
ILLINOIS JOURNAL OF MATHEMATICS
Volume 31, Number 1, Spring 1987

M-IDEALS AND QUASI-TRIANGULAR ALGEBRAS

BY

TIMOTHY G. FEEMAN

Introduction

Let # be a nest of projections on the Hilbert space H and let Alg be the
nest algebra consisting of those operators on H leaving invariant the ranges of
all projections in . The quasi-triangular algebra associated with is
QT() Alg # + X’, where " denotes the ideal of compact operators on H.
It was shown in [9] that, if the nest consists of a sequence of finite rank
projections increasing strongly to the identity, then every bounded linear
operator on H has a best approximant in QT(). The methods used there
were reminiscent of those used in [4] to establish best approximation of L
functions by H + C functions.

In this paper, we tackle the problem of the existence and uniqueness of best
quasi-triangular approximants from a different angle employing the concept of
M-ideals in a Banach space. These were first introduced in 1972 by Alfsen and
Effros ([2]) and have been studied widely since. Much of this study has
centered around determining those spaces X for which the compact operators
on X form an M-ideal in the space of all bounded linear operators on X. See,
for example, [5], [11], and [19].

In a somewhat different vein, Luecking [15] showed in 1980 that (H +
C)/H forms an M-ideal in L/H. In analogy with this function theoretic
result, we will show that (Alg + X’)/Alg is an M-ideal in Za(H)/Alg
for every nest #.

Since Alfsen and Effros proved a result equivalent to the statement that if
M is an M-ideal in X then every dement of X has a best approximant in M
[2, Cor. 5.6], the approximation properties have received considerable atten-
tion (cf. [14]). In 1975, Halmos, Scranton, and Ward [12] proved that best
approximants in an M-ideal to a given element are not only not unique but
abundant. In our context, we will be able to conclude the existence of many
best quasi-triangular approximants to a given operator.
Among our tools will be an operator analogue of the abstract F. and M.

Riesz Theorem. This is proven in Section 2 and serves to highlight some of the
underlying parallels and interplay between operator theory and harmonic
analysis.

Received February 12, 1985.
(C) 1987 by the Board of Trustees of the University of Illinois
Manufactured in the United States of America

89



90 TIMOTHY G. FEEMAN

In the final section, some related results on quasi-triangular algebras and
M-summands are presented.
The author would like to thank Allen L. Shields for his support.
Since we arrived at these results, we have learned that there is some overlap

with the work of Kenneth R. Davidson and Stephen C. Power who have
proved some results on M-ideals in a C*-algebra setting [6]. For instance, they
prove that if J is a closed ideal in a C*-algebra and if S is a subalgebra of
z such that S 3 J contains a bounded approximate identity for J, then
(S + J)/S is an M-ideal in

I. Preliminaries

In what follows, .a(H) will denote the algebra of bounded linear operators
on the separable, infinite dimensional Hilbert space H with .gg’(H), or simply
F, denoting the ideal of compact operators in L,e(H). All subspaces of H are
assumed to be closed and all projections are self-adjoint. For a projection P,
let P - =I-P.A nest is a family of projections which is linearly ordered by range
inclusion, contains 0 and 1, and is closed in the strong operator topology
(SOT). If is a nest and P , define P_ sup{ E " E < P ). Since
is (SOT) closed, P_ . Whenever P_ < P, the projection (P- P_) is
called an atom of the nest. is said to be continuous if it has no atoms and
purely atomic if its atoms sum strongly to the identity, that is Y’.ea(P P-)
"-1.
For a nest , the associated nest algebra is

Alga= {T.(H)" P-t TP O, all P

In [3], Arveson established the following distance formula for an arbitrary nest
algebra"

(1.1) d(T, Alg ) sup(liP" TPII" P ), T(H).

