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1. Introduction

In [11], Siegel proved that no nontrivial solution of Bessel’s equation

z2y + zy’ + (z2- a2)y 0

can satisfy a first order algebraic differential equation (ADE) with coefficients
in the field of rational functions, provided that a is not one-half of an odd
integer. This result was extended by Bank [1], who proved that no nontrivial
solution of the above equation will satisfy a first order ADE with coefficients
in the field of meromorphic functions of order less than one, the condition on
a remaining the same.

Here we consider equations of the form

w" + Pw’ + Qw 0, (1.1)

where P and Q are meromorphic functions of finite order. We assume that all
solutions of (1.1) are meromorphic, and find conditions under which solutions
do not satisfy first order ADE with suitable coefficients. We require a lemma
due to Siegel [11], which we state in a less general form.

DEFINITION. A differential field L of meromorphic functions is a field of
meromorphic functions which contains derivatives of all its elements.

If a is any nonnegative real number we denote by L the field of all
meromorphic functions of order less than or equal to a. Clearly L is a
differential field of meromorphic functions.

Siegel’s lemma is as follows:

LEMMA 1. Let L be a differential field of meromorphic functions and let P
and Q in (1.1) belong to L. Let the solutions of (1.1) be meromorphic. Suppose
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430 RANJAN ROY AND S.M. SHAH

wo is a solution which is not algebraic ooer L and which satisfies a first order
ADE with coefficients in L. Then there is a nontrioial solution w such that w/wl
is algebraic ooer L.

We need also the following result (see [6]).

LEMMA 2. If a meromorphic function f satisfies an algebraic equation

f" + dplf n-1 h- -bOn 0 (1.2)

where the qi are also meromorphic, then

T(r,f ) < T(r,j) + O(1).
j=0

2. Theorem 1 and examples

For any meromorphic function f we use the following notation: o(f) is the
growth order of f; (f) is the exponent of convergence of the zeros of f;
t(f) is the exponent of convergence of the poles of f. Let n(r, a) denote the
number of a points in Iz] < r (0 < la] < o) of f, the roots being counted
with multiplicity and (r, a) the number of distinct a points in Izl < r. Then
(r, a) < n(r, a) and

X (f) lim sup
log +n (r, 0)

log r

/x(f) limsup
lg+n(r’

log r
r-- oo

Write

,(f) limsup
lg+(r’0) log+(r,

logr g f)= limsup logr

Clearly X(f) _< X(f) _< o(f); g(f) _</(f) _< o(f). We now state:

THEOREM 1. Suppose all solutions of (1.1) are me_romorphic and P, Q L.
If every nontrivial solution w is such that max(h(w), t(w)) > a, then no
nontrivial solution satisfies a first order ADE with coefficients in L.

Remark. ,(w) and ft(w) may not be finite.

Proof Suppose w0 is a solution that satisfies a first order ADE with
coefficients in L. If w0 is algebraic over L and satisfies an equation of the
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form (1.2) with i L, then by Lemma 2 we conclude that

r(r, o) <- r(r, q,) + 0(1).
jO

This inequality implies that o(w0) < a, but by hypothesis O(Wo) > max(k(w0),
(w0)) > a. This contradiction proves that w0 is not algebraic over L and we
may apply Siegel’s lemma. Thus there is a nontrivial solution w such that
w/w is algebraic over L. As before, we may deduce that o(w/wl)< a,
which in turn implies (w/w) < a. Note that the poles of w/w are simple
and are exactly at the zeros and poles of w and we have max((wl), ,(wx)) <
a. This contradiction proves the theorem.
We need the following definition to state a corollary of Theorem 1. Suppose

that a meromorphic function f has zeros at z (i 1, 2,... ) of multiplicity m
(i 1, 2,... ). We shall then say that the zeros of f are of bounded multiplicity
if there is a constant M such that m < M for all i. If there is no such M we
shall say that the zeros are of unbounded multiplicity. In the same manner, we
speak of poles of bounded or unbounded multiplicity. Further if 0 < o(f) o
< then

r(f) limsup T( r, f )/r

will denote the type of f.

