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MODULES OF FINITE LENGTH AND CHOW GROUPS
OF SURFACES WITH RATIONAL DOUBLE POINTS

BY

V. SRINIVAS

Let R be a local ring, and let fir denote the category of R-modules of finite
length and finite projective dimension. The Grothendieck group K0(ffR) is
defined, as usual, to be the quotient #’/ where #" is the free abelian group
on isomorphism classes of objects of ffs, and is the subgroup of -generated by elements [M] [M’] [M"] corresponding to exact sequences

0 M’ M-o M" --*0

in cgs. Note that cg, and hence K0{Cg), depends only on the analytic
isomorphism class (i.e., the completion R) of R, since modules of finite length
are complete. Also, if R is regular, Ko(cgR) is just Z, since in K0(CgR) a
module of length 1 is equivalent to copies of the residue field.

If dim R 2, we say that R has a rational double point if the completion/
is isomorphic to Or, x where P X is the local ring of a rational double point
P on a surface X over an algebraically closed field k. Thus if k has
characteristic 0, R is isomorphic to k[[x, y, z]]/(f(x, y, z)) where f is one of
the following"

z n+l + xy (An)
7, 2 + xy 2 + Xn+l (Dn+2) n > 2
z 2 + y3 + x4 (E6)
z 2 + x3y + y3 (ET)
z:Z + x + y5 (Es)"

We can now state our main result.

THEOREM 1. Let R be a 2-dimensional (noetherian ) local ring with algebrai-
cally closed residue field k of characteristic O. Suppose that R has a rational
double point. Then Ko(Cl) Z.

We have the following geometric consequence. For a normal quasi-projec-
tive surface X, the Chow group of zero cycles FoKo(X) is defined to be the
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subgroup of the Grothendieck group of vector bundles K0(X) generated by
the classes of smooth points. From results of Collino [3], FoKo(X) can also be
described as the free abelian group on the smooth points of X modulo divisors
of functions on curves contained in the smooth locus. A singular point P on a
normal surface X is called a quotient singularity if the complete local ring e, x
is the ring of invariants of a finite group of k-linear automorphisms of
k[[x, y]], obtained from automorphisms of the vector space k.x k.y. We
assume below that k is algebraically dosed of characteristic 0.

THEOREM 2. Let X/k be a normal quasi-projectioe surface with only quotient
singularities, and let f: Y X be a resolution of singularities. Then the natural
map f*" Ko(X) Ko(Y) induces an isomorphism of Chow groups

FoKo( X) -’ FoKo(Y)

This generalizes a result of Levine [12], where the theorem is proved for
cyclic quotient singularities. Indeed, parts of our arguments are inspired by his
work. The proof of Theorem 2 is fairly easy, given Theorem 1. To prove
Theorem 1, we first make an easy reduction to the case k C. The proof then
falls naturally into 2 parts. The case of E8 is dealt with separately (this case is
already settled by Theorem 1 of [19, I]; for completeness we give a different
proof here). For the other cases, we prove (while proving Lemma (1.2)) a sort
of proper Artin approximation result for the ideal class group:

Let R be a semi-local ring, essentially of finite type over an algebraically
dosed field k of characteristic 0, with only rational double point singularities
which are not of type E8 (i.e., for m Spec R, either Rm is regular or has a
rational double point). Then there exists a semi-local ring S, 6tale and finite
over R, such that for any maximal ideal m of S such that S is not regular,
the natural map of ideal class groups CI(S) --, CI(Sm) is non-zero.

This is based on Levine’s ideas. Then using K-theory, we show:

PROPOSITION (1.4). Let R be the local ring of a rational double point P on a

surface X/C. Suppose that P is not of type E8, and R is a unique factorisation
domain. Then Ko(cR) Z.

This concludes the first part of the proof. Since K0(R) depends only on the
analytic isomorphism class of R it suffices to exhibit one algebraic local ring S
in each analytic isomorphism class which is a unique factorisation domain.
The second half of the proof is devoted to constructing such examples on
elliptic surfaces.

I wish to thank Mangala Nori for suggesting that elliptic surfaces with
maximal Picard number might provide the required examples, and for showing
me the example with E7 and E8 singular fibers. The other examples were



38 V. SRINIVAS

constructed along fines suggested by Madhav Nod. I also wish to thank him
for explaining Kodaira’s construction of elliptic surfaces with prescribed
singular fibers using monodromy. Finally, I thank Mohan Kumar for explain-
ing his ideas on modules of finite length and finite projective dimension, and
for stimulating discussions on this work.
The methods used to prove Theorem 1 are unsatisfactory for (at least) two

reasons. Firstly, the particular K-theoretic argument only works for unique
factorisation domains; presumably K0(ff) Z if R has any rational singular-
ity. Further, many of the steps do not readily generalize to higher dimensions,
even for Gorenstein quotient singularities. It seems reasonable in this direction
to expect the following: let R be a complete equicharacteristic normal Cohen
Macaulay local ring of dimension n with algebraically closed residue field k.
Suppose there exists a power series ring k[[ Xt,..., X,]] which is finite over R;
then K0(’s) Z.
Such a result would follow, at least up to torsion, if we had a transfer map

f,: Ko(Cgs) --, Ko(g) with reasonable properties whenever we have an inclu-
sion f: R--, S of normal Cohen Macaulay semi-local tings of the same
dimension with S finite over R. Indeed, under these conditions, there is a
"natural" map f*: K0(’s) Ko(s) (shown to me by Mohan Kumar)
induced by the functor ’ --, ffs:

M ---, Ext,(Ext,(M, S), S)

Another way of getting a map f*: K0(’R)---, Ko(Cgs) is to use a result of
Foxby [71 that Ko(s)= K0() where is the category of bounded
complexes of free S-modules with finite length homology. Now if M R,

is a free R-resolution, and E is the complex of free S-modules obtained by
tensoring with S (after omitting M), then f*: K0() ---, K0(’A) is given by
[M] [E] K0(A)= Ko(s). The two definitions suggested for f* agree
on the subgroup of K0(’) generated by classes R/(ft,..., fn) for regular
sequences ft,..., fn R, and hence agree in dimension 2; however in view of
the results of Dutta, Hochster and Maclaughlin [6], this is not dear to me in
general. We would expect the transfer map to satisfy f. o f*[M] d[M] for
all M R, where d deg f (i.e., the R-rank of S). We are unable to define
such a map (except in the trivial case when S is fiat). However such a transfer
exists on the level of 0-cycles for proper maps f: X Y such that f is
genetically finite and surjective, and such that f- (sg), the inverse image of
the singular locus, has codimension at least 2 (this follows from results of
Levine [14]).