That for every T in La(H) there is a closest element of Alg is a conse-
quence of the fact that every nest algebra is closed in the weak operator
topology (WOT) and a standard argument involving the compactness, in the
(WOT), of the closed unit ball in Za(H).
The quasi-triangular algebra associated with a nest is defined by QT()
Alg + f(H). It was shown in [8] that QT() is a norm closed subalge-

bra of .L’(H).
Let X be a Banach space and X* its dual space. For a subset J of X, the

annihilator of J in X* will be denoted by J t. Similarly, if N is a subset of
X* then the preannihilator of N in X is denoted +/- N. The metric complement
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of a closed subspace J of X is denoted by j0 and is defined by

j0 { x x: Ilxll d(x, J)},

where d(x, J) denotes the distance of the element x from the subspace J.
A dosed subspace N of X* is said to be an L-summand of X* if there is a

projection E of X* onto N such that Ilfll II Efll / IIf- Efll for all f X*.
A subspace J of X is said to be an M-ideal in X if its annihilator J +/- is an
L-summand of X*. The subspace J is said to be an M-summand of X if there
is a subspace J’ such that J N J’ {0), J + J’ X, and

IIx + Yll max(llxll, IlYll )

whenever x J and y J’. Every M-summand is an M-ideal but not
conversely.
We shall need the following important result on best approximation in

M-ideals due to Holmes, Scranton, and Ward.

THEOREM 1.2 [12]. Let J be an M-ideal in X. For each x X\ J, the set
5"(x) ( y J: IIx Yll d(x, J)) algebraically spans J.

A class of operators on Hilbert space which will appear in the sequel is the
trace class, denoted (tc). O T (tc) provided both T X’(H) and the
eigenvalues of (T’T)1/2 are summable. If T (tc), then the number

tr(T) E (Tej, ej)
J

defines the trace of T, where { ej } is an orthonormal basis for H. This series
converges absolutely and its sum is independent of the choice of orthonormal
basis.
.W(H) may be identified with the dual space of (tc) and every trace class

operator T induces a bounded linear functional on .W(H), namely qr(A)
tr(AT) for all A .W(H).
We shall need the following results, the first due to Fall, Arveson, and

Muhly and the second a decomposition theorem due to Dixmier.

THEOREM 1.3 [8, APPENDIX]. If Alg is a nest algebra and T (tc) then
CT annihilates Alg # if and only if (1 P_)TP 0 for every P .
THEOREM 1.4 [7], [18]. Every element q of the dual space .W(H)* can be

represented uniquely by q o + qr, where o :)g’(H) +/- and kr is induced
by the operator T (tc). Moreooer, I111 I1’/’011 + IICTII.
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This last theorem appeared in 1950 and constitutes the first proof that
,Z/’(H) is an M-ideal in LV(H), though Dixmier, of course, did not use that
terminology.

2. Nest algebras and M-ideals

Throughout this section let be a nest of projections and let a’= Alg
be the associated nest algebra.

PROPOSITION 2.1. Suppose ’(H)* and has the decomposition o
+ r, as in Theorem 1.4. If 1, then o a’ 1 and r 1 as well.

Proof. Clearly, it is enough to show that ’r annihilates a’ if , does.
Suppose, to the contrary, that r 1. It follows from Theorem 1.3 that
(1 P_) TP 4:0 for some P . Let

A [(1 e_)rel* PT*(1 P_).

If E , then either E < P in which case E < P_ and (1 P_)E 0 or
E > P in which case (1 E)P 0. In any event, we have

( E)AE (1 E)VT*(1 P_)E 0

which implies that A .
To calculate tr(AT), let { ej } be an orthonormal basis for the range of P

and let { fk } be an orthonormal basis for the range of P 1. We have

tr(AT) E (ATej, ej) + E (ATf, fk)
j k

E <PT*(1 V_)Tej, ej) + E (PT*(1 V_)T/k, f)
j k

E (PT*(1 P_)rej, ej) (since Pfk 0 for all k)
J

Ell(1 P-)TPeII 2

J

Since (1 P_)TP 0 but (1 P_)TPfk 0 for all k, it follows that

(1 P_)TPej 0 for some j

and, hence, that tr(AT) 0.
Since T (tc), we also have A (tc). In particular, A ,gf’(H) so that

Co(A) 0. Therefore, (A) 0(A) + qr(A) tr(AT) 0 contradicting
the assumption that 1.
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The preceding proposition may be viewed as an operator analogue of the
abstract F. and M. Riesz Theorem with the nest algebra Alg playing the
role of the space of bounded analytic functions H.
By the standard theory of commutative C* algebras, the space L of

bounded measurable functions on the unit circle may be identified with the
space of continuous functions on its maximal ideal space ’. The dual space
(L)* may therefore be identified with the space of regular Borel measures on
t’. Among these measures is a lifting of Lebesgue measure, say m, defined by

