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FINITE GROUPS THAT ACT ON SPHERES
IN WHICH A CENTRAL ELEMENT ACTS FREELY

BY

LARRY W. CUSICK

Introduction

It is known that if a finite group, G, acts freely on a homotopy (2N- 1)-
sphere then H*(G; Z) has period 2N. In this paper we show that if G is a
finite group with a central element T of order p (p a prime) and if G acts on
a homotopy (2N- 1)-sphere in such a way that T acts freely then this puts
certain restrictions on the Hochschild-Serre spectral sequence for computing
H*(G; Zp), and in particular we obtain an element

n2t’’m(G; Z,) where #(N)= max {i’ pIN},
such that is a non-zero divisor in the ring H*(G; Z). We can use this to
prove that H*(G; Z,) has period 2putm in the case that G acts freely.

In Section 1 we establish some relevant homological algebra. In Section 2
we describe a splitting lemma" namely if K acts on a homotopy lense space L
then H*(EK x r, L; Z,) is a H*(K; Z,) direct summand of H*(G; Z) where G
and K are related by an extension 1---, Z,---, G---, K---, 1. In Section 3 we
prove the main theorems of the paper and discuss the example of extra-
special 2-groups acting on a homotopy sphere in which the central element
of order 2 acts freely.

1. Homological algebra

Let K be a field and A a finitely generated augmented K-algebra, assumed
to be commutative. Let C, always denote a A-chain complex such that each
Cn is a finitely generated free A-module. Let H, C, be the usual homology
groups of C,.
We will let Ct,N1 denote the free A-chain complex constructed by killing off

the cycles of C, in dimensions N + 1 and larger [1]. Then Ct,m comes
equipped with a chain map

j" C, C
and satisfies the following properties.
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(1.1) (a) H,CJ=0fori>N.
(b) j," Hi C,---, Hi Ct,m is an isomorphism for < N.
(c) j" C,---,ct, satisfies the following universal mapping property"

Suppose D, is a A-chain complex and HiD, 0 for i> N and $" C,---, D,
is a A-chain map, then there is a factorization,

C, C,

such that j $. Furthermore if $’" C---, D, is any other chain map
with $7 - b then $’ - $ I

Spectral Sequences. For C,, K and A as above let H’C, (resp. H C,)
denote the cohomology of the cochain complex HomK (C,, K) (resp. HOmA
(C,, K) HomK (K (R)A C,, K)). Then, by [2], there is a spectral sequence of
Ext (K, K)-modules

(1.2) E* Ext (K, H’C,)=H C,.

Furthermore this spectral sequence is natural with respect to maps of
A-chain complexes.

If X is a CW-complex endowed with a free cellular action by a finite
group G and C,(X; K) is the CW-chain complex of X, A K[G] the group
ring, then we may identify

K (R)rtl C,(X; K) " C,(X/G; K) and X/G - EG x X.
Then the spectral sequence (1.2) coincides with the Serre spectral sequence
associated to the fibration

X EG x aX BG.

To establish notation we recall the mod p cohomology rings of the cyclic
groups.

(1.3) PROPOSITION [2]. (a) If p 2 then

H*(Z2, Z2) * (Z2 Z2) Z2[xl]Extz2tz21
where Xl Hi(Z2; Z2).

(b) If p is an odd prime then

H*(Z,; Z,) Ext,tz,l(Z,, Z,) Z,[x2] (R) A(xt)

where xi Hi(Zp; Zp) and flxt x2 where fl is the Bockstein operator.
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2. A splitting lemma

Fix a natural number N and a prime p. Let L be a finite CW-complex
with IX Z, and

H*(L; Z) - Z2[xl]/(xs) if p 2,
Z[XE]/(x) (R) A(x) if p is odd

and flx x2 in the latter case. Assume that K is a finite group and that K
acts cellularly on L in such a way that the induced K action on L is
trivial. K acts diagonally on EK x L and it is a free action. Let o H2(K;
Z) be the k-invariant [1] associated to the above free action. Let K(Z,, 1,
o). be the K-Eilenberg-MacLane space with k-invariant o. Then there is an
equivariant map

(2.1) f: EK x L K(Z,, 1, o)

that induces an isomorphism on fundamental groups. It follows that the
induced map f* on (non-equivariant) mod p eohomology is an epimorphism
with kernel (x2N) for p 2 and (x2) for odd primes.
We will let &(co)= C,(K(Zp, 1, co); Zp), regarded as a free Z,[K]-chain

complex. tm(co) is the construction described in Section 1.
We define a map 0 by the commutative diagram

0

C,(EK x L" Z) ,[2N-

C,(K(Z,,, o); z,)
where j is defined in Section 1.

(2.2) PROPOSITION. 0 is a Zv[K]-chain homotopy equivalence.

Proof Since both chain complexes are free Z[K]-complexes it is enough
to show that 0 induces an isomorphism on non-equivariant eohomology. We
have already seen that f* is an isomorphism in the range where H*(L; Zp) is
non-zero. Furthermore in this range j* is the dual to an isomorphism (1.1).
This proves the proposition. |

For a free Zp[K]-chain complex C, let E,(C,) be the spectral sequence
(1,2) for computing H*(Z, (R)zptrlC,). For convenience let C, C,(EK x L;
Z,). By naturality we have maps of spectral sequences

j* f*
E,(C,)
T

O*
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that commute with the action of H*(K; Zp) and where 0* is an isomorphism
for all r > 2.