COROLLARY 1. Suppose w and wz are finearly independent meromorphic
solutions of (1.1) such that (i) O(Wx) and o(w2) are finite non-integers and (ii)
min(o(wl), o(w2)) > a; and either (iii) o(wl) 4: o(w.) or (iv) O(Wl) o(w2)
and r(w) :/: r(w2). (v) If the zeros and poles of all nontrivial solutions are of
bounded multiplicity then no nontrivial solution satisfies a first-order ADE with

coefficients in L, provided P, Q L.

Proof Case 1. tI(Wl) :: O(W2). We may suppose O ------ O(Wl) > O(W2) ------02. Since wx, w2 are linearly independent, we may denote by w cxwx + c2w2
(cc. 4: 0) any other solution of (1.1). Then

T(r, w) < T(r, Wl) + T(r, w2) + O(log r)
T(r, Wl) __< T(r, w)+ T(r, w:) + O(log r)

(2.1a)
(2.1b)

This shows that o(w) 01.

Case 2. o(wx)= o(w2). From (2.1b) and hypothesis (iii), we can again
conclude that o(w) o(w).
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Now using hypothesis (i) and (ii) and the Hadamard factorization theorem,
we get

a < max(k,(w),/,(w)} max(h(w), (w)).

The corollary now follows from Theorem 1.

COROLLARY 2. Suppose Q(z) is an entire function with h(Q) < o(Q) < ee.
At least one nontrivial solution of the equation

w" Q( z)w 0 (2.1)

satisfies a first order ADE with coefficients in Lo<Q) if and only if there is a
solution w of (2.1) for which t(w) o(Q).

Proof By Theorem 2(B) of [2(ii)] all nontrivial solutions w of (2.1) satisfy
(w) > o(Q). Suppose )t(w) > o(Q) for all w. Since the solutions of (2.1)
have simple zeros, X(w)= )k(w)> o(Q). The hypothesis of Theorem 1 is
satisfied and no nontrivial solution of (2.1) satisfies a first order ADE with
coefficients in Lo(Q).
Now suppose there is a solution w of (2.1) for which X(w) o(Q). Clearly

l(w’/w) X(w) o(Q). Thus

( w,)N r, O(rQ)+). (2.2)

To estimate m(r, w’/w) we use a result of Valiron [13, p. 105]; see also [14].
Thus

log +
w"(z)
w(z) 2log+ ({1 + o(1)} ,(r))z

outside a set of finite logarithmic measure. But w"(z)/w(z) Q(z), which is
entire and of finite order, so that

log O(r(Q)+). (2.3)

Again, we have

w’(z) ,(r) (1 + o(1)) (2.4)

outside of a set of finite logarithmic measure. This relation together with (2.3)
gives

rn r,-- O( r(Q)+). (2.4)
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Putting together (2.2) and (2.4) we have

T r, O(rO(O)+). (2.5)

We conclude from (2.5) that (w’/w) LogO). Thus w’(z)/w(z) R(z) (say)
Lo(o) and w satisfies the first order ADE w’ R(z)w 0 with coefficients

in Lo(Q).

Remark 1. One could derive (2.4) by the method of [4, Lemma 3.3] as well
or (2.5) directly from [5, Theorem 1].

Remark 2. Here o(Q) must be a positive integer. For a related result of
Strelitz on algebraic differential equations P(z, w, w’)= 0, see [10, Theorem
2.9] and [12].

