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TANGENTIAL LIMITS OF BLASCHKE PRODUCTS AND
FUNCTIONS OF BOUNDED MEAN OSCILLATION

BY
ROBERT D. BERMAN AND WILLIAM S. COHN*

1. Introduction

Let A and C denote the disk {|z| < 1} and its boundary {|z| = 1}. For
{a,} asequence in A satisfying the Blaschke condition (1 — |a,|) < oo, let
B(z) = B(z,{a,}) denote the Blaschke product

Ek ak_z
l—[|ak| 1-az’ z€4,

where we set a,/|a,| = —1if a;, = 0. Let H?, 0 < p < o0, denote the usual
Hardy classes of analytic functions on A, and let BMOA be the space of
analytic functions on A having bounded mean oscillation. Corresponding to
each Blaschke product B(z), let

K.(B) = K,(B) N BMOA,
where

K,(B) = H*© BH*

is the orthogonal complement in H? of the invariant subspace BH?2. Recall
that every function in H?, 0 < p < oo, has finite nontangential limits defined
almost everywhere (a.e.) with respect to linear Lebesgue measure (df) in C.
Also, every Blaschke product is contained in H* and has nontangential limits
of modulus 1 a.e. [df], and H* ¢ BMOA g N, <., H?. (See [7] and [9] for
background concerning the spaces of functions defined above.)

In this paper we give conditions on the zero sequence { a; } of the Blaschke
product B(z,{a,}) which insure the existence of certain nontangential and
tangential limits for every one of its subproducts and for the functions in the
class K,(B). The following notation will be used to state our main results and

Received April 18, 1985.

© 1987 by the Board of Trustees of the University of Illinois
Manufactured in the United States of America

218



TANGENTIAL LIMITS OF BLASCHKE PRODUCTS 219
in the sequel. The mapping
r:[0,7] >A={z] <1}

is a Jordan arc such that Arg I'(¢) = ¢ and
Yr(t) =1 -[T(1)]
is strictly increasing on [0, 7] with Y (0) = 0. Associated with T is the set
Qr={z:0<Argz <,0< |z| <|T(Argz)|}.

When it is convenient and there is no chance of confusion, the subscript I" in
Yr and Q will be suppressed. _ _
In addition, for any subset E of A and n € C, E denotes the closure of E,

E=(z:2z€Eorz€E)
where Z is the complex conjugate of z, and
nE={nz:z€E}.

When 1 € EN A and f(z) is a complex-valued function defined on A such
that

exists, we say that f(z) has an nE-limit. If { is concave upward (respectively
satisfies ¥7.(0) = 0), then we shall call T,Qp, T, and Q@ concave upward
(respectively tangential).

The following result proved in §2 establishes the fundamental relationship
between B(z) and K,(B) with respect to 7Q-limits.

THEOREM 1.1. Let 1 € C and suppose that Y is C -smooth. The following
conditions concerning the Blaschke product B(z) are equivalent:

(1)  Every subproduct f(z) of B(z) has an nQ-limit (of modulus 1).

(2) Every function f € K(B) has an 7Q-limit.

The proof of Theorem 1.1 utilizes a characterization of condition (1) by
Leung and Linden [12] stated as Theorem B in §2, along with a second
characterization provided by Theorem 2.1. Theorems 1.1 and 2.1 generalize
results of the second author in [6].

In §3 we consider conditions of the type given by Frostman [8] and Cargo
[4] that insure the existence of nontangential and tangential limits off of small
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exceptional subsets of C. Here, we consider more general regions and improve
their results which give exceptional sets of capacity 0 by showing that they
have Hausdorff measure 0. Recall that if w is a modulus of continuity (for
example, a continuous, increasing, concave-downward function vanishing at 0)
defined on [0,27], then w is a determining function for a Hausdorff measure
H,, defined on Borel subsets of E of C by

(8) = tim ot T oan)]

where the infimum is taken over all countable covers @ of E by open arcs 4
having linear measure |4| < ¢. (See [2] and [13] for background regarding
moduli of continuity and Hausdorff measure.)

