_2^l is called *Q*-isotropic if *Q* restricted to that subspace is identically zero. Let *h* be the codimension in Z_2^l of a *Q*-isotropic subspace of maximum dimension. The possible values for *h* are computed in $\lceil 4 \rceil$.

(3.7) COROLLARY. If (G, T) is an extra special 2-group that acts on Σ^{2N-1} such that T is fixed point free then $h \leq \mu_2(2N)$.

Proof. Under the hypothesis $\tau(x_1^{2[\mu_2(N)]}) = 0$ in the group extension spectral sequence. But in [4] it is shown that $\tau(x_1)$, $\tau(x_2^2)$, ..., $\tau(x_1^{2^{h-1}})$ are non-zero and $\tau(x_1^{2^h}) = 0$. Consequently $\mu_2(2N) \ge h$.

BIBLIOGRAPHY

- G. E. Carlsson, On the rank of abelian groups acting freely on (Sⁿ)^k, Invent. Math., vol. 69 (1982), pp. 393-400.
- H. CARTAN and S. EILENBERG, Homological algebra, Princeton University Press, Princeton, N.J., 1956.
- 3. J. MILNOR, Groups which act on Sⁿ without fixed points, Amer. J. Math., vol. 79 (1957), pp. 623-630
- D. QUILLEN, The mod 2 cohomology rings of extra-special 2-groups and the Spinor groups, Math Ann., vol. 194 (1971), pp. 197-212.

CALIFORNIA STATE UNIVERSITY, FRESNO FRESNO, CALIFORNIA