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CYCLIC INNER FUNCTIONS IN THE
BERGMAN SPACES AND WEAK OUTER FUNCTIONS

IN Hp, 0<p<l

BY

JAMES W. ROBERTS

Let X denote a topological vector space of analytic functions on the unit
disk so that H c X and convergence in X implies uniform convergence on
compact sets. If f X then l-f] denotes the closure of {Pf: P is a
polynomial}; i.e., If] is the smallest invariant (under multiplication by z)
closed subspace containing f. We say f is X-cyclic if If] X. We shall be
concerned with the case when the function is an inner function. If q is an
inner function we say that q is X-inner if whenever qo is an inner function
and qo e [q], then q divides qo. Initially, we shall consider a general class of
Banach spaces which includes the Bergman spaces. Any of these spaces will
be denoted by B. In Section 1 conditions on B are obtained so that if q is an
inner function, then q qq2 where q is B-cyclic and q2 is B-inner. In
Section 2, with further conditions imposed on B (the Bergman spaces still
satisfy these conditions), we characterize the B-cyclic and B-inner functions.
In Section 3 the case when X Hp, 0 < p < 1, with the weak topology is
considered. In this setting X-cyclic inner functions are called weak outer func-
tions and X-inner functions are called weak inner functions. Using the results
from Section 2 we characterize the weak inner and weak outer functions in
H’, 0 < p < 1. Also it is shown that for a large class of singular inner func-
tions S,, the quotient spaces H’/SuH’ contain compact convex sets with no
extreme points.
The author would like to thank J. H. Shapiro. Much of this paper was

improved by reading [11] in which he "cleaned up" the author’s rather crude
first manuscript. Also it should be noted that P. Ahern has independently
obtained an alternate proof of the factorization in the Bergman spaces using
the characterization of the cyclic inner functions. B. Korenblum has (also
independently) obtained a characterization of the cyclic inner functions in the
Bergman spaces using results from [5].
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1. Factorization of inner functions

We shall let D denote the unit disk, T the unit circle and H the space of
analytic functions on the disk. We also let M(T) denote the finite Borel mea-
sures on T and we let m denote normalized Lebesgue measure on T; i.e.,
m(T) 1.
The set of probability measures will be called P(T) and the set of finite

measures singular with respect to Lebesgue measure will be called S(T). We
now consider a Banach space (B, I1"11) of analytic functions on the disk so
that convergence in B implies uniform convergence on compact sets and so
that B satisfies the following conditions:

(B1) The polynomials are dense in B.
(B2) Iff B and # e H, then f# B and fg < f II’ll 0 oo.

(B3) If (g.) is a uniformly bounded sequence in H and g. 0 pointwise
in D, then IIfll--’ 0 for all f e B.

The Bergman spaces are examples of such spaces. The Bergman spaces will
be of particular interest to us and we shall define them now. If 1 < p < oo
and e > -1, define

f IIg, If If(z)1’(1 zl) dx dy

D

for every measurable function f on D and let

h {f H: Ilfll, < oe}

The space A is a Banach space and is called a weighted Bergman Space.
We return now to the space B. Note that since convergence in B implies

uniform convergence on compact sets, Blaschke products are B-inner. Thus
we shall temporarily concentrate on singular inner functions. That is, if
! e S(T) the singular inner function S. is defined for all z D by

LEMMA 1.1. (1) If S, is B-inner and v <_ la, then Sv is B-inner.

(2)
that Sv

If la S(T) and # is the least upper bound of a collection A S(T) such
is B-inner for each v e A, then Su is B-inner.

Proofi (1) Suppose S, is not B-inner. Then there exists q such that S, does
not divide q but q e [S,]. Thus there exist polynomials P, so that P,S,--, q.
By (B2). P.S, qS,_,. But then S, does not divide qS,_, and qS,_ [S,].
This contradiction shows that S is B-inner.



CYCLIC INNER FUNCTIONS IN THE BERGMAN SPACES 27

(2) Suppose BSuo e [Su] (B is a Blaschke product) where # sup A. Since
[Su] = a [S], S divides BSuo for each v e A; i.e., #o > v for each v A.
But then #o >/2 so that Su divides BS,

We shall now show that with a certain condition every inner function is
the product of a B-cyclic function and a B-inner function. First suppose that
2 e B*. For n 0, 1, 2, let an 2(zn). If (bn) is a sequence in 11, then

=o b. z" converges to a function in B. Hence the series =o a.b. is con-
vergent for every (bn) ll and consequently (an) 1oo. If we let g(z)
=o hn zn then g H. Thus every 2 B* can be identified with a unique
(since the polynomials are dense) function g e H. We shall simply think of B*
as a subset of H and if g e B* we shall denote the linear functional by 2o.
Note that if g B* c H and P is a polynomial, then

2g(P) P(ei)g(e) dO.