(2.3) COROLLARY (SPLITTING LEMMA). For each r _> 2, f*:
Er(..’(og))--, Er(C,) is a split epimorphic map of bi#raded H*(K; Zp)-chain
complexes. [

The orbit space K(Zp, 1, o)/K is an Eilenberg-MacLane space of type
(G, 1) where G is the group given by the extension

1 ,Zp ,G ,K

classified by o e H2(K; Zp).

(2.4) COROLLARY. f*: H*(G; Zp)--, H*(EK XKL; Zp) is a split epimorphic
map of H*(K; Zp)-modules. I

3. Periodicity

We assume that 2N-1 is a finite CW-complex, the homotopy type of a
(2N- 1)-sphere, and endowed with a cellular action by a finite group, G,
containing an element, T, of order p (/7 a prime) and such that

(a)
(b)

T is in the center of G and
T" )-2N-1.... -2N-1 is fixed point flee.

T generates a normal subgroup Zp<]G. Let L denote the orbit space
Y,-/Z.

(3.1) PROPOSITION. (a)
odd,

For p 2, H*(L; Z2)’ Z2[z1]/(zN), (b) For p

H*(L; Zp) Zp[g2)/(g)() A(z1)

where flzl z2 and zi e Hi(L; Zp).

Proof
fibration

and (1.3). |

This is routine from the Serre spectral sequence associated to the

2N-12N-1 EZp zp BZp

Let {Er} be the spectral sequence for the group extension

1 ,Zp ,G ,K ,1

where Zp is generated by T. We recall that the transgression operator,
commutes with the action of the Steenrod algebra.
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Since

and

x’= Sq2’-’(x’-) for p 2

x’ P’-:(x’- ) for p odd
2, (resp. x’) is trans-in H*(Z, Z), an inductive argument establishes that xt

gressive in the above group extension spectral sequence.

(3.2) PROPOSmON. (a) If p 2 and > 0 then the map induced by cup
product

,+22i *’* Et_tX k3 E2_

is a first quadrant chain complex isomorphism.

(b) If p is odd and >_ 0 then

*, I$’*,* + 2PX E2p-t 2#-t

is a first quadrant chain complex isomorphism.

Proof Since part (a) is similar to (b) we prove only (b). Since x’ is trans-
gressive it follows that xw- is a chain map in the stated range by the
derivation property of the differentials. It is clearly an isomorphism because
x2 w is an isomorphism. This completes the proof. I

(3.3) COROLLARY. (a) For p 2,
2i

Xl : E2+ E2+
s ars quadrant vector space somorphsm.

(b) For p odd,

x’E2+i E2+1
is a first quadrant vector space isomorphism.

Let ()= max {" ff]}. Recall that wc arc assuming that G acts on
Z2-1 as described above and z is the transgression operator in the group
extension spectral sequence.

(3.4) PROPOSITION. (a) If p 2 then ,(x"2(m+ t)= 0.

(b) If p fs o hen ,(x") O.

Proo Wc prove part (b); part (a) is similar. Write (N)= v(N), and
N f(mm. Thus m is relatively prime to p. Then d2,)+ is defined on x
and
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Let {Er(L)} be the spectral sequence for the fibration

L ,EK xzcL ,BK.

Then according to the splitting lemma (2.3) the map f*" Er--- Er(L) is a split
epimorphism, with splitting map 0" Er(L)--,
Now, f*(x)= 0 for dimension reasons. Thus letting z(x’N’) we have

(in E2,+ (L))

=f*(m xg’"’’’-t’ w )

m. zm-t) w ,
since f* is a map of H*(K; Z)-modules and y is represented by an element
of H*(K; Z). Since (m, p) 1, we have

0 z"’’- w y.

Now, is a map of H*(K; Z)-modules and (z)= x for i< N. Thus we
have (in E2+ l)

0 a(zg.-’ w ) xg".-’’ w .
Now proposition (3.3) implies V 0, proving the proposition.

(3.5) COROLLARY. (a) If p 2 then

xt2+ 1 w E, E,

is a first quadrant chain complex isomorphism#r all r.

(b) For p odd,

is ers uadram can01 somorismfor 11 r.
Now choose M2tum(; X) that is represented by the infinite cycle

xtu22m if p X or xtu<2m if is odd.

(3.6) OROLLARY (Periodicity). (a) multiplica:ion b in M*(; Z) is an

inec:ion.

(b) If he G acfon on 2- fs free hen mulflfcafon b fs an fso-
morphsm.

Proo (a) According to (3.5) there is a filtration on M*(G; Z) such that
multiplication by is filtration preserving and induces an injection on the
associated graded groups

gr H*(; Z), gr H*(G; Z).
It follows that must be an injection on M*(; Z).
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(b) It is known that if G acts freely then H*(G;Z,) has period 2N. Thus
w injects the finite dimensional vector space H(G; Z) into a vector
space of the same dimension. It follows that w is an isomorphism.
Consequently. w is an isomorphism. |

Extra special 2-groups. Suppose G is a group containing a central
element, T, of order 2 and such that G/(T) Zt2 These are the extra-
special 2-groups studied in [4]. Pairs (G, T) are classified by the elements of
H2(Z; Z2), the vector space of Z2-quadratic forms, Q, in variables.
A subspace of Z is called Q-isotropic if Q restricted to that subspace is

identically zero. Let h be the codimension in Z of a Q-isotropic subspace of
maximum dimension. The possible values for h are computed in [4].

(3.7) COROLLARY. If (G, T) is an extra special 2-group that acts on 2N-1
such that T is fixed point free then h < #2(2N).

Proof. Under the hypothesis z(x2t2tm) 0 in the .group extension spec-
tral sequence. But in [4] it is shown that z(x), z(x22), z(x2-) are non-
zero and z(xh) 0. Consequently u2(2N) > h. |
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