Example 1. Consider the equation

w"-tan zw’+ (z- 1)w 0. (2.6)

We show that this equation and its solutions satisfy all the hypotheses of
Theorem 1. Let 1 < a < 3/2. Since tan z is a meromorphic function of order
1, the coefficients of (2.6) belong to L1. The solutions of (2.6) are of the form
w(z) E(z)/sinz, where E(z) is entire and satisfies E"+ zE 0. The
Wiman-Valiron theory implies that o(E) 3/2 ,(E). (See also [10, p. 249]
or [3, p. 426] for the orders of the solutions of the DE w" + Pw’ + Qw 0
where P and Q are polynomials or rational functions in z, and for various
references.) It is easy to check that E(z) has simple zeros and since sin z has
simple zeros too, we have

max(,(w), (w)) 3/2 >

All the conditions of Theorem 1 are fulfilled and so no nontrivial solution of
(2.6) can satisfy a first order ADE with coefficients in L.
We note that equation (2.6) illustrates that Theorem 5.4.3 and 5.4.4 of [7]

cannot be extended to meromorphic functions.

Example 2. We show by an example that if, for some solutions w in
Theorem 1,

max(,(w), (w)) a,

then all the solutions may satisfy first order ADEs with coefficients in L. It is
not difficult to see that the general solution of the equation

1 /w"+ w’+ 7 -4z w=0 (2.7)e 1 z z(e 1)
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is w(z) (ClCOSh z 2 + c2sinh z2)/(_ez- 1). The coefficients_ of the equation
(2.7) belong to L1. For cl 4= +c2, )t(w) 2, and max(h(w), (w))= 2 > 1,
whenc1= +c2,

W(Z) ce+Z2/(eZ 1)

so that (w) 1 but )(w) 0. Thus in this case max()t(w), (w)) 1, and
all solutions of (2.7) satisfy a first order ADE with coefficients in L. For, in
general we may write the solution of (2.7) as

cle -t- c2e

and this satisfies

e )2 16CLC2Z2W’+ eZ---l w 4z2w2-
( ez- 1)2

Example 3. In Theorem 1 it is not enough to assume that
max()t(w), #(w))> a. This is because w may have zeros or poles of un-
bounded multiplicity so that

max(X(w), g(w))

may become less than or equal to a. We give an example of such a situation:
Let F(z) be the canonical product with zeros at z 1, 2,..., n,..., where

the zero at z n is of multiplicity n. Thus the zeros of F are of unbounded
multiplicity. Let f(z)= 1/F(z), so that /,(f)= 2. Set O(z)= f"(z)/f(z).
Evidently Q(z) is meromorphic with double poles at z 1, 2,..., n,.... We
have

and

re(r, Q) m(r, f"/f ) O(log r),

N(r Q) n(t, Q)
dt--2r,

since n (t, Q) 2 t. Thus

T(r, Q) 2r and Q t1.

The function f(z) is a meromorphic solution of the DE

w"- Q(z)w 0. (2.8)
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It can be verified by direct substitution that

g(z) f(Z) foZF2(t) dt

is a linearly independent meromorphic solution of (2.8). Thus all solutions of
(2.8) are meromorphic and of the form

h(z)--f(z)(c1 + c2F2(t)dt).
It is possible that the function cl + c2fF2(t)dt has zeros at some or all of
the points z 1, 2,..., n, Let the zeros be at n k }, which could be an
infinite sequence. Clearly the zero at n k will be of multiplicity 2n k + 1 so that
h(z) will have a zero multiplicity n k + 1. It can be seen that in the three cases
(i) c 0, (ii) C2 0, or (iii) ClC2 4: O,

max(h(h), g(h)) > 2

but

max((h), h(h)} 1.

Now consider f(z). By an argument similar to the one used for computing
T(r, Q) we can show that T(r,f’/f)--r. Hence f’/f L1, that is,
f’(z)/f(z) R(z) (say), where R(z) L. But then f(z) satisfies the first
order ADE f’(z) R(z)f(z) 0, with coefficients in L1.

