GENERATORS AND RELATIONS FOR FINITELY GENERATED GRADED NORMAL RINGS OF DIMENSION TWO

BY
Frances Van Dyke

Chapter 1. Introduction

Assume that R is a finitely generated graded normal ring of dimension 2 over \mathbf{C} such that $R=\oplus_{k} R_{k}$ where $R_{k}=0$ if $k<0$ and $R_{0}=\mathbf{C}$. This implies that R is the coordinate ring of a normal affine surface which admits a C^{*}-action with a unique fixed point P, corresponding to the maximal ideal $\oplus_{k>0}^{\infty} R_{k}$ (see [5]). Henry Pinkham has shown that R is isomorphic to $\mathscr{L}(D)=\oplus_{n=0}^{\infty} L(n D)$ where D is a divisor on a Riemann surface X of genus g of the form

$$
\begin{equation*}
D=\sum_{p \in X} n_{p} P+\sum_{\substack{i=1 \\ p_{i} \in X}}^{k}\left(\frac{\beta_{i}}{\alpha_{i}}\right) P_{i} \tag{*}
\end{equation*}
$$

where $n_{p} \in Z$, all but finitely many $n_{p}=0,0<\beta_{i} / \alpha_{i}<1$, and $L(n D)$ denotes the set of meromorphic functions f, such that $\operatorname{div}(f)+n D \geq 0$. It is easily seen that for each $n, L(n D)$ is a vector space over C.

It is always possible to choose a minimal set $S=\left\{y_{1}, \ldots, y_{k}\right\}$ of generators for $\mathscr{L}(D)$ such that the elements of S are homogeneous i.e. $y_{j} \in L\left(q_{j} D\right)$ for some q_{j}. In the polynomial ring $C\left[Y_{1}, \ldots, Y_{k}\right]$ give the variable Y_{i} degree q_{i}; then there exists a graded surjective homomorphism

$$
\varphi: C\left[Y_{1}, \ldots, Y_{k}\right] \rightarrow \mathscr{L}(D), \quad \varphi\left(Y_{i}\right)=y_{i}
$$

Let I be the kernel of φ. We call I the ideal of relations for $\mathscr{L}(D)$ corresponding to S.

In the following paper it is shown that in many cases a minimal set of homogeneous generators S and generators for the corresponding ideal of relations I for $\mathscr{L}(D)$ can be determined if homogeneous generators and relations are known for $\mathscr{L}\left(D_{1}\right)$ where $D_{1}<D$ and $\mathscr{L}\left(D_{1}\right)$ has a much simpler

Received July 25, 1986.
structure than $\mathscr{L}(D)$. In particular, the degrees of homogeneous generators and relations can be deduced for all divisors $D=D_{0}+\Sigma\left(\beta_{i} / \alpha_{i}\right) P_{i}$ where $\operatorname{deg} D_{0} \geq 2 g+1$ or D_{0} is the canonical divisor on a nonhyperelliptic curve of genus $g>3$. Here and throughout the paper D_{0} refers to an integral divisor. These results generalize Mumford's and Saint-Donat's work on $\mathscr{L}\left(D_{0}\right)$ where D_{0} is of degree $>2 g+1$ (see [4] and [8]). They also generalize Saint-Donat's results in his paper on Petri's analysis of the linear system of quadrics through a canonical curve (see [7]).

Given D as in (*) above, to find the degrees of the elements in a minimal set of homogeneous generators S for $\mathscr{L}(D)$, we show that it is necessary to consider the convergents $p_{i j} / q_{i j}$ of the decomposition of the continued fraction

$$
\frac{\alpha_{i}}{\beta_{i}}=a_{i 1}-\frac{1}{a_{i 2}-} \cdot \frac{\ddots-\frac{1}{a_{i k_{1}}}}{}
$$

Here

$$
\frac{p_{i j}}{q_{i j}}=a_{i 1}-\frac{1}{a_{i 2}-\frac{1}{a_{i 3}-} \cdot \frac{1}{-\frac{1}{a_{i j}}}}=\left[a_{i 1}, \ldots, a_{i j}\right]
$$