Finally we make some remarks about characteristic p. Theorem 1 of [19]
shows that Ko() Z + (N-torsion) if R has a rational double point of a
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type which occurs on a rational surface (e.g., the ones which lift to characteris-
tic 0). Here p IN; perhaps an extension of the methods used here can give the
result without the torsion. In [4], Coombes and the author showed that
Ko(W) Z + (N-torsion) for R of the type

k[[x, y, zl]/(z’"- f(x, y)),

k algebraically closed of characteristic p > 0. In fact we can use a transfer
argument (in the "wrong" direction) to prove (without K-theory!):

THEOREM 3. Let R be a complete local ring of equicharacteristic p > 0 with
algebraically closed residue fieM k. Let S R[z]/(zp"- y) where y q R*.
Then the natural mapsf*: Ko(CR) --, Ko(Cgs), f.: Ko(Cs) --, Ko(CgR) have the
property that both composites f. o f* and f* f. are multiplication by p". In
particular, if

then

ro(’s) Z + (p"-torsion).

After the preparation of this manuscript, I received the preprint [21] of
Levine, proving results about K0(W) which imply Theorem 1 for arbitrary
quotient singularities. This is done by proving a new localisation theorem in
algebraic K-theory, generalizing a result of Quillen. The work in the present
paper was done independently of Levine’s, and the methods are quite differ-
ent.

1. Proof of Theorem I

We begin by making the reduction to the case k C. Indeed, we have:

LEMMA (1.1). Let (R, m) be a local ring essentially of finite type over an
algebraically closedfieM k, and let L be an extension of k. Let S (R (R)k L)m,
where m’= m(R (R)k L). Then Ko(C) Ko(Cgs) is injective.

Proof L is the direct limit of its finitely generated k-subalgebras, so that S
is the direct limit of its subrings of the form Ra,/= (R (R)k A) [l/f] where
A c L is a finite type k-algebra, and f (R (R)k A) m(R (R)k A). Consider
the map

R (R)k A (R (R)k A)/m(R (R)k A)--A.
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Clearly f has non-zero image, so that there exists a maximal ideal m’ of A not
containing this image. Then

so that f maps to a unit under

(p" R (R) A -)(R (R) A)/m’ = R.

This q: R (R) A R factors through R,,/; i.e., R Ra,/has a splitting. Let
a,/denote the category of finite R,,/-modules of finite projective dimension
annihilated by a power of m. Then

Ko(s) limKo(’,z).
A,f

Since K0(C) K0(a,/) is injective for all A, f, the lemma follows.

L.MMA (1.2). Let R be the semi-local ring ofafinite set ofpoints ( Px,..., P. }
on a quasi-projective surface X/C. Assume that each Pi is smooth, or is a
rational double point which is not of type Es. Then there exists a regular
semi-local ring S which is finite over R, and tale over the punctured spectrum
Spec R (P,..., P, ).

Proof. Let rex,..., m be the maximal ideals of R, and let / denote the
completion with respect to the radical m 3 3m. Then/ /m,, and
each Rm, is the ring of invariants of a finite group G c SL2(C) acting on
C[[x, y]] (see [5), for example). We work by induction on sup GI. The ideal
class group of Rm, is the Pontryagin dual of G’b G/[G, G]; since we have
excluded the case of E8, this is non-trivial whenever G is non-trivial, i.e.,
whenever P is singular (indeed, the G are all solvable). The formula for^ the
class group of Rm, i.e., the Picard group of the punctured spectrum of Rm,, is
immediate from the fact that G is the algebraic fundamental group of the
punctured spectrum (by construction), and the Kummer sequence [16, III,
Prop. 4.11].
The first step is to construct a semi-local ring T, 6tale over R, such that for

any maximal ideal m of T, the natural map of ideal class groups CI(T)
CI(Tm) is non-zero whenever Tm is not regular (equivalently, C1 Tm 0). If

are the maximal ideals of T,1Tt,..., 1Tt

C1 T Pic(Spec T ( m,..., m })
is a certain finite abelian group Gr. There is an 6tale Galois (finite) cover of
Spec T- (m,..., m’ } with group Gr (not unique) indeed, if

(r z/(o) z/(,),



SURFACES WITH RATIONAL DOUBLE POINTS

and L1,..., Lk are the corresponding line bundles, choose isomorphisms

La’ -- dgu, U SpecT- (ml,..., mr},

giving a sheaf of algebras

k ai-1

i.l jO

over U whose spectrum gives the required cover. The normalisation R of R
in the function field of this cover of U has the following property: each
maximal ideal of R is either regular or has a rational double point which is
not of type E8. Further, if rrt dominates mi in R, and m’ in T, and we write

/m, C[[x, y]]’, then (/)m = C[[x, y]]H where H is the kernel of the
natural composite G --* Gb= (C1Tm,)*-’* (C1 Tin,)*, where * denotes the
Pontryagin dual, i.e., H G. Thus sup GI has been reduced by passing to
R, and we are done by induction.

Thus, the whole point is to construct T. Now R tP(e en),x where we
may assume X is affine. We claim that, by shrinking X if necessary, we can
find a curve C c X such that:

(i) C passes through all the Pi, and is smooth away from the Pi.
(ii) C is smooth at P if P is smooth.
(iii) C is an analytically reducible Cartier divisor at P with a double

point, if P is singular.
(iv) If P has an A,,-singularity for some m, then C has an ordinary

double point at P.
Under the above conditions, we claim that each analyt branch of C at P is
smooth and represents a non-trivial dement of CI(Rm,) if P is singular.
Assuming the existence of C satisfying (i)-(iv), and the claim above, we
construct T as follows. Let D C be the normalisation. The generic projec-
tion r: X A will have the property that the induced map D A is 6tale
and finite over r(Px),..., r(Pn). Let Y X X A D be the fiber product. The
map D - C gives a section DO Y of Y D; if Q is an inverse image in Y
of Pi, and DO passes through Q, then [Do] 0 in C1(d92,.) if Q (i.e., Pi) is
singular. Let E A be the Galois closure of the morphism D A1; again
E A is 6tale and finite over or(P1),..., r(Pn). Let Z X X A E, let 9:
Z X be the projection, and let 9-1( P,..., Pn } (Q,..., Qs). Take
T d)Q Q,, z. The morphism Z - E has a section E0 induced by D0, at
least in a neighbourhood of the inverse images of or(P:),..., r(P,). The
translates of E0 under the Galois group now give sections through all the Q.
Further, if g Gal(E/Ax) and Q g(Eo) is a singular point of Z, then
g(Eo) 0 in Cl(tPt,, z).