Example 4. We now show that the solutions of Mathieu’s equation

w"+ (a+bcos2z)w=0 whereb4=0,

do not satisfy a first order ADE with coefficients in LF, the field of all
meromorphic functions of finite order. For suppose that a solution w satisfies
an ADE

Eai(z)w(w’)=O,
i,j

where the a ij (z) are meromorphic functions of finite order. Let

p max (1,
t,J

so that the coefficients of the ADE and of Mathieu’s_ equation belo_ng to Lp.
Bank and Laine [2] have proven that h(w)= h(w)= ; thus h(w)> p.
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Theorem 1 implies that w does not satisfy a first order ADE with coefficients
in Lp. This contradiction proves our contention.

Example 5. The fact that all solutions of an equation have zeros or poles
of unbounded multiplicity does not necessarily imply that the hypothesis of
Theorem 1 will not hold. We use Mathieu’s equation to demonstrate this. Let
F(z) be the function of Example 3. Straightforward computation shows that
the solutions of the equation

2F’w,+(Q_ 2F ’2 F")w"- -if-- F 2 F w 0 (2.9)

where Q(z) a + b cos2z, are of the form w(z) F(z)E(z), where E(z) is
a solution of Mathieu’s equation. The coefficients of (2.9), according to the
computations in Example 3, are of order at most 1. The zeros of w(z) are of
unbounded multiplicity, because of the factor F(z). Since (E) , we have
k(w) . Thus, as before, no nontrivial solution of (2.9) satisfies a first order
ADE with coefficients in LF.

Example 6. There are DE’s with all solutions of non-integral order though
not all are of the same order. We construct an equation with one solution of
order 3/2 and another one of order 1,/2.

Consider the equation w"-zw 0. By the Wiman-Valiron theory, all
non-zero s61utions have order 3/2. Let P1 and P2 be two linearly independent
(1.i.) solutions. We claim that P1 and P2 have no common zeros. For these are
1.i. and so their Wronskian P(t)P(t)- P2(t)P(t(t) is non-zero. Also since
the zeros of P1 and P2 are simple, P{(a) 4:0 at a zero a of P. Hence at a,

-P:(a)P[(a) 4:0

and so

P:z(a) 4: 0.

Now Px and P2 are functions of order 3/2 and hence the exponent of
convergence of zeros of these two functions is also 3/2. Let (a,} be the
sequence of zeros of P. Let {a,k } be a subsequence whose exponent of
convergence is 1/2. Let { a, }’ be the sequence { a } with the elements { a,k }
removed. Denote b.y Pl(Z) the canonical~ product with zeros at { a )’. Then the
functions Px(z)/P(z), Pz(z)/P(z) are functions of order 1/2 and 3/2
respectively, and are solutions of the DE

E ;i z w=0.
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3. Theorem 2

Example 3 shows that meromorphic solutions of the equation w" + Pw’ +
Qw 0 may have zeros and poles of unbounded multiplicity though P and Q
themselves have poles of bounded multiplicity. We now determine conditions
on P and Q that will imply that the zeros and poles of the solution are of
bounded multiplicity.

Suppose f is a meromorphic function with poles at z (i 1,2,...) of
multiplicity m (i 1,2,...). Let f(z) Ei%_mCi, k(Z Zk) be the Laurent
expansion of f(z) about zk (k 1, 2,...). Suppose that

for k 1,2,..., (3.1)

where K is a constant independent of k. We say that f(z) has bounded highest
coefficients at the poles if (3.1) is satisfied. Let (z,.) be a subsequence of poles
of f(z). We say that f(z) has the highest coefficient bounded away from zero for
the sequence ofpoles (z,j) if there is a > 0 such that

[C_mk,k >_ fork {nj), (3.2)

and independent of k.

THEOREM 2. Consider the DE

w" + Pw’ + Qw=O (3.3)

where P and Q are meromorphic and have bounded highest coefficients at the
poles and P has highest coefficients bounded away from zero for the subsequence
of multiple poles of P. Any meromorphic solution of such an equation has zeros
and poles of bounded multiplicity.

(Note that we are not assuming that all solutions of (3.3) are meromorphic.)

Remark. No condition is required on any entire coefficient of (3.3) for the
theorem to hold.