We find a divisor D_{1} such that $\mathscr{L}\left(D_{1}\right)$ is understood and

$$
D_{1}=\sum_{P \in X} n_{p} P+\sum_{i=1}^{n} \frac{q_{i j_{i}}}{p_{i j_{i}}} P_{i}
$$

where $q_{i j_{i}}=0$ or $p_{i j_{i}} / q_{i j_{i}}$ is one of the convergents of α_{i} / β_{i}. The precise conditions D_{1} must satisfy are given in Theorem 2.10. We then start with a set of generators for $\mathscr{L}\left(D_{1}\right)$ and build on to it. The additional generators correspond to the convergents which appear in fractions in D but not in D_{1}. By Riemann-Roch it is clear that whenever $\operatorname{deg} p_{i j} D \geq 2 g$ where $j>j_{i}$, there exists a rational function $y \in L\left(p_{i j} D\right)-L\left(p_{i j} D-P_{i}\right)$. In Lemma 2.9 it will be shown that y is a primitive element and therefore if S is a minimal set of homogeneous generators for $\mathscr{L}(D)$ and $\operatorname{deg} p_{i j} D \geq 2 g, S$ must contain an element (which will be called $x_{i, j}$) of degree $p_{i j}$. We say that such an $x_{i, j}$ is a generator corresponding to the convergent $p_{i j} / q_{i j}$ at P_{i}.

Once the necessity of having elements $x_{i, j}$ in any minimal set of homogeneous generators for $\mathscr{L}(D)$ has been shown, the sufficiency is demonstrated by
showing that a basis for the vector space $L\left(t D_{1}\right)$ for any t can be completed to a basis B_{t} for $L(t D)$ using certain powers and multiples of the newly acquired generators $x_{i, j}$. In each example to be considered the completed basis for $L(t D)$ is

$$
B_{t}=\operatorname{basis} L\left(t D_{1}\right) \cup\left\{x_{i, j}^{m} x_{i, j+1}^{n}\right\}
$$

where $m p_{i j}+n p_{i j+1}=t$. Linear independence is shown by seeing that each function $x_{i, j}^{m} x_{i, j+1}^{n}$ has a pole at P_{i} of a different order.

Having established that a minimal set of homogeneous generators for $\mathscr{L}(D)$ can be obtained using a minimal set $S_{1}=\left\{y_{1}, \ldots, y_{s}\right\}$ for $\mathscr{L}\left(D_{1}\right)$ and a set of new generators $\left\{x_{i, j}\right\}$ we now have a surjective graded homomorphism

$$
\varphi: C\left[Y_{1}, \ldots, X_{n, k_{n}}\right] \rightarrow \mathscr{L}(D)
$$

where the variables Y_{l} and $X_{i, j}$ have been given the degrees of the generators y_{l} and $x_{i, j}$. Let I be the kernel of this map and let I_{1} be the kernel of the map

$$
\varphi: C\left[Y_{1}, \ldots, Y_{s}\right] \rightarrow \mathscr{L}\left(D_{1}\right) .
$$

It will be shown by induction on the number of new generators that

$$
I=\left\langle I_{1}, M-\sum_{l} c_{l} B_{l}\right\rangle
$$

where M is a quadratic monomial such that $X_{i, j} \mid M, c_{i} \in C$ and $\varphi\left(B_{l}\right)$ is a basis element of the same degree as M. By a quadratic monomial we will always mean that $M=Z_{i} Z_{j}$ which of course does not imply that M is of degree two relative to the grading.