Thus, we have only to construct C and verify that the analytic branches of
C are non-trivial in the class groups of the non-regular points. Suppose we can
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TABLE

Type Analytic equation f
Regular regular parameter
,A Z + xy z

D+2 (m > 2) z xy xm+ y (if m is odd)
y- xm/2(1 + x)

(if m is even)

E6 z2__ y3 + x4 y

E7 Z2 xay + y3 y X

find f r?t such that/m,/(fi) has multiplisity 2 and is analytically reduci-
), thenble. Then there exists N such that if g Rm, and g-= f (mod N,

/,/(g) also has multiplicity 2 and is reducible. Since R (R,,/frt,) is
surjective by the Chinese Remainder Theorem, we can find f R such that
f f (rood ,). Similarly if P is a rational double point of type A,, for
some m, and f is chosen to have an ordinary double point, we can find a
sufficiently close approximation f R which will also have an ordinary
double point at P (in addition to prescribed behaviour elsewhere). We choose
the f as in Table I. Thus, we can find f R such that f N mi, f Rm,
is a regular parameter if Rr, is regular, Rm,/(f) has multiplicity 2 and is
reducible if R., is not regular, and finally Rm,/(f)
has an Am-singularity for some m. By shrinking X if necessary, we can take C
to be the divisor of zeroes of f; clearly C satisfies (i)-(iv).
Now let P be a singular point. Since C is analytically reducible at P with a

double point, the two branches of C are smooth (but perhaps tangent). Let
V Spec R, be the minimal resolution of singularities, Eil Eim the
exceptional curves. Then each Ej is a smooth rational curve, E ’-2, and
the total transform of P in V is the fundamental cycle Z,ynyE, where ny are
certain (positive) multiplicities, according to Table II (see [5]).

Let C’, C,". be the two components of the strict transform of C in V. We
claim C[, meets the exceptional divisor at 1 point, lying on exactly one Ej;
further this Ej occurs with multiplicity 1 in the fundamental cycle, and the
intersection is transverse. An easy computation (see appendix) shows that the
corresponding branch of C at Pi is non-trivial in CI(Rm,), at least in the cases
Din, E6, g7; the other branch of C is also non-trivial in CI(Rm,) since [C] 0
(C is Cartier by choice). To check the claim about C[, we look at the tangent
map (i.e., derivative) of V,. --, Spec Rm,; this must have rank > 1 at the closed
point Q of Ci. In algebraic terms, if m0 is the maximal ideal of d)o, r,, and
I c tVQ, g, the ideal of C/, J m I c/m, the ideal of the branch of C,
then we have a diagram

too/m20 (mo/m + I) --- C
m,/m2 (m,/m/2 + J) --- C
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TABLE II

Type Dual Graph Fundamental Cycle

Am Ei E2 Era_ E El + + g

points

Dm(m > 4) / Era_2 E1
E

E7

E E2 E3 E4 E5

o
EIE E Ea EsE6

E7

E + 2E + +2Era_ + Era_ + E

E + 2E + 3E + 2E4 + E5 + 2E

2E + 3E2+4E + 3E4+2E4+2E5+ E6+2E

where mo/m + I, m/m2 + J are 1-dimensional since C/ and its image are
smooth. Thus m m, i.e., exactly one component Eij of the exceptional
divisor, occurring with multiplicity 1 in the fundamental cycle, passes through
Q; further G and Ej meet transversally at Q, as m/m2 mo/m + 1. This
argument also suffices for .41 and A2 since C has an ordinary double point. If
P is of type Am, rn 3, the tangent cone to X at P is a union of 2 planes, so
that the blow up of Spec/m, at P has 2 exceptional curves which are smooth
and rational, and meet at a single point which is an A,_ 2 singularity of the
surface. Since C has distinct tangents, both components C[, C/’ of the strict
transform cannot pass through the A,,_ 2 -singularity, so that at least one of
them (say, C’) meets an end component of the fundamental cycle in the
resolution V/. This component then gives a generator of C)(/m,); since C is
Cartier, the other component also gives a generator of CI(Rm,) Z/(m + 1).
This finishes the proof of the lemma.

Before stating the next lemma, we need to recall some facts from algebraic
K-theory; proof for statements without giving a reference can be found in
Quillen [18]. For any noetherian ring R, consider the statement that the
complex

0 K,(R)--* (D(spR)0 K,(k()) --*

((sp),Ko(k()) 0

is exact for each i, where (Sp R)j denotes the set of prime ideals of height j,
and k() is the residue field of . The maps K(R) --, K(k()) for
ht 0 are the natural ones, while the other maps come from boundary



44 V. SRINIVAS

maps in certain localisation sequences. Gersten conjectured that this complex
is exact for any regular local ring; Quillen proved it for any regular semi-local
ring which is essentially of finite type over a field. Let X be a Noetherian
regular scheme, such that d)e, x satisfies Gersten’s conjecture for every P X.
Let , x denote the sheaf for the Zariski topology associated to the presheaf

Then there is a flasque resolution

-’ 0

where Xj is the set of codimension j points of X, and for x X, (ix).K.(k(x))
is the direct image on X of the constant sheaf K.(k(x)) on the closure of x. In
particular, if dim X 2 and X is irreducible, we have a resolution

0 3U2, x i.K2(k(X)) L (R)z,x (iz).k(z)* L ex (i,).Z 0.

Here K2(k(X)) k(X)* k(X)*/(((a, 1 a}la k(X)* (1}}) by a
result of Matsumoto and T is the sum of tame symbols T (see [8]) defined by

( a b } (- 1)o(a)o(b)a
o(b)

bT,-(g5

where v is the valuation of k(X)* corresponding to z X1, and

p" * -* k(z)*

is the natural map. The map 0 is the sum of the divisor maps

We have a subgroup zxlk* c ,.xk(z)* contained in the kernel of 8.
This gives a map, x’ k* Div(X) (R)z k* + H( X, 0’2, x)

where Div(X) is the group of divisors (the free abelian group on X1). By
considering dements of the form T( a, f } for a k*, f k(X)*, we see that
there is an induced map

Pie X (R)z k* HX(X, 2, x).
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LEMMA (1.3). Let R be the local ring of a rational double point on a surface
X/C, and let f: Y Spec R be the minimal resolution of singularities. Suppose
R is not of type Es; let El,..., E be the exceptional curves. Then the natural
composite map

C*[E,] - Pic Y (R)z C* - H(Y, ,2,Y)

is surjective.