1 2

where f is the continuous function on t’ identified with the L function f.
Every regular Borel measure tt on ’ has a decomposition/ ft "4- ft s, where
/.t is absolutely continuous and tt is singular with respect to m. Since ft can
be associated with a function in LI(cf4’) and I[itt -4- t,ll Ilftal[ / IItll, this
decomposition parallels the decomposition q q0 + r for q .’(H)* with
/.t and qr analogous to one another. The fact that L’(H) is a second dual
space (of (H)) while L is not is responsible for some major flaws in the
analogy.
The abstract version of the F. and M. Riesz Theorem (cf. [1], [10, II,

Theorem 7.6]) says that if ft annihilates the space H of bounded analytic
functions of mean value 0, then /.t also annihilates H and /xs annihilates
n0"
The F. and M. Riesz Theorem provides the key ingredient in Luecking’s

proof [15] that (H + C)/H is an M-ideal in L/H. Proposition 2.1 will
do the same in the proof of our main result which we now give.

THV.OEM 2.2. If is a nest of projections and = Alg , then (sO +
,,Yd’( H))/’ is an M-ideal in .W(H)/.

Proof. We must show that ((+ .gF)/z’) +/- is an L-summand in
(.’(H)/z’)*. For this, we first make the following standard identifications:

Note that we need the fact that + tr is norm closed. To prove the theorem
we will show that (’+ tr) +/- is an L-summand in +/-.
From Theorem 1.4, every q in .o’(H)*, and hence every q in so’-, can be

written as q q0 + qr where q0 +/- and r is induced by the operator
T (tc). Also, IIq’ll IIq’011 / IIrll. Define E q0 for every q .oq’(n)*.
Then II q’ll II Eqll / II q’ Eck II and it only remains to show that the image
of z’ - under E is exactly (sO+ Sr) ". For this, suppose

q q0 + qT
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Proposition 2.1 implies that 0 x as well. Since 0 +/- by definition
and since x ,gf" +/- (+ ,gf’) -, it follows that E, (+ ,gg’) x

whenever -.
To see that E maps +/- onto (+ e’) -, suppose that

Thus, and 0 both annihilate which implies that r does too. But
(tc)---6’(H)* so r is the zero functional on " if and only if T 0.
Therefore o E and E maps ,’ - onto (1+ I)+/-. This also shows
that E is a projection. The proof of the theorem is complete, m

Before proceeding, note that each equivalence class in (z’ + )ff)/z’ can be
represented by a compact operator and that the norm in .’(H)/ of an
equivalence class T + z is just d(T, ’). Also, note that

d (T +, (’+ Y")I,’ ) d( T, a+

For each operator T in L’(H) define the set

5a(T) ( K + z’: K Off and d(T Kz) d(T,

This is the set of equivalence classes in (z’+ ,gff)/e which are best approxi-
mants to T + s’. By Theorems 1.2 and 2.2, the set 5a(T) algebraically spans
(+ Ar)/ whenever T ze+ ff. To obtain two different best approxi-
mants inz/ off to T, select two compact operators K and K representing
different equivalence classes in 5a(T). As we have just noted, there are many
possible choices for K and K1. Then find operators A and A in zg’ such that

II Z- g- All d(Z- K, ’) and II Z- g axll d(T- K, 1).

By the choice of K and K, we see that A + K and A + K are two different
best approximants in ,+ to T. We have thus proved the following.

COROLLARY 2.3. For every operator T .(H) there exists an operator
B + such that 11 T- B 1[ d(T, d’+ Y’). Furthermore, if T
then the operator B is not unique.

3. Metric complements and quasi-triangularity

Let be any nest, let = Alg , and let M (+ ,;’)/s’. M is a
closed subspace of .’(H)/ and its metric complement is given by

M (T + .(H)/z’: d(T, ) d(T, ,x’+ Of’)}.
We will show that M is not an M-summand of .(H)/’.
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Our first result is an application of Arveson’s distance formula (1.1).

PROPOSITION 3.1. M is nowhere dense in .W(H)/s/.

Proof. Since M is a closed subset of La(H)/0, it is enough to show that
it contains no open balls. For this, notice first that if T + ’ M and , is a
scalar then

d ( hT, ) I’1 d( T, 0’) IXl d ( Z, + *f" ) d ( hT, ’+ oorg")
so that XT + M. Thus, by taking K to be any compact operator such
that d(K, )--1, it is easy to see that M contains no open ball in
.(H)/’ centered at the origin.