The conditions on D_{1} stated in Theorem 2.10 ensure that the elements $x_{i, j}$ exist in $\mathscr{L}(D)$, suffice to generate $\mathscr{L}(D)$ but do not make any of the generators y_{1}, \ldots, y_{s} of $\mathscr{L}\left(D_{1}\right)$ unnecessary as generators for $\mathscr{L}(D)$. First of all it is required that $\operatorname{deg} n D_{1} \geq 2 g-1$ for all $n \geq \min p_{i j_{i}+1}$. This requirement ensures the existence of new generators

$$
x_{i, j} \in L\left(p_{i j} D\right)-L\left(p_{i j} D-P_{i}\right), \quad j>j_{i}
$$

as well as the fact that for all $m>\min p_{i j_{i}+1}$,

$$
l(m D)-l\left(m D_{1}\right)=\sum_{i=1}^{n}\left[m \frac{\beta_{i}}{\alpha_{i}}\right]-t_{i}
$$

where $t_{i}=\left[m p_{i j_{i}} / q_{i j_{i}}\right]$ if $j_{i} \neq 0$ and 0 otherwise. To prevent the possibility that some $y_{k} \in\left\langle S_{1}-\left\{y_{k}\right\},\left\{x_{i, j}\right\}\right\rangle$ it is required that each $y_{k} \in S_{1}$ be of degree
$\leq \min p_{i j_{i}+1}$ or that y_{k} be a primitive element,

$$
y_{k} \in L\left(p_{i s} D\right)-L\left(p_{i s} D-P_{i}\right)
$$

Finally, to form the basis for $L(t D)$ it will be necessary to have a generator $x_{i, j_{i}}$ whenever $j_{i} \neq k_{i}$ and this is assured if degree $p_{i j_{i}} D_{1} \geq 2 g$.

As an example we consider two divisors on a Riemann surface of genus 0 .
Example 1.1. Let D and D_{1} be divisors on a Riemann surface X of genus 0 such that

$$
D_{1}=-P+\frac{1}{2} P_{1}+\frac{1}{2} P_{2} \quad \text { and } \quad D=-P+\frac{\beta_{1}}{\alpha_{1}} P_{1}+\frac{\beta_{2}}{\alpha_{2}} P_{2}
$$

where

$$
\frac{\alpha_{i}}{\beta_{i}}=a_{i 1}-\frac{1}{a_{i 2}-} \cdot \frac{1}{-a_{i k_{i}}}
$$

has convergents $p_{i j} / q_{i j}$ and $1 / 2 \leq \beta_{i} / \alpha_{i} \leq 1$. It is not difficult to see $\mathscr{L}\left(D_{1}\right)$ $\simeq C\left[Y_{1}\right]$ where Y_{1} is of degree two, $\varphi\left(Y_{1}\right)=y_{1}$ and we can take

$$
y_{1}=\frac{(z-P)^{2}}{\left(z-P_{1}\right)\left(z-P_{2}\right)}
$$

For $k \in Z^{+}$a basis for $L\left(2 k D_{1}\right)$ is $\left\{y_{1}^{k}\right\}$ and $L\left((2 k+1) D_{1}\right)=\{0\}$. We have the necessary conditions of Theorem 2.10 since $\operatorname{deg} n D_{1} \geq 2 g-1$ for all n and y_{1} is a generator corresponding to the first convergent for α_{1} / β_{1} and α_{2} / β_{2}. To form a minimal set S of homogeneous generators for $\mathscr{L}(D)$ one can take y_{1} as above and then elements

$$
x_{i, j}=\frac{(z-P)^{p_{i j}}}{\left(z-P_{i}\right)^{q_{i j}}\left(z-P_{s}\right)^{p_{i j}-q_{i j}}}, \quad s \in\{1,2\}-\{i\}, j>1
$$

The elements $x_{i, j}$ are functions of degree $p_{i j}$ with poles at P_{i} of degree $q_{i j}$. They are necessary as generators as in $L\left(p_{i j} D\right)$ no product of functions of lower degree will have poles at P_{i} of as high an order as $q_{i j}$. For $k \in Z^{+}$a basis for $\mathscr{L}(2 k D)$ is

$$
\left\{y_{1}^{k}, x_{i, j}^{m} x_{i, j+1}^{n}\right\} \quad \text { where } \quad m p_{i j}+n p_{i j+1}=2 k
$$

and a basis for $\mathscr{L}((2 k+1) D)$ is

$$
\left\{x_{i, j}^{m} x_{i, j+1}^{n}\right\} \quad \text { where } \quad m p_{i j}+n p_{i j+1}=2 k+1
$$

Using properties of convergents one shows the sets are linearly independent and of the right order. The degrees of the generators and relations as well as the Poincaré power series for the ring can be found in Table 2.