THEOREM 1.2. Suppose that y = Y is Cl-smooth and  # 0 is a continuous
modulus of continuity that is C'-smooth on (0,2%] and satisfies

. w(n) [v(M))
(1.1) hminf 50 v (1)

for some M € (0,1). If B(z) = B(z,{a,}) is a Blaschke product such that
(1.2) Yooy (1 - |ay)) < oo,

then there exists a Borel subset E of C with H (E) =0 such that every
subproduct f(z) of B(z) has an nQp-limit (of modulus 1) for each 7 € C\ E.

>1

It is elementary to check that (1.1) is satisfied when w(z) = 5,0 < B <1,
for any concave-upward ¢, or when Y (¢) = ct*, ¢ > 0,1 < a < oo, for any
concave-downward .

Letting ¢/(¢) = ct where ¢ > 0, we get a sharpened and generalized form of
Frostman’s original result concerning nontangential limits.

COROLLARY 1.1. If

and
Zw_l(l - Iakl) < oo,

then there exists a Borel subset E of C with H,(E) =0 such that every

subproduct of B(z) has nontangential limits (of modulus 1) at each point of
C-E.
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Taking w(t) = ¢, we obtain the next corollary.

COROLLARY 1.2. If

(1.3) liminf s;/:(gs)) >1
and
(1.4) Y1 = ayl) < o0,

then every subproduct f(z) of B(z,{a;}) has an nQ-limit (of modulus 1) for
each n in a subset E of C with |E| = 2.

In §4 we construct Blaschke products which demonstrate the sharpness of
Theorem 1.2 and Corollaries 1.1 and 1.2.

THEOREM 1.3. Assume that w is a continuous modulus of continuity and both
®| 0,27 Gnd Y = Y are C'-smooth. IfE C Cis a Borel set such that H (E) = 0,
then there exists a Blaschke product B(z) = B(z,{a,}) such that

Ywey (1 -|ay|) < and liminf|B(z)|=0,n€E.
z-m,

zenQ

Moreover, if E is a compact set, then there exists a subproduct f(z) of B(z)
that fails to have an 1Q-limit at each point v € E.

Theorem 1.3 can be thought of as a converse to Theorem 1.2 (for allowed w
and ). While Theorem 1.2 insures that the exceptional set Ez of n where a
Blaschke product B(z,{a,}) satisfying (1.2) does not have an nQp-limit of
modulus 1 is of H -measure 0, Theorem 1.3 shows that each Borel set E
having H -measure 0 is contained in E for some Blaschke product B(z, {a,})
satisfying (1.2). This shows that under the assumption (1.2) holds, H -measure
0 is the “correct” description of the size of the exceptional sets.

The next theorem shows that the conclusion of Corollary 1.2 cannot be
drawn if a weaker condition is placed on the sequence {1 — |a,|}.

THEOREM 14. If Y = ¢ is Cl-smooth and {1,}¥ is a sequence in [0,1)
such that

(1.5) Y1-¢)<w

and

(1.6) Lyi1-1) = o,
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then there exists a Blaschke product B(z) = B(z,{a,}) such that

Iakl =tk’ k=1,2,...,

and

(1.7) liminf|B(z)| =0, n€C.
2,

zenQ

Moreover, there is a subproduct f(z) of B(z) for which (1.7) holds with f(z)
replacing B(z), and

(1.8) limsup |f(z)|=1, neC.

z_*n’
zenﬂ

In particular, f(z) fails to have an 2Q-limit for every n € C.

In connection with the sharpness of Corollary 1.2, we also note that a
construction of Frostman [8; p. 176] shows that hypothesis (1.3) cannot be
omitted. In fact, if y/(0) = 0 and lim, _, o+[# log(1/2)/¢~1(¢)] = oo, then there
exists a Blaschke product B(z, {a,}%) with 2y ~1(1 — |a,|) < o, but

Y- la,)log1/(1 = |a,|) = 0

and for each € C, there exists a subproduct f(z) of B(z) that fails to have a
radial limit at 7.

At the end of §4 we give two theorems related to Theorem 1.4 where we
focus specifically on the behavior of the Blaschke products on the rotates of T,
not just the rotates of .. Theorem 4.1 is an analogue of Theorem 1.4 where
78 is replaced by 9T but stronger assumptions are made on Y. In Theorem
42 we drop all the assumptions on { except that it is tangential. We show
that there exists a Blaschke product B such that (1.7) holds with 7} replaced
by nT. Theorems 4.1 and 4.2 were motivated by questions posed to the
authors by Pamela Gorkin.