Proof Let S D R be the semi-local ring constructed in Lemma (1.2). Let Z
be a resolution of singularities of Y X s ecR SpecS. Since S is r semi-
local, Hi(S, r’2, s) 0 by the result of Quil[en. Since HI(Z, g2) is H of the
complex

0 K2(F ) zC(z)* ,z: Z 0

where F C(Z) is the function field, and the graph of the exceptional divisor
of g: Z Spec S has no loops (this morphism is a composition of blowings
up at smooth points), an easy argument shows that if E,..., E, are the
exceptional curves of g, then the composite

E,]C* Pic Z (R)z C* HI(Z, g’2, z)

is surjective (in fact it is an isomorphism). The morphism f: Z --, Y is proper,
and finite away from a finite set of points of Y. Hence there are homomor-
phisms f*" HI(Y, r2, y) HI(Z, .)r2, z) and f." nX(z, 6f2, z) --HI(Y, ’2, r), such that f. o f*= multiplication by (deg f). We also have a
commutative diagram

Pic Z (R)z C*-"HI-(Z,
.r. I

Pic Y (R)z C*---* H(Y, X’2, r)
where f. on the left is the transfer map Pic Z Pic Y. Thus, the cokemel of

E ]C* - HI(Y, X’E, r)

is annihilated by n deg f. So to finish the proof, it suffices to show that
HI(Y, g’2, Y) is divisible.
From results of Mercurjev-Suslin [15] and Bloch-Ogus [2], we have an

isomorphism

,9g’2, Y (R) Z/N -- ,’(tv )
where f’,(/t) is the Zariski sheaf associated to the presheaf U .--, Ht(U, l.t).
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Further, there is a spectral sequence (which we can think of as the Leray
spectral sequence associated to the morphism of sites Ya ’-’ Yzar)"

g,q HP(Y, (lvr)) :=*, nfft+q(Y,

This spectral sequence has E’q 0 if p > q (since o,r has a flasque
resolution of length < q analogous to the Gersten-Quillen resolution for dq)
and if q > 2 (since .,’9 0 if q > 2, as dim Y 2). Thus we get an isomor-
phism

H (Y, Z/N) -- Hx(Y, __
H (Y,

As in Bloch [1], Chapter V, one checks that there is an exact sequence

0 H(Y, 9ff2, y) @ Z/N --* Hi(y, 9F2,y (R) Z/N) N CH2(Y) O.

So it suffices to prove H(Y, gv2) 0. Let W be a smooth projective surface
containing Y, and let W0 be the corresponding singular.surface. For any aftine
neighbourhood U of the singular point of W0, let U c W be the inverse
image. Since 6tale cohomology commutes with filtered inverse limits of schemes
(Milne [16], Chapter III, Lemma (1.6))

H(Y, gv2) = limH(O,

But H(O,/xv2) -- H(O,.Z/N) where H denotes singular cohomology. So
it suffices to check H(U,Z/N)--0 for U as above. Now H(U, gv2) ---H(U, Z/N).= 0 since U is affine of dimension 2 (Milne [16], Ch. VI, Thm
(7.2)). If f: U ---, U then the Leray spectral sequence gives an exact sequence

--* H(U,Z/N) H(I,Z/N) r(u, Rf,Z/N)

Since Raf,Z/N---0, as the exceptional divisor E has cohomological dimen-
sion 2, we see that Ban(U, Z/N) O.

PROPOSITION (1.4). Let R be the local ring of a rational double point on

surface X/C. Suppose R does not have an Es-singularity, and R is a unique
factorisation domain. Then Ko(R) Z.

Proof This is similar to arguments in [19, I] and [4]. Let

A coker(T: K2(C(Y)) C(95)*),

where 3 runs over the height 1 primes of R, and T is the sum of the
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corresponding tame symbols. There is a natural map (at least when R is a
UFD) xI,: A Ko(CCR), defined as follows:

If g R , , its image in R/ and fR, then let

p(g) [R/(f, g)l Ko(();

extending by additivity gives a map q: C()* - Ko(CCR). To check that
this descends to A, we have to show q0(T( f, g )) 0 for all f, g C(X)*. We
easily reduce to two cases: f, g distinct prime dements of R; and f prime, g a
unit in R. If f, g are primes,

1T((f, g}) +/ C(fR)* C(gR)* c C(!)*.

(where an overbar denotes the image in the appropriate residue field). Thus

p(r(f, g}) -[R/(f, g)] + [R/(f, g)l o.

Similarly if g R* and f is prime,

1 e C(/R)* c ,C()*.T(ff, g}) g

Hence qo(T( f, g }) -[R/(f, g)] 0 since (f, g) R. Thus there is a well
defined map A K0(’). By .a result of Hochster (proved independently by
Mohan Kumar--see [4]) K0(C) is generated by the classes [R/(f, g)] for all
regular sequences f, g R. Hence g" A --, Ko(CCR) is surjective.
We now use Lemma (1.3) to show that A Z. Let Y- SpecR be a

resolution of singularities. Consider the complexes (et), (fl), (3,) defined by

We have an exact sequence 0 (fl) (a) (,) 0, and Hi(V) A fits
into a sequence

H(fl) ---) H(a) ---)A ---) H2(fl) H2(a).

We claim H2(a) 0, Hi(a) Hi(Y, t2, r). This is clear because (a) is the
complex of global sections associated to the Gersten-Quillen resolution of
9F2, r. Next, H2(fl) Z. For, a zero cycle of degree 0 on Y is a sum of zero
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cycles 8i, each of which has degree 0 and is supported on exactly one
exceptional curve. Since the exceptional curves are smooth rational curves,
every such 8 is the divisor of a rational function on the corresponding
exceptional curve. Finally, Hl(fl) C* [Ei] where E are the exceptional
curves, since the exceptional divisor contains no loops. But then Lemma (1.3)
says precisely that Ht(fl)--* Hi(y). Hence A--Z, and the proposition is
proved.