The same will hold for any f in B which is a uniform limit of polynomials,
i.e.,f A. Supposefe H. Then by (B3),fr--fin B wherefi(z) =f(rz). Hence

lfo2g(f) - f(e’)g(e’) dO.

THEOREM 1. Suppose that B satisfies (B1)-(B3) and whenever q is an inner

function that is not B-cyclic there exists g B*c H (g :/: O) such that
gn e B* for every integer n and 2o([q])= 0. If BoS is an inner function with
Bo a Blaschke product, then # #1 +/22 where

(1) #1 _L #2,
(2) S, is B-cyclic,
(3) Bo S,I is B-inner,
(4) [Bo S,] [Bo S,_].

Proof. First let #eS(T) and let #o=sup{veM(T):v-<# and Sv is B-
inner}. By the Lebesgue Decomposition Theorem we may write # #1 +/22
where #1 +/- #o and /22 </20. Now /20 /22 since /20 -</2. By the above
lemma, So is B-inner. We intend to show that /22 /20" Suppose /22 =)/:: /20"
Then

is a positive measure and since /3-< #o, S is B-inner. Hence there exists
B*c H (V =/= 0) such that V’ B* for every positive integer n and

2o([S3]) 0. Thus for n 0, 1, 2,

mO 0 0e" S,3(e" )g(e dO O.

Consequently for some f H with f(O)= O, S, =f a.e. We may write f=
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FBS,, where F is an outer function, B is a Blaschke product and S is singu-
lar inner. Let #4 #3 -(/3 A v) and v v- (/3 A v) so that #4 _L v and
Su,(t FBSv.
Note that/4 is still a positive measure since otherwise # and 0 are in H

so that # is then a constant and since #(0)= 0 we would have # 0. Also
#4-<#3 </0. Now let N be the largest positive integer such that
(N 1)/, _</0. Since #, _< #3 #2 #0, N#4 -< #2" We claim that Sn,, is
B-inner. Let q be an inner function and suppose q [Ss,,]. Now Ss,,Os =f
e H where f(0) 0. Also es B*. Hence for n 0, 1, 2,

Thus

2e"Ss.,(em)g(em)s ’e"fl(ei)
N dO 0dO=

N ([Sr.,]) O. But then for n 0, 1,

so that q(t H. But

neinq(ei)g(ei)
N dO 0

FSBSSN,lq

Since #4 j-- v 1, SN/t, divides q. Thus Sr., is B-inner. But N#, _< #2 < i/2. By the
definition of to, N#, < #o. But this contradicts our choice of N. Hence
#2 #o and S,2 is B-inner.
Our next claim is that S,1 is B-cyclic. Suppose S,t is not B-cyclic. Then

there exists 9 e B* c H so that 9 0 and

2g([S.1]) O,

By an argument similar to the above
S,, does not divide h since 9 # 0. Thus

hi ff H where h(0) 0. Also

hi h2

where 71 # 0, 71 ’ #1, and S), and h2 have no common divisor. Suppose
Sr [Sr]. Clearly 2o([Srx])= 0 and consequently 20([Sr] 0. Hence 0Sr
h3 H and therefore h3/S h2/S1. Thus y _< y and it follows that Sr is
B-inner. But this contradicts the choice of/o #2 since # +/- #o implies
)1 -L/g0"
Now let BoS be a singular inner function and let Bo be a Blaschke

product. Then # # + #2 where S, is B-cyclic and S is B-inner. Suppose
q BS is another inner function and q e [BoS,]. q must have at least as
many zeros (counting multiplicities) as Bo so that Bo divides B. Also q
IS,:] so that #2 -< #3 since S, is B-inner. Thus BoS is B-inner. Therefore
(1), (2) and (3) hold. Since S is B-cyclic there exist polynomials P so that
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P. S1--* 1 and therefore P. Bo S Bo Su,. Hence [Bo Su,] c [Bo S2]. But
[Bo S.] c [Bo S.]. Therefore [Bo S] [Bo S].