Finally, we state a corollary of the results of this paper for a case that seems
to be of particular interest. Note that H-measure is linear measure.

COROLLARY 1.3. Suppose that Yr(t) = ct*, ¢>0, a > 1, and B € (0,1].
Let E be a Borel subset of C. Then there exists a Blaschke product B(z) =
B(z,{a;}) for which £(1 — |a,|)#/* < co0 and B(z) fails to have nQ-limits of
modulus 1 at each point of E if and only if He(E) = 0.

Let {t,}7 be a sequence in [0,1) satisfying (1.5). Then

(1.9) lagl =t,, k=1,2,...,
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implies that B(z,{a,}) has an nQ-limit (nT-limit) a.e. [d0] if and only if

Y (1 - )" < o.
If
Y- ’k)l/a = o0,

then there exists a Blaschke product B(z) = B(z,{a,}) satisfying (1.9) that
fails to have an wI'-limit of modulus 1 at each point m of C; in fact,

limi(r)lf|B[nI‘(t)] |=0, necC.
=

Throughout this paper we shall use the convention that ¢ (possibly sub-
scripted) denotes a positive constant, independent of certain indicated param-
eters, whose value may change in a sequence of inequalities.

The authors wish to express their gratitude to P.R. Ahern and G. Piranian

for helpful discussions concerning the contents of §3 and Theorems 4.1 and
4.2.

2. Local conditions for tangential limits

In this section we give necessary and sufficient conditions for Blaschke
products and functions in K,(B) to have specified tangential limits at a point
of C. We also give a simple sufficient condition that will be used in §3 to prove
Theorem 1.2. For simplicity, we shall assume that » = 1 and consider only
Q -limits. The modifications necessary to extend our results to Q. or {-limits
will be apparent.

We start by stating a theorem concerning radial (and nontangential) limits
of Blaschke products which includes results from Frostman [8] and Cargo [3;
p. 425).

THEOREM A. The following conditions on a Blaschke product B(z) =
B(z,{a}) are equivalent:

Q) z el <

al

(i) B(z) and each of its subproducts have radial limits of modulus 1 at 1
( Frostman).

(i) yfiled, o

8 |r— ak|2

for & € (0,1) sufficiently close to 1 (Cargo).
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We shall also need the following result of Leung and Linden [12] which

provides the analogue of Frostman’s characterization for more general Q-
limits.

THEOREM B (Leung and Linden). Suppose that Y is C'-smooth. Then
B(z,{a,}) satisfies (1) of Theorem 1.1 (with 1 = 1) if and only if

lal
®) L <
and
. 1 - a,
b hm = (.
® g L T I A

In order to prove Theorem 1.1, we will show that condition (b) of Theorem
B can be replaced by a condition involving the limiting behavior of certain
integrals. The following notation will be used. For each ¢ € (0, #/2), let L,
denote the line segment with one endpoint on the real axis and the other at
T'(¢) which subtends an angle of 7/4 with the real axis.

THEOREM 2.1. Suppose that Y is C'-smooth. The following conditions on a

Blaschke product B(z) = B(z,{a,}) satisfying (a) of Theorem B are equiv-
alent:

(b) lim[ > 1= lad ]=0.

0% | 1, pre <2 1—- |T(e) + |t — Argay|
- 1 - |BE)?
b’ li || =0
( ) t—»r(r)l"' [‘/;., 1- |§|2 l §|

Proof. We first show that (b’) implies (b). Let f(z) be any subproduct of
B(z). Then by Theorem A we have

2.1) lim f(r) = A

r-1

for some A € C. By the Schwarz-Pick theorem (see [10; p. 226)), it follows that

1f(2)] < 1-|f(2)? < 1 - |B(2)?

€ A.
1=z = 1-pp 0 *S8
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If z € L, and r, is the endpoint of L, on the real axis, then

(22) ORI QIENRTAOILY

1- B
<| T

We conclude from (2.1), (2.2), and (b’) that f(z) has an Q-limit of A.
Condition (b) now follows from Theorem B (stated relative to Q instead of
@) since f(z) was an arbitrary subproduct of B(z).