In Chapter 2 the assertions of the foregoing paragraphs are proved in detail. Applications of the theorems in Chapter 2 are given in Chapter 3. Here it is shown that if D is a divisor on a smooth projective curve of genus g where $\operatorname{deg} D_{0} \geq 2 g+1, D_{0}=\sum n_{p} P$, and

$$
D=D_{0}+\sum\left(\frac{\beta_{i}}{\alpha_{i}}\right) P_{i}, \quad 0<\frac{\beta_{i}}{\alpha_{i}}<1,
$$

the degrees of the elements in a minimal homogeneous set of generators for $\mathscr{L}(D)$ and the degrees of the generators for the corresponding ideal of relations are obtained from the numerators of the convergents of the fractions α_{i} / β_{i}. For a second application, rings of automorphic forms are considered. Let G be a finitely generated Fuchsian group of the first kind and X the Riemann surface which is the compactification of H_{+} / G. Suppose Q_{1}, \ldots, Q_{s} are the parabolic points of X and P_{1}, \ldots, P_{r} the elliptic points with branching numbers e_{1}, \ldots, e_{r}. Let $A(k)$ be the vector space of automorphic forms of weight k relative to G, i.e.,

$$
f \in A(k) \Leftrightarrow f(g(z))=\frac{d g^{-k}}{d z} f(z)
$$

We consider the ring $A(G)=\sum_{k=0}^{\infty} A(K)$ which we say has signature

$$
\left(g ; s ; e_{1}, \ldots, e_{r}\right)
$$

Gunning has shown that

$$
A(G)=\sum_{k=0}^{\infty} A(k) \simeq \mathscr{L}(D)
$$

where

$$
D=K+Q_{1}+\cdots+Q_{s}+\sum_{i=1}^{r} \frac{e_{i}-1}{e_{i}} P_{i}
$$

and K is the canonical divisor on X. Given any such divisor D, the degrees of the elements in a minimal set of homogenous generators for $\mathscr{L}(D)$ and the
degrees of the homogeneous generators for the corresponding ideal of relations can be deduced using the theorems of Chapter 2. This work is started here and will be completed in a subsequent paper. In many cases to find $G_{D}(t)$ and $R_{D}(t)$ one can apply the work of Chapter 2 to Wagreich's results on rings of automorphic forms with few generators. I am grateful to Wagreich for these results and his good suggestions on the final copy of this paper.

Chapter 2

As stated in the introduction Henry Pinkham has shown that every finitely generated graded normal ring of dimension two over \mathbf{C} is isomorphic to $\oplus_{n=0}^{\infty} L(n D)$ where D is a "fractional" divisor on a Riemann surface of genus g. More specifically D is of the form

$$
\begin{equation*}
D=D_{0}+\sum_{i=1}^{k} \frac{\beta_{i}}{\alpha_{i}} p_{i} \tag{1}
\end{equation*}
$$

where $\beta_{i} / \alpha_{i} \in Q$ and $D_{0}=\Sigma_{p \in X} n_{p} P, n_{p}$ an integer such that $n_{p}=0$ for all but finitely many P. The fractions can be added so it is assumed without loss of generality that the P_{i} 's are distinct. We consider the vector space $L(t D)=$ $\{f \mid(f) \geq-t D\}$, where $(f)=\Sigma v_{p}(f) P$ denotes the divisor of a meromorphic function f, and then study the ring $\oplus_{n=0}^{\infty} L(n D)$ which will be denoted by $\mathscr{L}(D)$. We will use the notation $l(n D)$ to denote the dimension of $L(n D)$. These rings are precisely the coordinate rings of normal affine surfaces with good C^{*}-action.

For each t, it is clear that $L(t D)=L\left(D^{t}\right)$ where

$$
D^{t}=t D_{0}+\sum_{i=1}^{k}\left[t \frac{\beta_{i}}{\alpha_{i}}\right] P_{i}
$$

and $\left[t \beta_{i} / \alpha_{i}\right]$ is the greatest integer $\leq\left(t \beta_{i} / \alpha_{i}\right)$. Therefore, $\operatorname{deg} t D$ is defined in the following way.