Remarks. The same result will hold for weaker hypotheses than (B1)-(B3)
and the assumption that B is a Banach space. However, Theorem 1 will
suffice in the present form because we are mainly interested in the Bergman
spaces.

2. Factorization of inner functions in the Bergman spaces

We now impose further conditions on our space B and subject to those
conditions we shall obtain a specific factorization of inner functions. Hence-
forth, assume that B also satisfies the following conditions:

(B4) There exists > 0 and Co > 0 such that for every f B with f(z)=
=o anz" we have la=l -< Co Ilfll(n + 1) for n 0, 1, 2,

(B5) There exists fl > 0 such that Ilzll < n- for n 2, 3,...

It is easily verified that the Bergman spaces satisfy conditions (B4) and
(B5). Before stating the factorization first recall that a closed set K in the unit
circle T is called a Carleson set if m(K)= 0 and if T K =1 I, is the
canonical decomposition of T K into disjoint open arcs, then

Z m(In)log
m(I

Now let O(T) denote all measures # S(T) such that #(K) 0 for every Car-
leson set K and let I(T) denote all measures # S(T) so that
with each #. supported on a Carleson set. Observe that if # S(T) then
can be uniquely written # tt + #2 where # O(T) and #2 I(T). Also
#1 _k #2. We now state the main result of this section.

THEOREM 2. Suppose that B satisfies conditions (B1)-(B5). If Bo S.IS.2 is
an inner function with Bo a Blaschke product, #1 O(T) and 2 " I(T) then S.
is B-cyclic, Bo S. is B-inner and [Bo S,tS.,] [BS].

We now give some machinery for the proof of Theorem 2. We first state a
theorem due to H. S. Shapiro [8].

THEOREM 3. If # is a singular measure such that #(K)> 0 for some Carle-
son set K and if m is a positive integer, then there exists g H with

g(z)= Z b,,z"
n=0
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so that lb, I= O(n -m) and

forn=O, 1,2,....

"ei"S/t(ei)g(ei) dO 0

Because of Theorem 3 we need only prove that if/ O(T), then Su is
B-cyclic to obtain Theorem 2. To see this, suppose S/t is not B-cyclic. Then
# O(T) so that/(K) > 0 for some Carleson set K. If we take m > + 2 and
choose g according to Theorem 3 then 20 B* by condition (B4) and, of
course, g" e B* for every positive integer n. Hence Theorem 1 applies. If S/t is
B-cyclic then by Theorem 3, / O(T). Thus Su is B-cyclic if and only if

O(T) and consequently S/t is B-inner if and only if # I(T). We now
proceed to prove that S/t is B-cyclic if/ O(T). We begin with a few prelimi-
nary results. If S/t is a singular inner function and f B, then we let d(f,
denote the quotient (by IS/t]) pseudonorm off; i.e.,

d(f, [S,])-- inf {llf- Ol"

PROPOSITION 2.1. Suppose #, is an increasing sequence of singular mea-
sures, #,-- # and f B. Then

d(f, IS..])-, d(f, IS.I).

Proof First note that since fll -( #2 -("" -( #, [S/I] 29 IS/t2]
Hence the sequence d(f, [S/t.])is increasing and bounded above by d(f,
We may choose polynomials P. so that

IIf- P.Su.I d(f, [Su,]) 0.

Hence

_< IIf(1- S-)II / IIf-P.S,.II
By (B3), f( s_)ll 0 so that d(f [Su.]) d(f,

If/ M(T) we define the modulus of continuity of , to/t by

o9/t(6) sup {#(I)" I is an arc in T and m(I) < 6}.
We now state a lemma which is essentially Theorem 2 and the following
remark in [7].

LEMMA 2.2. There exists a constant c > 0 so that /f 0 < 6 < 3/4 and
# S(T) with o9/t(6) <_ c(6 log 1/6) then S(z) _> (1 -Izl)/flzl _< 1 .

Before pressing on recall the statement of the Corona Theorem [1, p. 205].
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THE CORONA THEOREM. For every positive integer n, there exists a con-
stant K > 0 such that whenever fl, ...,f, e H with IIflloo <- 1, 1 <_ < n, and

IflJ+"’+lf.[>6 onD,

where 0 < 6 < 1/2 then there exist 91 ,9, H with [[9[[ < 6-r so that

flgl + +.fn/n 1.