Proof Suppose w is a meromorphic solution with a zero of multiplicity n
at x. Then

where g(x) 4:0 and g(z) is regular in a neighborhood of x. Suppose n > 1
and

P(z) (z- x)Sp(z) and Q(z) (z- x)tq(z),
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where p(x) 4:0 4: q(x). Substituting these expressions in (3.3) we arrive at

If s > 0 and > 0, we divide across by (z x)n-2 and set z x to get the
contradiction g(x)= 0. Thus, in this case, n 1. Now consider the case
where P(z) has a simple pole. It can be verified that in this case Q(z) can have
at most a double pole. Assume that Q has a double pole. (The other cases can
be done similarly.) Now p(x) and q(x) are the highest coefficients of P(z)
and Q(z) respectively at x. By our hypothesis Ip(x)l -< K and Iq(x)l -< K.
Multiplying across by (z x) -"+2 in (3.4) and setting z x, we get

n(n- 1)g(x)+ np(x)g(x) + q(x)g(x)= O.

Since g(x) : 0,

n(n- 1) + np(x) + q(x)= O.

The condition on p(x) and q(x) implies that n is bounded by an absolute
constant and hence the zeros are of bounded multiplicity.
Now consider the situation where P has an infinite number of nonsimple

poles. Let x be one of these. Let -s be the multiplicity of the pole of P (recall
that we are writing P(z) (z x)Sp(z) so that s is negative) and -t that of
Q. Clearly we must have s + 1. The terms in (3.4) with the lowest power
of z- x are

n(z x)"-lg(z)(z- x)Sp(z) and (z- x)ng(z)(z- x)’q(z).

Multiplying (3.4) by (z x) -’-t and setting z x, we have

np(x) + q(x) O.

Since IP (x)l > and q(x)l < K, we get n < K/6, and once again, the zeros
are of bounded multiplicity.
The case for the poles of w can be done similarly. We write w(z) (z

x) ng(z), g(x) 4:0 and proceed as before.

Remark. Note that equation (2.9) demonstrates that the solutions of (3.3)
may not have poles at the singularities of the coefficients of the equation but
instead may have zeros of unbounded multiplicity.
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4. Rational coefficients

We now turn to the particular case where the differential field is LR, the
field of rational functions.

THEOREM 3. If all the nontrivial solutions of

w" + e(z)w’ + Q(z)w=O, whereP,Q LR,

are meromorphic functions with infinite number of zeros then no nontrivial
solution of (4.1) satisfies a first order ADE with coefficients in L for any < 1/2.

Proof Any solution w has the form w (G/T)e q where q, T are poly-
nomials. By hypothesis (G/T)e q satisfies a DE with rational coefficients and
hence so does Ge q. Suppose then Ge q satisfies w" + P1w’ + Qlw 0. Then G
satisfies

G"+ (2q’+ P1)Gtnt- (q" + q,2 + pq, + Q1)G O.

Note that G is a transcendental entire function and satisfies a second-order
DE with rational coefficients. Hence o(G) > 1/2. Further G has all but a finite
number of zeros simple and so G’/G is meromorphic, and since the exponent
of convergence of the poles of G’/G is > 1/2, o(G’/G) > 1/2. Now w’/w
G’/G T’/T + q’, and so o(w’/w) > 1/2. But if w satisfies a first-order ADE
with coefficients in L, a < 1/2, then by Siegel’s lemma o(w’/w) < - and we
have a contradiction. This completes the proof.

We now write (4.1) in the equivalent form

Pow" + Pw’ + P2w 0, (4.1)’

where Pj. are polynomials.

COROLLARY 1. Let P. be of degree % (j 0, 1, 2) in (4.1)’. /f this equation
has all solutions entire and one solution of non-integral order, then no nontrivial
solution satisfies a first-order ADE with coefficients in Lo for

2--o+2

In particular, if also o :/: 2 + 1, then no nontrivial solution satisfies a first-order
ADE with coefficients in Lo for O < 3/2.