2. Construction of rational double points which are unique
factorisation domains

Our examples will be constructed on elliptic surfaces. We begin by recalling
some results of Kodaira. Let 9 denote the upper half plane (Im z > 0} c C.
The group PSL2(Z) acts on 9 via Mobius transformations given by the
formula

az+bt(z) cz + d foro a ](md-I-1)’c
We have the universal elliptic surface or: X --, defined by X ( C)/Z* 2

where the action of Z* 2 is given by

(m, n). (, z) (z, z + mz + n).

The group SL2(Z) acts on b C by the formula

[a bd](,r,z)=(a’r+b z)c c’r+.d’ c’r+d

One checks that since ad- bc 1, this descends to an action on X, so that
X t is SL2(Z)-equivariant. Let j: 9 C be the quotient map modulo
PSL2(Z) (the modular function); then one knows that

r-X(hl) r-X(h2) , j(hl) j(h2).

We can adjoin cusps to 9 (in bijection with the points of P), given by the
rational points on the real axis together with 0, and extend the PSL2(Z)
action via its usual action in P. If * U (Cusps), we can extend j to a
map * P, such that for suitable local coordinates near the cusps, j is
holomorphic. If we put the elliptic curve X C/(Z + Z) in Weierstrass
form

y2 4x g2x g3,
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with

g2 60
1

(m,n)*(O,O) (m" + n)4’
g3 140

1

(m,n).(o,o) (m’r + n)6’

and h g23 27932, then we take

With this normalisation, j(i)= 1, j(to)= 0where f-Z-l, o exp(2ri/3).
The isotropy groups of i, o in PSL2(Z) are isomorphic to Z/2 and Z/3
respectively, while the isotropy group of o is infinite cyclic (the image of the
group of upper triangular matrices in SL2(Z)). Let

9 b* -j-l(0,1, oo}, X r-l(b).

Then j: b o __, px (0,1, oo ) is a covering space with group PSL2(Z).
Consider a curve C together with a (non-constant) morphism f: C P.

Let A be the universal cover of C’= C- f-{O, 1, oo}. Since A is simply
connected, we have a diagram of coveting spaces

A ------, b

C’ _.p1 {0,1, Or3)

Further we have a map of covering groups, i.e., a projective representation
Po: q(C’) PSL2(Z). Since q(C’) is a free group, we can lift this projective
representation to a representation

p: r(C’) SL2(Z);

the choices of such lifts are in bijection with characters of order 2 of rx(C’)
(since ( + 1) c SL2(Z) is the center) i.e., with dements of H(C’,Z/2) (from
now onwards, cohomology will be singular cohomology unless specified other-
wise). A lifting p as above gives a q(C’) action on X making r: X 3
q(C’)-equivariant. Hence we have an action of q(C’) on the fiber product
yO Xo o A such that yO A is a q(C’)-map. Since rl(C’) acts freely
on A, it also acts freely on y0, and we obtain a quotient elliptic fibration
Z C’. By construction Z is a smooth surface such that:

(i) All fibers of p are smooth elliptic curves with j-invariant : 0,1.
(ii) tp has a section.
(iii) The map C’ pX_ (0,1, o} given by x j(p-X(x)) is just f:

C’ _., p1 (0,1, 00).



50 v. SRINIVAS

Kodaira shows [11, pp. 1330] that the above construction yields all elliptic
surfaces over C’ with the above properties. Further, he proves that we can
compactify Z to a smooth surface Z in a unique way such that q extends to
a morphism Z- P which is relatively minimal, and he determines the
"singular" fibers in terms of the local monodromy, i.e., the representation p. If
P C C’, the local monodromy is determined up to sign by the projective
representation P0, i.e., the map f. Thus if e, is the ramification index of f at
P, we can describe Kodaira’s classification of the possible singular fibers Ze as
follows:
(i)j(P)=0, ep--0 (mod3), or j(P)=I, ep--0 (mod2). Then Ze is

either smooth elliptic, or of type I.
(ii)j(P) 0, ep 1 (rood 3). Then Zp is either of type II (rational curve

with a cusp) or type IV*.
(iii)j(P) 0, ep -= 2 (mod 3). Then Z is either of type IV (three smooth

rational curves meeting at a point) or type II*.
(iv)j(P) 1, e 1 (rood 2). Then Zp is of type III (two smooth rational

curves meeting at a point and tangent there) or type III*.
(v)j(P) . Then if n ep, Zp is of type I (an n-sided polygon; all

components are smooth rational curves occurring with multiplicity 1) or
type I*.
The singular fibers of types II*, III*, IV*, I* (n >_ 0) consist of a tree of

smooth rational curves with only normal crossings, represented by the follow-
ing graphs (the integer adjacent to an edge gives the multiplicity of the
component in the singular fiber).

Kodaira shows that Z-(multiple components) is a group scheme over C
which is the Neron model of the generic fiber Z over the function field C(r/)
of C; in particular the torsion group (PicZn)tors (Z,)tor is a subgroup of
Z,-(multiple components) for any P C. The group structure on the singular
fiber is as follows:

(i) I" C )< Z/2 )< Z/2
(ii) I,: C* )< Z/n
(iii) I*" C)< Z/4orC Z/E)< Z/2
(iv) II, II*: C
(v) III, III*: C X Z/2
(vi) IV, IV*: C )< Z/3.
The connection with rational double points rests on the following observa-

tion. Suppose Ze is of one of the type I, (n >_ 2), I* (n >_ 0), II*,III* or IV*.
Let F be any component of Z, of multiplicity 1, and write Ze F + F2 as
divisors. Then F2 is the fundamental cycle of a rational double point, and
every rational double point occurs in this way. The correspondence is I
(n >_ 2) A_x, I* (n 0) D+4, II* E8, III* ET, IV* -* E6.

Suppose Z C has the property that PicZn 0. Then the Neron Severi
group NS(Z) is generated by the 0-section, and classes of components of the
singular fibers. Hence for any P such that Ze is of one of the above types, if
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FIG. A

we take F to be the component meeting the 0-section, and if El,..., E, are
the components of F2, then the image of xI,: NS(Z) --, Z*" given by intersec-
tion with the various Ei, is generated by ,the vectors 9(Ei). By a standard
argument, this is equivalent to the statement that the rational double point
obtained by contracting F2 is a UFD (see appendix). Thus, we need a method
of constructing elliptic surfaces Z --, C with PicZ 0.