Suppose now that (b) holds. It is easy to verify that

S|

1= |BG)? _ «1- oy’
_—t —_— e A.
T—jof L= a) °

(See also [1; p. 80].) Thus
1 - |B($)? Iakl
d

where
= |a,l?
I= d
)y 3 Toa

and §; is the set of all a, such that

0<Arga,<t/2, i=1

t/2 < Arga, < 2t, j=2,

2t<Arga,<m, j=13,

Im(a,) <0, Jj=4

We must show that lim, _, o+1; = 0 for j = 1,2, 3,4. Consider first I,; this is
the only time (b) will be used. Let Q(¢) be the quadrilateral contained in
{Im z = 0} defined by the following properties: two sides are parallel to the
imaginary axis, one side is contained in the real axis, and the remaining side is
contained in the radius passing through I'(z); the side on the real axis has
midpoint r, and right-hand endpoint Re[I'(?)], while the side parallel to the
imaginary axis with one endpoint Re[I'(?)] has as its other endpoint I'(z).

By our assumptions and Theorem B (relative to @), B(z) has an Q-limit
of modulus 1. Since Q(t) C @, it follows that for ¢ > 0 sufficiently small,
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there is no a, in Q(¢). Also, for ¢ in this range, there is a constant ¢ > 0
independent of k or ¢ such that

IT(2) - ax| < cdist[ay, L,]

when t/2 < Arga, < 2t. Here and in the sequel, dist denotes Euclidean
distance in the plane. Thus, for ¢ > 0 small, we have

la,)? 1 — |a
fu{ k|2'd§l S°|1“(t)—';

1= Ja,|
‘T=T()N + 11 - Argay] -

Using (b), it follows that lim, _, 4+, = 0.
For I,, the assumption that 0 < Arg a, < t/2 implies that for ¢ > 0 suffi-
ciently small, dist[a,, L,] > ct. Hence, for such ¢ we have

1- la
el — L

1

< Z 1- |ak|
1 — |a,l
<C),.—7—,
L Arg(ay)

where |L,| denotes the length of L,. Since ¢1(0) € [0, o0), we have
Arga, 2 c|l — a;

for allowed a,, and (a) of Theorem B yields lim, , o+I; = 0.
For I, note first that there is a constant ¢ > 0 independent of ¢ and k for
which 2¢ < Arg a, < 7 such that dist[ak, L] = c Arg a,. Thus,

= |kl
I < cZ — .y
5 (Arg ak)

since |L,| < ct. We conclude that

1- 1-
L<c E lagl ¢ e E lagl

Arga, Arga, Arga,
! y/t_ >‘/;
ArgakS Arg a;
1- |a,| 1 - |a;|
< C\/; Z Arg a; tec E Al'g a
2t<Arg a,<w 2t<Arga, <yt

and (a) of Theorem B implies the desired result.
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Finally, consider I,. Let R, be the projection of L, onto the real axis.
Evidently

dist[a,,Re{] < dist[a,, ], $€L,

if a, satisfies Im(a,) < 0. Thus

and the proof is complete.

We turn now to K,(B). The following result was proved by the second
author in [6].

THEOREM C. The following conditions concerning B(z) = B(z,{a,}) are
equivalent:

@) IR

a
(i) lim,_,-f(r) exists for all f € K,(B).

We now prove a generalization.

THEOREM 2.2. Suppose that Yr is C-smooth. The following conditions
concerning B(z) = B(z,{a,}) are equivalent:
(i) Condition (i) of Theorem C holds and

. 1- 1B 0 =
’111(1)1+ /;" 1- |§|2 |d§| =0.

(i) f(z) has an Q-limit for all f € K,(B).