Proof (a) Let K max(a ao, a2- ao) and m k K + 2 + co ak
k for k 0, 1, 2. Then (k, mk) are the points from which Newton’s polygon
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of Wiman-Valiron theory is constructed. Since there is a solution of non-
integral order, the Newton’s polygon is formed by joining the points (0, m0)
with (2, m2), and the order of the solution is given by

K+ 2- (K+2+so-s2- 2) a2 +2-ao
2 2

In particular, we must have (i) s2 + 2 > s0. Moreover the coordinate (1, ml)
lies on or above the line joining (0, m0) and (2, m2). Thus m > (m 0 + m2)/2.
Hence we must have (ii) s0 > 2s s2.

We now show that there cannot be a polynomial solution. Suppose there is a
solution Q(z) which is a polynomial of deg n. Then deg(PoQ") So + n 2,
deg(PiQ’ s + n 1, deg(PzQ s2 -- /l. By (i) S 2 + n > so + n 2.
Therefore if Q does satisfy the DE we must have s + n- 1 s2 + n for
cancellation to take place. But this equality implies s S2 -- 1. From (ii) we
get

so>2(s2+ 1)-s2,

that is

s0--2>_s2.

But this contradicts (i). Thus there cannot exist a polynomial solution.
(b) We now complete the proof. We have just proven that all the solutions

are transcendental. Since the orders of the transcendental solutions are given
by the negative of the slopes of the Newton’s polygon, it follows that if one
solution is of non-integral order, then all solutions are of non-integral order.
Moreover, the order of any solution w 0 is 1/2(s 2 + 2 s0) as in (a). Write
w (G/T)e q where G is the canonical product and q, T are polynomials.
Now G is of non-integer order and as in the proof of the theorem, all but a
finite number of zeros of G are simple, and so

o z’’/’at,-,/ s2 + 2- s0

2

Now if w satisfies a first-order ADE with coefficients in Lo, 0 < 1/2(s2 s0 +
2), then by Siegel’s lemma, there is a solution w 0 of the second-order DE
for which

o(w/wl) < O < 1/2(s2- s0 + 2).

But o(G’/G) o(w/wx) since w is also of the same non-integral order as w.
Thus

+ 2).



MEROMORPHIC SOLUTIONS 441

This is a contradiction and therefore w cannot satisfy a first-order ADE with
coefficients in Lp for O < 1/2(a2- a0 + 2). Finally, if a0 4:a2 + 1, then -(a

co + 2) > 3/2 and this proves the last statement of the corollary.

Remark. Several questions about meromorphic solutions of DEs with
rational coefficients may be reduced to entire solutions of such equations. (See
[81.)

Example 7. Consider the equation

W Z2W O.

For any solution w 0, o(w)= 2 [10, p. 249] and also (w)= 2 [2(ii),
Theorem 1(c)]. Hence no solution w 0 of this equation satisfies a first-order
ADE with coefficients in Lo for any O < 2.

Example 8. If all the solutions of an equation of the form (4.1) do not have
an infinity of zeros, the solutions may satisfy a first order ADE with rational
coefficients. For example, w" + w 0 has the general solution w clcos z +
csin z. When c +_ v/-Z-1 c2, w ce +iz, which has no zeros. In all other
cases, w has an infinite number of zeros. The solution w cos z, for example,
satisfies the first order ADE w’2 + w - 1 0, with rational coefficients.

5. Constant coefficients

It may happen that some solutions of a second order DE satisfy a first order
ADE with appropriate coefficients and some do not. We consider this situation
in the simplest case w" + aw’ + bw 0 where a, b C, the field of complex
numbers.

In the following, K denotes the field of meromorphic functions of order less
than one together with functions of order equal to one and of minimal type.
We now state:

THEOREM 4. Consider the DE w" + aw’ + bw 0, where a, b C, and let
’1, be the roots of ?- + ah + b O.

(i) If one or both roots are zero then obviously all solutions of the DE satisfy
a first order ADE with constant coefficients.