DEFINITION 2.1. If

$$
D=D_{0}+\sum_{i=1}^{k} \frac{\beta_{i}}{\alpha_{i}} P_{i}
$$

for $t \in Z$ we have

$$
\operatorname{deg} t D=\operatorname{deg} t D_{0}+\sum_{i=1}^{k}\left[t \frac{\beta_{i}}{\alpha_{i}}\right]
$$

Note. We have $\operatorname{deg} t D \geq 0 \nRightarrow \operatorname{deg}(t+1) D \geq 0$. Consider the divisor of Example 1.1,

$$
D=-P+\frac{1}{2} P_{1}+\frac{1}{2} P_{2}
$$

We have $\operatorname{deg} 2 k D=0$ while $\operatorname{deg}(2 k+1) D=-1$. If $l_{i}<\beta_{i} / \alpha_{i}<l_{i}+1, l_{i} \in$ Z, then for all $n \in Z$,

$$
\left[n \frac{\beta_{i}}{\alpha_{i}}\right]=n l_{i}+\left[n\left(\frac{\beta_{i}}{\alpha_{i}}-l_{i}\right)\right]
$$

We therefore assume the fractions β_{i} / α_{i} in (1) are such that $0 \leq \beta_{i} / \alpha_{i}<1$. Finally, it is clear if $D_{0} \sim D_{0}^{\prime}$ (i.e., $D_{0}-D_{0}^{\prime}=(f)$) then for

$$
D=D_{0}+\sum_{i=1}^{k}\left(\frac{\beta_{i}}{\alpha_{i}}\right) P_{i} \quad \text { and } \quad D^{\prime}=D_{0}^{\prime}+\sum_{i=1}^{k}\left(\frac{\beta_{i}}{\alpha_{i}}\right) P_{i}
$$

we have

$$
\mathscr{L}\left(D^{\prime}\right) \stackrel{\mathscr{L}}{=} \mathscr{L}(D) \quad\left(\varphi(g)=g f^{n} \quad \text { for all } \quad g \in L\left(n D^{\prime}\right)\right)
$$

It should be noted that in this paper the term " D a divisor" will refer to a divisor of the form given in (1) where $0<\beta_{i} / \alpha_{i}<1$ if $k \geq 1$ (the possibility $D=D_{0}$ is not excluded.)

All the results of the paper are written down in Table 2 of Chapter 3 where the Poincaré generating polynomial, the Poincaré relational polynomial and the Poincaré power series are given for $\mathscr{L}(D)$ for each divisor D which is considered in the paper. These polynomials are defined below. For

$$
R=\bigoplus_{i=0}^{\infty} R_{i} \cong K\left[X_{1}, \ldots, X_{d}\right] / I
$$

let m be the maximal ideal $m=\oplus_{i=1}^{\infty} R_{i}$. The elements $x_{j} \in m, 1 \leq j \leq d$ are a set of algebra generators for R if and only if the residue classes $\bar{x}_{1}, \ldots, \bar{x}_{d} \in$ m / m^{2} are a basis of m / m^{2} as a K-vector space. m / m^{2} is a graded vector space $m / m^{2}=\oplus_{i=1}^{\infty}\left(m / m^{2}\right)_{i}$.

Definition 2.2. The Poincaré generating polynomial of

$$
R=\bigoplus_{i=0}^{\infty} R_{i} \cong K\left[X_{1}, \ldots, X_{d}\right] / I
$$

is defined to be

$$
G_{R}(t)=\sum_{i=0}^{\infty} a_{i} t^{i} \quad \text { where } \quad a_{i}=\operatorname{dim}\left(m / m^{2}\right)_{i}
$$

Similarly the elements $x_{j}, j=1, \ldots, n$ are a minimal set of generators for I if and only if the residue classes $\bar{x}_{j}, j=1, \ldots, m$ form a basis for the graded vector space $I / m I$ where $m=\left\langle X_{1}, \ldots, X_{d}\right\rangle$.