For any singular fiber F, let v(F) be one less than the number of
components of F; thus the components of F contribute ,(F) to the rank of
the Neron Severi group NS(Z). We will mainly consider elliptic surfaces
Z -, C such that

(,) rankNS(Z) hZ’z(Z) 2 + E v(F).
singular
fibers

Thus NS(Z) (R) Q has a basis consisting of the zero section and components
of the singular fibers; equivalently PicZ, is torsion. We use the following
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result of Mangala Nori [17]"

THEOREM. Let p: Z C be an elliptic fibration as above, and F: C -> p1
the morphism induced by the j-function. Then Z satisfies (.) iff the following
conditions hold:

(i) C f-l(0,1, o) - P1 (0,1, o) is unramified
(ii) The ramification index of any point lying over 0 or 1 is bounded

respectively by 3 or 2.
(iii) The fibers over 0 are either smooth, or of types II*, IV*
(iv) The fibers over I are smooth or of type III*

(In particular there is no restriction on the fiber over

For our purposes, it suffices to know that a surface satisfying (i)-(iv) also
satisfies (,). For completeness, we give the proof.

Suppose deg f n, and there are r, s and singular fibers of types II*,
III*, and IV* respectively. Further suppose the fibers over o are of types
I el,..., Iea, .I’e,,+1’ Iea/’* The ramification of f: C PX must then be as
follows: f-(0) consists of unramified points, r points with ramification
index 2, and (n 2r)/3 points with ramification index 3; f-(1) consists
of s unramified points and (n- s)/2 points with double ramification; and
f-X(oo) consists of a + b points with ramification indices e,..., Ca+ b. From
the Riemann-Hurwitz formula the genus g of C (which equals the irregularity
q of Z, since Z - C is a non-constant elliptic family) satisfies

2g-2= -2n+r+ (n-2r-t) n-s
3 2+ 2 + (ei- 1)

n r 2t s
6 3 3 2 (a+b).

Since Kz2 0, Noether’s formula yields C2(Z) 12X(tVz). But

C2(Z) E C2(F) (for an elliptic surface)
singular
fibers

=10r+9s+8t+ Y’.ei+ , (ei+6)
i<a i>a

=10r+9s+8t+n+6b.
If pg is the geometric genus of Z,

C2(Z ) =2-4q+2pg
5

h’x= 2g + -C2(Z)
n r 2t

=2q
6 3 3

+hx’x=2X(tpz)-2g+hl’x (sinceq=g),

5(a+b) + -(10r+9s+8t+n+6b)
=2+ 8r+7s+6t+n+4b-a
=2+ ,(F),asdesired.

singular
fibers
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We also note here that for a surface Z satisfying (i)-(iv), the parity of the
number b of I,* fibers at o0 is determined by the formula for C2(Z), and the
requirement that 12[ C2. In fact this is the only restriction on the fibers at o in
the following sense: given any non-negative number b of the correct parity
and at most equal to the cardinality of f-1(o), we can find a (unique) surface
Z - C with I,* fibers at any prescribed b points of f-1(o), such that Z also
has the prescribed fibers over 0 and 1, i.e., Z satifies (.). Indeed, the various
Z’s (for the distinct choices of b and of b points of f-1((o)) can be obtained
from any one by twisting the representation p: rl(C’) SLE(Z) by a suitable
element of HI(C’, Z/2).
We illustrate this in the first example below, shown to me by Mangala Nori.

Let f: C p1 be the identity map, i.e., C -- .,/PSL.(Z). Then the possible
singular fibers are (i) type IV* or type II over 0 (ii) type III* or type III over 1
(iii) type I’ or type I1 over o. First choose an arbitrary lift

p. r (p1 (0, 1, o ) ) --, SL2 (Z)

of the natural surjection

#0" rl (p1 (0,1, o }) -* PSL2(Z).

Then twist by a character of rrx which is non-trivial over 0 iff we have a type II
fiber, and which is non-trivial over 1 iff we have a type III fiber (these
requirements unique specify a character of rx(Px- (0,1, o)) which is the
free group on 2 generators). Thus we can find a unique surface Z --, C with a
IV* and a III* fiber. Parity reasons force the fiber over o to be of type I?.
Since the torsion subgroups of the III* and IV* fibers are Z/2 and Z/3
respectively, PicZ is torsion free, i.e. PicZ 0. Hence we get examples of
E6, E7 and D5 singularities which are UFD’s.
For n >_ 3, let F(n)= ker(PSL2(Z) PSL2(Z/n)), and let G c PSL2(Z)

be the inverse image of the cyclic subgroup (Z/3) c PSLE(Z/n) generated by

Take C f}*/G X(n)/Z/3, where X(n) */F(n) is the modular curve.
X(n) has (1/n)IPSLE(Z/n)I points in the fiber over o p1, since the
stabilizer of one of the points (the image of o0 f)*) is the group of upper
triangular matrices, which has order n (note that X(n) p1 is Galois with
group PSLE(Z/n)). If n I-IpT’ is the prime factorisation of n, then

SL,_ YI (Z/pT’)

by the Chinese Remainder theorem, since SLE(Z/pa) is generated by elemen-
tary matrices. Hence

1 1 1- PSL2(Z/n ) 1-I p,--i SLE(Z/P ) [.
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Clearly ker (SL2(Z/pa+l) - SL2(Z/pa)) has order p3 if a >_ 1, so that

ISLE(Z/p,,)[ 1)(p p) pa-E(p2 1)

Hence

11 IPSZ(Z/n)[-- - Hp-(’-(p,- 1) > 4 if n > 3n

(and > 12 if n > 5). Thus if n > 3, f-t(oo) has cardinality at least 2 (at least
4, if n > 5). Further, G and I’(n) have the same intersection in PSL2(Z) with
the upper triangular group. Hence if P C is the image of oo 9 *, ee n

eO where Q is the image of oo 9 * in X(n). Thus if n > 3, we can find a
surface Z C satisfying (,) with an I* fiber over o0, and at least one IV*
fiber over 0 (this is because the group Z/3 in PSL2(Z/n ) is precisely the
stabilizer of one of the points over 0 in X(n)). Since the torsion subgroup of
the IV* and I* fibers have relatively prime orders, this gives examples of D/4

singularities which are UFD’s, for n > 3. If n > 5, we can similarly find
Z C satisfying (,) with an I fiber at P and an I’ fiber (for some b) at
some other point of F-t(oo). Again the torsion subgroups of the IV* and
fibers have relatively prime order, so that the resulting A_t singularity
(n > 5) is a UFD. The only remaining cases are D4, D6, At, A 2, A 3 (corre-
sponding to I ’,I ’, 12,13,14).
We analyse the cases n 3, 4 of the above construction a little more closely.