(ii) (a) If ,/, is a rational number not equal to 1, then all solutions of
the DE satisfy a first order ADE with constant coefficients.
(b) If /2 1, then all solutions satisfy a first order ADE with
rational coefficients.

(iii) Suppose 1/,. is either an irrational or a (proper) complex number
(that is, Imag(,t/,2) =/: 0). A solution of the DE will not satisfy a first
order ADE with coefficients in K if and only if it has a zero.
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Proof (i) This case is obvious.
(ii) (a) Suppose 1/2 is a rational number not equal to 1. There is a

number X such that 1-" (P/q) and 2 (r/s) where p, q, r, s are
integers and ps 4: qr. A general solution of the DE is

W Clexlz + C2e2z Clepxz/q "at- C2erz/s

W’ p,/qClepxz/q + r,c2/se rxz/s.

Write ps qr d 4= O. Then

Similarly

sp

e prxz. (5.1)

SW (w dc rq

e prxz. (5.2)

Combining (5.1) and (5.2), we obtain

Since sp 4= rq, the equation is not an identity and w satisfies a first order ADE
with constant coefficients.

(ii) (b) If X 3, 2, the general solution is w (c + c2z)e xlz and this
satisfies

zw’- (Xlz + 1)w -q/c2[w’- hlw],

a first order ADE with rational coefficients.
(iii) Suppose X/X2 is not rational. Consider the general solution

w( z ) clex + C2ex2z.

If w has no zeros then either c 0 or c2 0. In this case, w clearly satisfies a
first-order algebraic ADE with constant coefficient. Now suppose that ClC2 4= 0
so that w has a zero; in fact, w has an infinite number of zeros. We show that
w does not satisfy a first-order algebraic ADE with coefficients in K. We show
first that w cannot satisfy a homogeneous equation. For suppose w satisfies a
first-order ADE P(w, w’) 0, where P is homogeneous and has coefficients in
K. Then w’/w is algebraic over K and by Lemma 2 we have w’/w K.
However,

W C2(k 2 Xl)
-Xl+ K.

W Cle(Xl-X2) + C2
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Thus, P cannot be homogeneous. Now, consider P(w, w’) where P is not
homogeneous. Suppose

m

e(w, w’) E e (w, w’),
k-I

where Pk is homogeneous of degree k. Substitute w cle xlz + c2e x2z in the
expression for P. Now P,(w, w’) will consist of expressions of the form
a(z)e (sx,+tx2)z where a(z) K and s + k. Then

Pk(w, w’) _,a(z)e (sxl+tx2)z. (5.3)

We assume that all the terms with the same exponential have been combined.
Since w cannot satisfy a homogeneous Pk, therefore, at least one a(z) in (5.3)
is not zero. In (5.3) retain only those a(z) O. Clearly

P(w, w’) _,a(z)e(sxl+txz)z + + Er(z)e(S’x+t’X)z;
m

(5.4)

a(z) O, r(z) 0 and a(z), r(z) K (s + t= l,..., s’ + t’
sions in different sums cannot be combined, that is, if

m). Expres-

A(z)e<SX+qx2)z Ea(z)e<SXa+tx: (so that sl + i)

and

B(z)e(2xx+tx) y’.b(z)e(’x+t’x)
J

(so that s + 2 j)

and 4: j, then the two expressions cannot be combined into one. For this to
happen the two exponentials must be identical, that is, s + tlk 2 $2 +
tX 2- But this implies that X1/;k 2 is a rational number. Thus, since expressions
in different sums of (5.4) cannot be combined and a(z) 0,..., r(z) O,
therefore, P(w, w’) O, and w Clexz + C2exz cannot satisfy a first-order
algebraic ADE with coefficients in K.

Remark

Finally, we refer to [9] for an interesting collection of problems on ADEs.
Also, we sincerely thank the referee for many helpful suggestions, and in
particular for the present form of Theorem 3.
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