Proof. We first show that (ii) implies (i). By the assumption (ii) and
Theorem C, it follows that (i) of Theorem C holds. By Theorem A, if f is a
subproduct of B, then lim,_,,f(r) = A where |A\| = 1. This taken together
with the fact that

1 - f(a) f(2)

1-az
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belongs to K,(B) for all a € A, implies that f has an Q-limit of A. We
conclude from Theorem B (relative to ) and Theorem 2.1, that (i) must hold.
To show that (i) implies (ii), it suffices to establish an inequality of the form

_ 2
s AT BEE, ey,

for each f € K,(B). (Here, ¢ will depend on f.) For then (2.2) holds (with a
constant) for f € K, and condition (i) combined with Theorem C gives the
result. We need the integral representation for f € K, (B) obtained in [6]; that

1|9 |_dt
1= g B o we

where Yy € H® (see [6; Lemma 3.2]) and Iy = UY,,, ¥, = [@,,, B,.] € A is the
(rectifiable) Carleson curve described in [6; §2] such that

O v()

<c ¢t €T,

—.3
1-1,8,

1) 0<¢<|g <¢, <1,
1 2

and for w, = (a, + B,)/2,

(II) {w,} is an interpolation sequence and

<d. < 1"|B(Za{ak})|
() O <D< 118G ()]

<d,<oo,forze€A.
Thus, for z € A,

EOEDY s

The use of property (II) above and an elementary estimate yields a constant
¢ > 0 such that

()l < cZ "””"l

On the other hand, we claim that there exists ¢ > 0 independent of z € A,
such that

0o p Ul a0,

11 -a,z|?
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If e € (0,1) and we consider only z in the set {|B(z,{w,})| = €}, then (2.3)
follows (with ¢ depending on ¢) from the equality

113z, (o) P = £ [B(e () L0~ 121

11— &z

However, since { w,, } is an interpolation sequence, the left-hand side of (2.3) is
bounded above uniformly for all z € A. This shows that ¢ may be chosen so
that (2.3) holds for z in the set {|B(z, {w,,})| < &}. The claim follows.

From (2.3), we conclude that

1-|B(z, {0, )]

If'(2)l <¢c o

z €A,

and the proof is completed by applying property (IV).

Theorem 1.1 is an immediate consequence of Theorems 2.1 and 2.2. We note
that condition (b’) of Theorem 2.1 makes sense if B is replaced by an arbitrary
inner function ¢, that is, a bounded analytic function having radial limits of
modulus 1 a.e. [d6]. With K,(¢) defined analogously to K,(B), it is easy to
show that a generalized form of Theorem C (see [6; Theorem 3.1]) and
condition (b’) of Theorem 2.1 imply that f(z) has an Q-limit for every
f € K, (). The opposite direction is undoubtedly true, but in order to use the
same method of proof as above, it would be necessary to generalize Theo-
rem B.

The final theorem of this section provides a simple sufficient condition for
the existence of a tangential limit. Cargo [4; Theorem 1] originally proved this

theorem for Y(t) = ct®, a = 1, ¢ > 0, generalizing a result of Frostman [8]
for a = 1.

THEOREM 2.3. Suppose that ¢ = Yy is Cl-smooth. If B(z) = B(z,{a,}) is
a Blaschke product such that

1—a,|
(24) Ly —an <%

for some M € (0,1), then every subproduct f(z) of B(z) has an Qr-limit of
modulus 1.

Proof. If T is not tangential, then the theorem follows from Theorem A
and the fact that the existence of a radial limit implies the existence of a
nontangential limit for any function in H*.

For the remainder of the proof, we assume that T' is tangential. We shall
show (2.4) implies conditions (a) and (b) of Theorem B (with |Arga,|
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replaced by Arg a,). Condition (a) is an immediate consequence of (2.4). As
before, this implies that

M|1 - a,| < Arg(a,), 0<Arga,<2t,

for ¢ > 0 sufficiently small. It now follows from (2.4) that

(2.5) zﬁ-ﬁ% < .

In addition, since y is C!-smooth with lim,_ o¢’(z) = 0, the mean value
theorem implies that

(2.6) [W(Arga,) — ¥ (2)l < |t — Argay|

for 1t < Arga, < 2t and ¢t > 0 sufficiently small. Applying (2.5) and (2.6)
yields condition (b). The required conclusion now follows from Theorem B,
and the proof is complete.

3. Global conditions for tangential limits

In this section we prove Theorem 1.2. The proof is based on the local
sufficient condition of Theorem 2.3 and a modification of an argument
appearing in [5].

We shall use the following theorem concerning Hausdorff measure (see [11;
Theoréme III, Chapitre II, p. 27]). We assume throughout this section that
@ # 0 is a continuous modulus of continuity that is C'-smooth on (0, 27].