As computed above, [PSL2(Z/3)[ 12, and the ramification picture for
X(3) pX is as follows" each fiber over 0, oo consists of 4 points with
ramification index 3, and the fiber over 1 has 6 points with ramification index
2. If C X(3)/Z/3 where Z/3 acts via

we see that there are exactly two fixed points for the Z/3 action, one each over
0, oo (one can check this directly in terms of the Z/3 action on the cosets of
stabilizers, or by Riemann-Hurwitz, since X(3)---p1). Thus the surfaces
Z --* C satisfying (,) have a IV* fiber over 0, and two singular fibers over oo,
of types I1 and I3, or of types I’ and I’ (this is from parity); all other fibers
are smooth elliptic. Let R C be the point of f-(0) with IV* fiber, and let
P, Q be the points at oo with the 13 and I (or I and I’) fibers respectively.
Consider the double cover D - C branched at Q, R. If Z - C has the I and
13 fibers, - D the minimal resolution of Z X c D, then has 4 singular
fibers of types IV, 13,13, I 2. To get a surface satisfying (,), we can twist by a
character of rrl(D) non-trivial on the loop about the inverse image of R, and
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on the loop about a suitable point at oo. Thus we can get surfaces with 4 fibers
of types II*, I3, I3, I and of type II*, I3,3,2.I*I These yield examples of
D6, "/11, 2 singularities which are UFD’s (the II* fiber has no torsion, so

PicZ 0 here).
If n 4, X(4) has 6 points over p1, so that C has at least 2 points

over oo, one of which is the point P with e, 4. Hence we can find Z - C
with 14 fiber over oo and a IV* fiber, whose torsion subgroups have relatively
prime order. This gives an A singularity which is a UFD.
The D4 singularity does not occur on surfaces satisfying (.), so we need a

special construction. This example is due to Madhav Nori. Let E be the
elliptic curve with automorphism group Z/6, i.e., E C/Z + Zoo, o e 2ri/3

a primitive cube root of unity. Let 0: E E be the automorphism induced
by multiplication by (-t) on C. Let X (E)< E)/(Z/6) where the genera-
tor of Z/6 acts by (el, e2) (o(el), o5(e2)). Then X is singular; let Y - X
be the minimal resolution, so that f: Y - P El(Z/6) (induced by projec-
tion) is a minimal elliptic surface. The only section of this map f is the
0-section, since there are no maps E E equivariant with respect to the two
Z/6 actions (where the generators act respectively as o and as 0 5) except the
map E (0} c E. Hence the genetic fiber Y satisfies Pic Y 0. If P E is
a point of order 2, its isotropy group is Z/2. Thus if Q Pt is the image, the
fiber YQ is an I’ fiber (indeed the fiber over Q of x is a smooth rational curve
passing through 4 ordinary double points of the surface). In the usual way this
yields a D4 singularity which is a UFD.

3. Theorem I for Es-singularities

Here we directly show that

K0(ffR) Z for R C[x, y, z](x,y,)/(z 2 + X "b yS).

As in the proof of Prop. (1.4) in 1, since R is a UFD, we have only to prove
the following claim" if Y - Spec R is the minimal resolution of singularities,
E,..., E8 the exceptional curves, then

C*[E,] HI(Y,

is surjective. Let X be the aftine surface in A defined by 2
2 q- X -[- y5 0,

and let Z X be a projective surface such that Z- X consists of smooth
points. If r" Z is a resolution of singularities, then the map on Chow
groups

or*" FoKo( Z) FoKo()

is an isomorphism--in fact FoKo(Z) -Z since Z- X consist only of ra-
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tional curves, and FoKo(X) 0 (C[x, y, g]/(g2-] x3-b yS) is the ring of
invariants for the action of the binary icosahedral group of order 120 on the
polynomial ring C[u, v]--see [5]). Now is a smooth rational surface (since a
unirational surface over C is rational [10, V (6.2.1)]), so that

HX(, ’2, 2) =- Pic (R)z C*

(see Bloch [1], Chapter VII, Prop. (7.9)). The Leray spectral sequence for rr
gives

By Bloch’s formula (see Quillen [18], for example)

FoKo(, ),

while H2(Z, "9/’2, z) H2(Z, /’,S’2, 2) FoKo(Z) by a result of Collino [3]
(note that ’2, z - r./*r2, 2 induces an isomorphism on HE since the kernel
and cokernel are supported at a point). Hence

H)- ( Z, r,:)i2, ) -- H) (,
is an isomorphism, and

Pic (R) C* r(z, e) Hx(Y, f’2, Y)

C* C*is onto. This map clearly factors through Pic Y (R) z [E] (since R is
a UFD).

Remark. One can also use the fact that R is the ring of invariants of
C[u, v](u, o) for an action of the binary icosahedral group to prove Lemma
(1.3) directly for R. The argument given here uses the divisibility of FoKo(X)
instead of the Mercurjev-Suslin theorem.

4. Proofs of Theorems 2 and 3

Let X/k be a normal quasi-projective surface over an algebraically closed
field k of characteristic 0, and suppose X has only quotient singularities. Let
R be the semi-local ring of the singular locus. The dualising module tR of R
gives a torsion element of the ideal class group CI(R) (indeed CI(R) is finite).
Suppose [oR] has order n; then there is an 6tale Z/n-cover of U Spec R-
(closed points) corresponding to a choice of an isomorphism 0:n d9v. Let S
be the integral closure of R in the function field of this cover; then S has
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Gorenstein quotient singularities, i.e., rational double points (see [20], p. 140).
Let Yo be the normalisation of X in the quotient field of S, and let Y Y0 be
a resolution of the singularities which map to smooth points of X. Then
f: Y X is proper, and finite over a neighbourhood V c X of the singular
locus Xi. By Collino’s results [3] there is a transfer map f.: FoKo(Y) -FoKo(X) such that f. f* is multiplication by n. We now use:

LEM_Mh (4.1). Let Z be a normal quasi-projective surface, P Z a singular
point, r: Y Z a resolution of the singularity at P. Then

ker( FoKo (Z) FoKo ( Y )) c image(K0(C) FoKo ( Z ))

where R 9e, z (and Ko(cR) FoKo(Z) is the natural map obtained by
treating a module offinite length andfinite projective dimension as a skyscraper
sheaf).