It remains to show that M contains no other open balls. Suppose T + ’M and choose i > 0 such that 0 < 8 < d(T, ’). By Arveson’s distance
formula (1.1) for nest algebras, d(T, ) sup{ liP +/- TPII: P ). Choose
E such that liE +/- TEll > d(T, ) 8/8. Then select a unit vector x in
H such that Ex x and lie TExll > d(T, )- /4. Set r liE TExll
and define the rank one operator S (,3/2r)(E +/- TEx (R) x). That is,

Sy ( 6(Y’ X) i EL TEx for all y H.2r !

Note that

IISII lIE" TExll Ilxll .
For any P , we have liP SPII < IISII &2. On the other hand,

liE SEll (/2r)llE " ZExll IIExll
Applying Arveson’s formula (1.1) we see that d((T + S) T, ) d(S, /)

8/2. This shows that the coset T + S + ’ is within distance 8/2 of T + ’in .’(H)/. The proof will be complete once we show that T + S + M.
Again by the distance formula (1.1),

d(T + S, o’) sup(liP (T + S)P" P )
>- liE (T + S)EII
>- liE (Z + S)Exll

(1 + /2r)llE" TExll
r + /2

> d(T, ) /4 + /2

d(r + s s, e’)
=d(T+S,M+S)
>d(T+S,+) sinceS
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Hence, d(T + S, /+ ,Y’) < d(T + S, ,’) which proves that T + S +
M. The proof of the proposition is complete.

For each operator T in (H), denote by 5a(T) the set of best approxi-
mants to T + ’ in (.+ .9f)/. Thus,

5a(T) (K + /: K and d(T- K, z’) d(T, + )}.
Note that if T += S + then 5a(T) 6a(S) and that if K + s’ 5a(T)
then

d(T- K, ) d(T, ..+ :Y’) d(T- K, ,.q’+ )

so that T-K+M.
PROPOSITION 3.2. For every T .’(H), the set 5a(T) has no interior

points relative to (/+ t’)//.

Proof If T s/+ , then (T) is a singleton and the result is clear.
Assume, then, that T + .9/r and suppose that 5"(T) has an interior point
K + relative to (sO+ .gf’)/.’. This implies that K + S + 6a(T)
whenever S sO+ and d(S, ) is sufficiently small. This, in turn, implies
that (T- K)- S + M for all such S. This last statement, however,
contradicts the previous proposition. B

The last two results would not be very interesting, of course, if M consisted
only of the zero coset (0 +) and if 5a(T) were empty. Since is a nest
algebra, however, we have already seen that 5"(T) is quite large whenever
T + 5U and hence that M is also a large set. The last proposition assures
us, in this case, that the dements of 5a(T) do not algebraically span (+
,9r)/ for a trivial reason.

In [12], Holmes, Scranton, and Ward state, without proof, that the metric
complements of M-summands have non-empty interior. Below, we provide a
proof of this claim.

PROPOSITION 3.3 [12]. Let X be a Banach space and let J c X be an
M-summand. Then the metric complement jo has non-empty interior.

Proof We may decompose X as X J + J’ where J N J’ (0} and

lie + fll max(llell, Ilfll )

whenever e J and f J’. Let x0 eo + fo with eo J and f0 J’. Then

d(xo, J) inf(ll(eo e) + foil" e J)
inf(max(lleo ell, Ilfoll }" e J ) Ilfol[-
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Thus,

jo ( e + f J + J’" II/11 Ilell ).

Now, choose xo e0 + f0 such that Ilfoll lie011 > > 0. Suppose x X
satisfies x e + f and IIx- xoll < /2. Then

IIx xoll max{lie e011, II/--All } < /2.

We have

Ilell < Ileoll / lie- eoll
< Ilfoll- / 8/2 Ilfoll- 8/2 Ilfoll- IIf-foil-< Ilfll.

Hence, x jo which shows that j0 contains an open ball. This proves the
proposition.

COROLLARY 3.4. Let 0’= Alg ya be a nest algebra. Then (+ :g’)/d’ is
not an M-summand in .(H)/d’.

Proof The result follows immediately from Propositions 3.1 and 3.3. I
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