THEOREM D. The following conditions on a Borel subset E of C are equiv-
alent:

(1) H/(E)>0.
(2) E supports a finite positive Borel measure p. with w, () = O [w(2)).

Recall that every finite positive Borel measure p on C can be identified with
the monotone nondecreasing function

A(2) =p({e?:0<0<1}),te[0,27).
Here and in what follows, «, denotes the modulus of continuity of fi.

Proof of Theorem 1.2. Let ®(t) = ¢ (Mt). By Theorem 2.3, it suffices to
show that

= . 1—a|
£-{rec: Zamay - =)
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satisfies H (E) = 0. For each positive integer m, let
1 - ag }
0,={necC: —>1
- {ree Z s

and
G,={n€0,:In—a, <® (1 - |a)forall k> m}.

By Theorem D, it is enough to show that for a finite positive measure g on C
such that w,(¢) = O [w(?)], we have

lim p(0,) = 0.

m— o0

We shall consider G,, and O,,\ G,, separately. First, we have

n(G,) < k): p({neciim—a, <@ (1~ |a)})
Sc) we® (1 - |ay)

k>m

= ¢ T w3970 - layD)]

k=m

<c X woyTHl - |ay),

k=m
using the fact that « is a modulus of continuity. Hence (1.2) implies that

lim,, ., ,#(G,,) = 0.
Next let

() =p({§eC:f—ay <t}), 120,

for each positive integer k. Then

p(0,\G,) < fm\GMkzmjll—;—_l-%du(f)

_ 2 1 — a4 )
- X ‘/;)_‘(l—lakl) ®(t) dr,(1).

k=m

Integrating by parts, we may express the kth term in the last sum as
T®D + T®, where

=00,
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T(z) = (1 = la kl)’:p((g)) .

It follows easily that
lim ) T®=0
Mm=0 p>m
and it remains only to show that
lim Y T®=0.
M= r>m
Since w,(¢) = O [w(¢)], we have
T® < ¢(1 - Iakl)f o()®'(t) (t)
o la-lan  ®(t)
22 wod~ 1(s)

lag|

<ec(l- |ak|)f ds,
using the change of variables ®(¢) = s.

We claim that there is a constant r > 1 such that for s > 0 sufficiently
small,

wo®1(s) [w°<I> l(s)]
A ———— <
(3:) sk
[sw 0@ 1(5)® (s) — we @ (s)
-r 5 .
s

After some algebra, it can be seen that (3.1) is equivalent to

wo®1(s) r |woe® (s)® (s)
(3.2) 2 | [ 5 .

Since ®(2) = s, inequality (3.2) is equivalent to

w(t) r (1)
®(1) 2 r-19/(1)

for ¢ > 0 sufficiently small. By (1.1) and the fact that

r
lim 1
roo '~

=1

we conclude that (3.1) holds for s > 0 sufficiently small and r sufficiently
large.
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To complete the proof, choose s, > 0 sufficiently small so that (3.1) holds
for 0 < s < s54. Let m be sufficiently large so that 1 — |a,| < s, for k > m.
Now by (3.1), we have

fso w°‘p;1(s) ngc[‘*’“Dl_l_(l —lail) @@ M(so)
1-{ay| s la So

and

o1
*0w00s)
So s
Thus
YT®P<c Y 0ed}(1—|ag) +c L (1 - |ag).

k=m k=m k>m

Once again using the fact that « is a modulus of continuity and (1.2), we see
that

lim Y T® =o0.

k=0 p>m

This completes the proof.

4. Construction of Blaschke products

In this section we prove Theorems 1.3 and 1.4 along with two other
theorems in which conditions are placed on the behavior of the Blaschke
products along all the rotates of I' instead of 2.

We begin by stating a lemma (without proof) that is quite elementary but
very useful. As before, it is assumed that { = ¢ is strictly increasing.

LEMMA 4.1. Suppose that a € A and let
(4.1) I,={neC:aenqi}.
If 1 — |a| < Yr(7), then I, is an open arc centered at a/|a| such that
(42) 1| =2¢71(1 — |al).
In the remainder of this section, we use the notation I, or I, , to denote the
set defined in (4.1) when a is replaced by a, or a,, ;.