From this lemma, if Y’ Y is any resolution of singularities, .FoKo(Y) -FoKo(Y’) is bijective since Y has only rational double points. If X X is the
minimal resolution, we can find a resolution Y’ Y which dominates X.
Hence

ker(FoKo(X) -, FoKo( ))

is n-torsion. However this kernel is divisible by Lemma 11 of [13]. This proves
Theorem 2. Lemma (4.1) is proved in [19, I]; we reproduce the proof here for
completeness.

Proof of Lemma (4.1). Let i be a zero cycle in the smooth locus of Z such
that r*[8]--0 in FoKo(Y). Then we can find curves C1,..., Cn on Z and
rational functions fx,..., f, such that:

(i) C - { P } does not meet the singular locus of Z.
(ii) If Ci is the strict transform of C in Y, then

as cycles, where 0 is a cycle of degree 0 supported on the exceptional
divisor over P Z.

Write (f/)c,-- + n(P) where P supp 8. Then 8 Eii as cycles, and
En 0. Clearly it suffices to show that each 8 lies in the image of K0(C).
By Bertini’s theorem we can find Weil divisors D c Z such that:

(i) D- { P } does not meet the singular locus.
(ii) D + C is a reduced Cartier divisor on Z.

Let g be the rational function on Ci + Di which restricts to fi on C and to the
constant function 1 on D. Let S { P }U (singular locus of C + D), and let
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R be the semi-local ring of S on C + Di. Write gi h i/k where h i, k - R
are non-zero divisors (clearly gi lies in the total quotient ring of Ri). If
Ei (Ci + Di) Si then

[Ri/(h,)] + (hi),, [Ri/(ki)] /

both represent 0 in Pic(C + Di) and hence in FoKo(Z). But then in FoKo(Z)
we have

0 [Ri/(h,) + (hi)e,- [R,/(ki) -(ki)E,
[3i1 + [R/(%, hi) [R/(%, ki)

where % generates the (principal) ideal of C + D in R. This proves the
lemma.
We recall the statement of Theorem 3.

THEOREM 3. Let R be a complete local ring of equicharacteristic p > 0 with
residue field k, and let S R[z]/(z’" f) for some non-unit f R. Let f*"
Ko(n) Ko(Cs), f," Ko(Cs) Ko(CR) be the natural maps (note that f is
flat). Then f * f,, f, f * are both multiplication by pn. In particular Ko(Cs)

Z pn-torsion if R is regular.

Proof This is obvious for f, o f*. The other composite is induced by the
functor ’s ffs given by

MM(R)s(S(R)RS )

where the S-module structure comes from that on S (R)n S induced by
S S (R)n S, s 1 (R) s. Let I c S (R) S be the kernel of multiplication
S (R)n S S. The key point is that Ip" 0, and IJ/Ij+l =- S for 0 < < p",
where the left side has the above S-structure (in fact, the "left" and "right"
S-structures on an S (R)n S-module agree precisely when it is annihilated by
I). Thus M (R)s (S (R)n S) is equivalent in Ko(Cs) to p" copies of M.

Appendix

We collect here some well-known facts about the class groups of rational
double points which we need above. Proofs of any unproven assertions can be
found in [22].

Let R be the local ring of a rational double point on a surface over C. Let
X Spec R, P X the dosed point, r: Y X the minimal resolution of
singulaties, El, ;,.. , E the components of r- l(p). Let/ be the completion
of R, X-- Spec R, Y--- Y x X the minimal resolution of ’. Let E be the
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inverse image of E in I7/. Let U Y- UEi,/.) I7 U/i. Then

CI(R) --- Pic(X- (P))--- PicU--- Pic Y/(subgroup generated by,the d)g(Ei)),

and similarly

CI(/) --- Pic/) --- Pic l?/(subgroup generated by the d,(/i))

There are natural maps Pic Y Zn,^Pic I7 Z n given by restriction of line
bundles to the E (respectively the Ei), and using E .=_ E = p1, Pic pl= Z,
giving a diagram

Pic Y----- Z"

Pic Y

For any divisor D on Y, the intersection number (D. E) is defined to be
the degree of the line bundle t9y(D) (R) tPe, on E. The map Pic Y Z can be
described as tgr(D) (... ,(D Ei),... ). The intersection matrix
((E. Ej))I , j, is negative definite; hence the composite

n

) Z[Or(E) - Pic Y- Z"
i1

is injective, and the image has finite index. A similar result holds for I?. Thus if
G is the cokemel of the endomorphism of Zn given by the matrix ((E E)), G
is a finite abelian group, and we have a diagram

C1 R G

Cl/
Now C1 R C1/}; since R has a rational singularity, C1/} -= G. Thus C1 R

G. Given an ideal I c R pure of height 1, it corresponds to a Weil divisor
C c X. If D c Y is the strict transform, then [I] c C1 R corresponds to the
element of G determined by the vector (... ,(D. E),...). Similar reasoning
applies to R.
We deduce two facts used above. First, if R has a rational double point of

type D, E or E, and if E is a component of the exceptional divisor with
multiplicity 1 in the fundamental cycle then a curve on I meeting /
transversally at 1 point and otherwise disjoint from the exceptional divisor
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corresponds to the vector (0,..., 0,1, 0... ) Z" with 1 in the jth place and 0
elsewhere. Using the known intersection matrix (computed easily from Table
II) one checks that this element of G is always non-zero. Similarly, if E1, En+
are the extreme components of the exceptional divisor in the minimal resolu-
tion of A, then a curve on Y meeting exactly one of/1,/n+ transversally at
1 point, and otherwise disjoint from the exceptional divisor, gives a generator
of the class group Z/(n + 1)Z -- G.

Secondly, we have a criterion for R to be a UFD, namely that the image of
the intersection map Pic Y Z" is generated by the images of the dr(E).
Thus if Z is smooth projective surface containing Y (in the obvious sense), and
we can find generators for the Neron-Severi group NS(Z) consisting of the
exceptional curves Et,..., E, and certain other divisors whose supports are
disjoint from LIE, then R is a UFD. Conversely if R is a UFD, such a system
of generators can be found for NS(Z). We note that if the geometric genus
Pg(Z) 0, the intersection pairing on NS(Z) is unimodular. Since the
intersection form of the E is an orthogonal direct summand of NS(Z) (if R is
a UFD), this forces G 1, i.e., R has an Es-singularity. Thus the only
rational double point which can occur as a UFD on a surface with Pg 0 (eg.
a rational surface) is E8. This explains why our examples of UFD’s are
somewhat complicated. The above remark is due to R.V. Gurjar.
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