Let K denote the constant from the Corona Theorem in the case n 2.
Let

c=fl/3ClK and N=max(2,41/ccl}

(fl is the constant from condition (BS) and c is the constant from Lemma
2.2). Notice that S is B-cyclic if and only if 1 e [S]. The following lemma
provides an initial estimate of d(1, [S]).

LEMMA 2.3. Suppose n is a fixed positive integer and n >_ N. If # e S(T)
with

then there exists g H such that

g]loo < nt/3 and

Proof. By Lemma 2.2,

S.(z) >_ n -ccx

c log n

1 gSll n- 2/I/3.

for Izl 1 1/n.

For 1 1/n lzl < 1 we have, since n > N,

[z"l > (1 1/n)" > 1/4 > n

Hence

--1

S,,(z)l+lz"l n- for all z e D.

Applying the Corona Theorem with 6 n- (note that n-c < 1/4 since
n > N) there exist 91, 02 e H such that I111 -< n n/3 for 1, 2 and

glSu d- g2 Z" 1.

Hence

II1 0xSll IIz"0211 IIz"ll 110211 n-On#/3 n-2#/3.

If (n) is a finite or infinite sequence of positive integers we define

O[(n,)] n1//3 + ’i>2 (nl’ ""’n2- n’-l)
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LEMMA 2.4. Suppose It S(T) and It can be written as a finite or infinite
sum It i Iti where each Iti S(T) such that

ogui(1/ni) <
c log nt

ni

with each ni >_ N. Then d(1, [-Su] < D[(nt)].

Proof First suppose It 7’-lItt. We proceed by induction on m. The
case m 1 follows from Lemma 2.2. Suppose the result is true for m > 1. By
Lemma 2.2 there exists 91 H with 101 -< rt/3 such that

1 01s, < n? 2//3.

By the induction assumption there exists 9 H such that

gS,_+...+,+- 111 < D[(n2, nm+ 1)].

Hence

glgS- 111--II(g,S,)(gSu2+...+u,+,- 1)+ (glSul- 1)1

< IIxSllo I152/.../.+- III / IIS-
<_ n/3O[(n2, n,.+ 1)] + n? 2t/3

D[(nl,..., n,, + 1)].

The case when the sum It i It involves an infinite number of terms
follows from Proposition 2.1.

DEFINITION. If It S(T) and e > 0, It is e-decomposable if there exist
S(T) and ni >_ N such that It i Iti and

(1) og,,(1/ni) <
c log n

(2) D[(ni)] < e.

It is smoothly decomposable if It is e-decomposable for every e > 0.

Note. By Lemma 2.4 if It is smoothly decomposable then Su is B-cyclic.
We now give a procedure for obtaining from any It S(T) a measure Ito < It
so that Ito is e-decomposable.

DEFINITION. Let It S(T) and let P {11, I,} be a partition of T into
closed arcs Ii such that m(I) 1In for each i. We say that

c log n
It is light if It(It)<2 n
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and

Ii is heavy if #(Ii) >
c log n

We define #1 S(T) for each Borel set E in It by

(E)

#(E) if It is light,

#(E) c log n
if I is heavy.

#(It) 2 n

The measure/1 is called a P-grating of #.

Note. (1) #1 <# and the support of #-#1 lies in the union of the
heavy intervals.

c log n
(2) #1(I)

2 n
if It is heavy.

(3) og,l(1/n < c(1/n log n).

DEFINITION. Suppose # S(T) and (P) is a sequence of partitions of T
into n-many closed arcs each of equal length such that n > N and each P+
refines P. Let #1 be the Pl-grating of # and #m+l be the P,+l-grating of
#- (#1 +"" + #). The resulting measure # is called the (P)-grating of
/.

Proof of Theorem 2. Suppose that Su is not cyclic. We shall produce a
Carleson set Ko so that #(Ko)> 0. Since # is not smoothly decomposable
there exists e > 0 so that # is not e-decomposable. Let

ni=2t2ti +1 for i= 1,2,...

where io is chosen suitably large so that D[(n)] < e.

Since n divides n+ we may select partitions P consisting of n-many closed
arcs of equal length and so that P+I refines P. Let v = # be the
(P)-grating of #. By (3),

c log ni

Hence v is e-decomposable and consequently v =/= #. Now let H denote the
union of all the heavy intervals in P (with respect to #- (#1 +"" + #-1)).
Clearly H1 H2 "". By (1), p-(#l + + #) has its support in H.