We turn now to Theorem 1.3. The construction used to prove this theorem
is a modification of one presented in [5; Theorem 2.5].
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Proof of Theorem 1.3. Let E be a Borel subset of C such that H (E) =0
Then for each positive integer n, we can find a cover of E by open arcs
{An, 1 }%-1 such that for r, , = |4, ,|/2, we have

(4.3) 3 w(r, ) <27"
k=1

Observe that if E is compact, we may assume that the cover is finite. Let 7, ,
be the midpoint of 4, , and define

k= |F( k)|"1nk [1 ‘p(rn’k)]nn,k’ k=1,2,...

It follows immediately from the definition of a, , and (4.3) that

Ywey 1= a,,4l) = X w(r,,) < .

n, k n, k

Also, since ¢ is increasing, we have 1 — |a, | <¢(7) and Lemma 4.1
implies that 4, , = I, , for each k, where I, , is as in Lemma 4.1,

Let B(z) = B(z, {a,, k}n,1)- Then for each n € E, the set 0 contains
infinitely many zeros a,, . Thus

(4.4) liminf|B(z)| =0, n€E.
z=,

zenf

In case E is compact, the observation that for each n, the sequence {a, .}
may be chosen to be finite makes it clear that there is a subsequence {n;}{ of
the positive integers with large gaps such that if

f(z) = B(Za {anj,k}j,k)’

then for each n € E we have

limsup|f(z)| =1

zZ—,
zeqfd

while (4.4) still holds with f replacing B. This completes the proof.
We proceed now to Theorem 1.4.

Proof of Theorem 1.4. Let {n,}T be any sequence of points in C and let
a, = t;n, for each k. It follows from Lemma 4.1 and (1.6) that X|I;| = oo
with { I, }¥ as in the lemma. Thus we can clearly choose {1, }{ so that the I,
revolve around C infinitely many times and each point n € C is contained in
infinitely many of them.
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Let B(z) = B(z,{a;}?) with {7, }T chosen as above. Then for n € C, the
Blaschke product B has infinitely many zeros in 7& so that (1.7) holds. The
last assertion is easily proved by defining a subproduct f of B using a
subsequence {a, }7 whose indices have large gaps for which each 5 € C is
still contained in infinitely many 7, ke The theorem is thereby established.

The remaining two theorems of this section deal with the limiting behavior
of Blaschke products along the rotates of I'. We shall need several lemmas.

.LEMMA 4.2. For each z € A and each positive integer j, the Blaschke product
B(z) = B(z,{a;}Y¥) satisfies

la; — 2|

B / .
|B(z)| < T- |a]

[l

Proof.

|B(z)| =|B(z,{ax} kwy)|

la; — z|
1-a-

For the next lemma, let
A(a,r) ={|z—a| <r}
and
Apan=1{ne€C:A(a,r) Nl # 2},

when a € A and r € (0,1 — |a]).

LeMMA 4.3. Suppose that ¢ = Y is Cl-smooth and concave upward. If
te (0,7) and 0 <r <y(t)/2, then

,
Ok |[Aatnray, nl, M€ C.

Proof. Without loss of generality assume that n = 1. Let x € (0,1). Then
by the assumption on r and the concavity of ¢ which implies ¢/(¢) < tJ’(?),
we have 0 < r/y’(t) < t/2. From the mean value theorem it follows that

4= ole- 5] < v
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for some ¢, € (0, ¢). The concavity of { implies {’(#,)/¥’(¢) < 1 so that
xr

4.6 t)—ylt— —=|| <

(46) v - 4[i- 5] | <+

Let

z= [1 - ¢(t - ﬁt—))]e"'.

Then since T'(¢) =[1 — ¢(¢)]e”, it follows from (4.6) that z € A[T'(¢), r].
Since

z=e (L)I‘ PR

P\ () vin)

we conclude that
. Xr
exp(tm) (S AA[I‘(:), ’
and hence
xr

m < |Aagreey, nl-
The desired inequality follows since x € (0,1) was arbitrary and the proof is
complete.

As a direct consequence of Lemma 4.3 we have the following estimate.