34 JAMES W. ROBERTS

Thus if we let K Hi, # v has its support in K. Consequently #(K) > 0.
By (2),

C
#i(I) = re(I)log ni

if I is a heavy arc in Pi. Hence

C
(2.1) #(T) > #i(T) > #i(H3 = m(Hi) log ni

so that limi_,o m(Hi)= 0; i.e., re(K)= 0. Now let Li denote the union of the
interiors of those light intervals in Pi which lie in Hi-1. Let Ko T
Clearly Ko is closed and K c Ko. A point lies in Ko K only if it is an
endpoint of two adjacent light intervals. Hence Ko K is countable so that
m(Ko) 0. Since #(Ko)> 0 it suffices to show that Ko is a Carleson set; i.e.,
we must show that

m(Li) log ni < .
But by (2.1), and since Li c Hi-1,

m(L3 log n <_ m(n_ ) log n,
i>2 i>2

2 m(Hi)log ni < #i(T)< #(T) <

The equality follows since log ni/log ni-1 2. This completes the proof.

3. Weak outer functions in HP, 0 < p < 1

We are now in a position to answer some questions posed by Duren,
Romberg and Shields in [2]. If 0 < p < 1, the spaces He are not locally
convex and, in fact, Duren, Romberg and Shields proved that there exist
nontrivial singular inner functions S, so that S,He is weakly dense; i.e., every
continuous linear functional annihilating S,H" also annihilates He (note that
S,H’ is a closed and proper subspace). Recall that Beurling’s Theorem still
holds for H’, 0 < p < 1; i.e., if X is a closed subspace of He and X is invari-
ant under multiplication by z, then X qH" for some inner function q. If q
is an inner function we let [q]w denote the weak closure of qH’. We say q is
weak outer if [q]w He and weak inner if [q]w qHe (note that [q]w is
invariant under multiplication by z). Duren, Romberg and Shields asked for
a characterization of the weak inner and weak outer functions and they
asked whether every inner function is a product of a weak inner and a weak
outer function. They also asked whether any of this depends on p. To
answer these questions we use the fact that the containing Banach space of
He is the Bergman space A/I,_ 2 which is also called Be; i.e., He c Be, con-
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vergence in He implies convergence in Be and both spaces have the same
dual (every continuous linear functional on He has a unique extension to a
continuous linear functional on Be). This is proved in [2-1 and [9]. If q is an
inner function then [q]w is precisely the set off He annihilated by all con-
tinuous linear functionals that annihilate [q] (the invariant subspace of Be

generated by q); i.e., [q]w [q] c He. With this remark and Beurling’s
theorem applied to [q]w we can answer the above questions with the follow-
ing theorem.

THEOREM 4. If BoSI S2 is an inner function with B a Blaschke product,
/21 t 0(T), i/2 I(T), then S, is weak outer, BoS, is weak inner and

[Bo S,IS2]w Bo S2He.
Observe that if Su is a weak outer function the quotient space He/SuHe

has trivial dual; i.e., zero is the only continuous linear functional. These
spaces have received a fair amount of attention recently. For instance, N. J.
Kalton and J. H. Shapiro have shown in [4] and [10] that these spaces
admit nontrivial compact operators to another space X. The classical F-
spaces with trivial dual do not admit nontrivial compact operators and this
was the first such space discovered. In [10], J. H. Shapiro asked whether
these spaces contain compact convex sets with no extreme points and
whether every trivial dual F-space contains a compact convex set with no
extreme points. N. J. Kalton answered the more general question by showing
that certain Orlicz spaces with trivial dual contain only compact convex sets
with extreme points [3]. We shall partially answer Shapiro’s first question by
showing that for a large class of measures # (large in the Baire category
sense) the spaces He/SHe contain compact convex sets with no extreme
points. The following lemma will prove useful.

LEMMA 3.1. Let (r,) be a sequence in (0, 1) and let 6, > 0 such that
lim,_.oo 6, O. Then

{#P(T)’leS(T) and inf lS"(r"e’)l>6"frinfinitelymanyn

is a weak * dense G-set in P(T).

Note. P(T) is a weak * compact subset of C(T)*.

Proof. We still let

even if is not singular. Note that for any 2 > 0 and s D, S.,()= e
hence if # e P(T) and # _< 2m, then S.()I > e- for every e D. Let

A={#sP(r):#_<2m for some2>0}.
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It is easily seen that A is weak * dense in P(T). Now let

F. {I e P(T)" 0<0<2tinf
P(T) is weak*-metrizable and if fln--- fl weak* then Su--, S, uniformly on
compact sets. Hence each F is weak* closed and therefore E (ff= Fr is
weak* closed. Since E c A O, En is nowhere dense. Now let

C {# P(T): there exists v M(T) such that

v_<#,v_<m and v(T)>_l/n}.
Each C is weak* closed and nowhere dense (no measure supported by a
finite set is in C). Also P(T) S(T) ._ C.. Thus since

P(T) # S(T)" inf IS(r,e)l >
O<O<2n

for infinitely many n E C,
n=l n=l

the lemma is proved.
Before proving the main theorem of this section let us digress momentarily.

If (X, I1" II) is an F-space, e > 0, x X and F is a finite set in X, then F is
called an e-needle set about x if:

(1)
(2)
(3)

y e F implies Yll < .
x co F, the convex hull of F.
If y co F, then there exists [0, 1] such that Y xll < .

If x has an e-needle set for every e > 0, x is called a needle point and if every
x e X is a needle point, then X is called a needle point space. For example,
the spaces L,, 0 < p < 1, are needle point spaces. Also, every needle point
space contains a compact convex set with no extreme points [6].

Note. If X is a needle point space then X must have trivial dual. Also, if
Y is a dense subspace of X and x Y, then it is easily verified from the
definition that x possesses e-needle sets in Y for arbitrarily small e.

THEOREM 5. Let 0 < p < 1 and let N(T) denote the set of all
# P(T)c S(T) so that He/SuHe contains a compact convex set with no
extreme points. Then N(T) contains a weak * dense Go-set in P(T).

Proof Let e > 0. Notice that = z-"He is dense in L, and the constant
function 1 is a needle point in Lp. Thus 1 has an e-needle set in
z-"He; i.e. for a positive integer n chosen suitably large and hx, hK He,

{z-"hx, z-nhK}
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is an z-needle set about 1. But then {hx, hr} is an e-needle set about z".
From this it easily follows that one can choose a positive sequence (e.) so
that lim._, e. 0 and each z" possesses an e.-needle set in He. As before let
K be the constant from the Corona Theorem in the case n 2. Select ft. > 0
so that lim._.(R) ft. but lim._.(R) fl.e. 0. Let r. fl /r,, and let 6.
fl-x/r. Note that lim._. 6. 0. We claim that if # e P(T) c S(T) so that

inf [Su(r. ei) > 6.
0<0<2

for infinitely many n, then He/SuHe is a needle point space. Showing this will
complete the proof. Suppose n is one of the integers for which

inf S,(r. ei0) > 6n.
O<O2n

If lzl _> r., then z"l _> r." ---//- x/x 6.. Hence for every z D,

S(z)l + Iz"l .,
By the Corona Theorem, there exist f, 0 H such that fS, + Oz"= 1 with
Ilflloo, 11911oo -< 6-r ft.. Now let h H with Ilhlloo -< 1. Then

hfSu + hoz" h.

Let {hi,..., hr} be an z-needle set for z". Then {hohl,..., hOhk} is a
fl, e,-needle set for hOzn= h- hfSu. If we let n denote the quotient map
from He to He/SuHe, then {n(hohx), n(hohx)} is a fl, e,-needle set for n(h
-hfSu) n(h). Since lim,_.(R) ft, 5, 0 and since the above holds for infi-
nitely many n, n(h) is a needle point in He/SuHe. It is easily verified that a
multiple of a needle point is a needle point and that the set of needle points
is closed. Thus every point in n(H(R)) is a needle point and since r(H) is
dense in HP/suHP, HP/SuHP is a needle point space.

Remarks. As a consequence of the above theorem, for most # e P(T),
HP/Su He contains compact convex sets with no extreme points. However for
any sequence r, e (0, 1) with lim, r, 1 and 6, > 0 with lim,_.o 6, 0 it is
possible (but not trivial) to produce # O(T) so that

inf IS,(r.e)l<6..
0<0<2n

Thus the above argument does not apply to all # O(T).
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