LEMMA 44. Let a€ A with 1 — |a| < Y(w) and suppose that 0 <r <
1 — |al|)/2. Then

r
- < |Aa@, nl-
vy jap] = Heen!
Proof. Let@ = Arga.Ift = y~}(1 — |a|) and n = ¢'®~9, then a = qI'(¢),

and we may apply Lemma 4.3.
We are now ready to prove an analogue of Theorem 1.4.

THEOREM 4.1. Suppose that = Yy is Cl-smooth, concave upward, and
satisfies

. Y(0)
(4.7) lltI_I}’(l)l}fW > 0.

If {t,)3 is a sequence in [0,1) such that ¥(1 — t,) < oo and
(4.8) Y1 - 4) = oo,
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then there exists a Blaschke product B(z) = B(z,{a;}) such that |a,| = t,,
k=1,2,..., and

(4.9) lim(i)nle[nI‘(t)] |=0, necC.
t—0*

Moreover, there is a subproduct f of B for which (4.9) holds with f replacing B
such that

(4.10) limsup|f[9T(¢)]| =1, neC.
t—0%

In particular for every n € C, the function f fails to have an nI'-limit.

Proof of Theorem 4.1. By condition (4.8) it is possible to choose a sequence
{7} such that

. Ty
lim =0
k- o0 1- .

and

E 1 :ktk‘l’-l(l — 1) = oo.

By the assumption (4.7) it follows that

2 TR Bt

Thus if {9, }7 is an arbitrary sequence in C and a, = t,1, for each k, Lemma
4.4 implies that

ZIAA(ak,rk)l = 0.

As in the proof of Theorem 1.4, we can now select {9, }{ so that each point
n € C lies in an infinite number of the 4,,, ,,,- Letting B(z) = B(z,{a,}?),
it follows from Lemma 4.2 and the choice of the r, that

kli_’nzomax{w(z)l 1z € Alag, ry) } = 0.

Since for each n € C, the curve nI'(¢) intersects infinitely many of the disks
A(ay, r,), we conclude that (4.9) holds. The last assertion is proved as in the
proof of Theorem 1.4. Theorem 4.1 is thereby established.

In the final theorem, we drop the assumption of smoothness on ¢ and
assume only that it is tangential.
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THEOREM 4.2. If T is tangential, then there exists a Blaschke product
B(z) = B(z,{a,}) such that

(4.11) lim(i)r}le[nl‘(t)] |=0, necC.
t—

To prove Theorem 4.2, we establish some notation and state without proof
an elementary lemma. For each § € (0, ), let /() be the line passing through
1 at an angle of § with the vertical. Let ¢, be the smallest ¢ > 0 such that
T'(¢) € 1(0). Such a ¢, must exist because I' is tangential. Let a(f) be the
smaller arc of C with endpoints 1 and e,

LEMMA 4.5. There exists a constant ¢ > 0 such that

¥ (tp)
(4.12) OZCW, 0 e (0,11').

Proof of Theorem 4.2.  Select (6))7° in (0, =) such that
(4.13) Y26, < .
By Lemma 4.5, this implies
(4.14) Y24 (ty,) < 0.
Let m; be the positive integer satisfying

(4.15)

27 <m; < 2m +1
e(6) ~ Y a(g) T
For each positive integer j, let S; be the set of points in the radial segments

R, = [lr(tgj)lez"ik/'"f, ez”"k/'"f], k=0,....,m,—

J 1’

at distances
(4.16) ¥(1)(1 - 1/29), 1=0,1,...

from C. Finally, let {a,,}T be an enumeration of the points in each of the sets
S Sy
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By (4.13)-(4.16) we have

R0 la) = Em T v(n)(1- l)l

J
j=1 "I=0 2

X m;24(1,,)
j=1

)»

1-1|

< Z 27'2!49 + E 291,
j=1
< 00.
Thus B(z) = B(z,{a,,}?T) is a well-defined Blaschke product. From (4.15), we
see that for each positive integer j and n € C, there exists k € {0,...,m;_,}
such that nI' " R, N A # &. From Lemma 4.2, it follows that

IA

(0 ] o2 \P(toj) + Z 21‘1’(’0)

mj
|B(z)l <27, zeAn URy,
k=0

for each j. We conclude that (4.11) holds and the proof is complete.
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