Definition 2.3. The Poincaré relational polynomial of

$$
R=\bigoplus_{i=0}^{\infty} R_{i} \cong K\left[X_{1}, \ldots, X_{d}\right] / I
$$

is defined to be

$$
R_{R}(t)=\bigoplus_{i=0}^{\infty} a_{i} t^{i} \quad \text { where } \quad a_{i}=\operatorname{dim}(I / m I)_{i}
$$

Definition 2.4. The Poincaré power series of R is defined to be

$$
P_{R}(t)=\sum_{i=0}^{\infty} a_{i} t^{i} \quad \text { where } \quad a_{i}=\operatorname{dim} R_{i}
$$

For $\mathscr{L}(D)$ we use the notation $P_{D}(t), R_{D}(t)$ and $G_{D}(t)$.
The key results of the paper are proved in Theorem 2.10 and Theorem 2.12. Five short lemmas precede Theorem 2.10. The first three give very elementary facts about graded rings that are used throughout the rest of the paper. The fourth lemma is an equally elementary fact about certain sets of elements in the vector space $L(D)$ which will often be used to determine the independence of a chosen set of rational functions. The proofs of these lemmas are all straightforward and will be omitted. Lemma 2.9 is of utmost importance for the proof of Theorem 2.10. Its proof depends on properties of the convergents of continued fractions which are given in the appendix.

Lemma 2.5. Suppose R is a finitely generated graded ring over F where

$$
\varphi: F\left[X_{1}, \ldots, X_{k}\right] / I \rightarrow R=\bigoplus_{n=0}^{\infty} V_{n}
$$

is a graded F-isomorphism.
(1) Given a set of elements $b_{i} \in F\left[X_{1}, \ldots, X_{k}\right]$ such that $\phi\left(b_{i}+I\right)$ are a basis for V_{n}, for an arbitrary monomial m of degree n in $F\left[X_{1}, \ldots, X_{k}\right]$ there exists $a!$ expression $m-\sum c_{i} b_{i} \in I$ where $c_{i} \in F$.
(2) $I=\left\langle m-c_{i} b_{i}\right\rangle$ where m, c_{i}, b_{i} are as in (1).

Definition 2.5A. Suppose $M \in F\left[X_{1}, X_{2}, \ldots, X_{k}\right]$ is a monomial of degree n and we are given a set of elements $b_{i} \in F\left[X_{1}, \ldots, X_{k}\right]$ such that
$\varphi\left(b_{i}+I\right)$ are a basis for V_{n}. By Lemma 2.5 there exists a unique expression $\sum c_{i} b_{i}$ such that $M-\sum c_{i} b_{i} \in I$. The notation $f^{M}=\sum c_{i} b_{i}$ will be used.

Part (2) in Lemma 2.5 implies that $I=\left\langle M-f^{M}\right| M$ a monomial \rangle.
Suppose $F\left[X_{1}, \ldots, X_{k}, Y_{1}, \ldots, Y_{l}\right]$ and $F\left[X_{1}, \ldots, X_{k}\right]$ are finitely generated graded polynomial rings over a field F such that X_{i} is of the same degree in both rings. Assume $D<D^{\prime}$ where D and D^{\prime} are divisors on a smooth projective curve of genus g. If φ_{1} and φ_{2} are graded F-isomorphisms where $\varphi_{1}\left(X_{j}+I_{1}\right)=\varphi_{2}\left(X_{j}+I_{2}\right)$ for all J then Lemma 2.6 and 2.7 show that

$$
I_{2} \cap F\left[X_{1}, \ldots, X_{k}\right]=I_{1}
$$

where

Lemma 2.6. Assume we are as above. A basis $\varphi_{2}\left(b_{i}+I_{2}\right)$ for $L(t D)$ can be completed to a basis for $L\left(t D^{\prime}\right)$.

Lemma 2.7. Assume the hypotheses of Lemma 2.6 where

$$
m=f\left(X_{1}, \ldots, X_{k}\right) \in F\left[X_{1}, \ldots, X_{k}, Y_{1}, \ldots, Y_{l}\right]
$$

is of degree t and a basis for $L\left(t D^{\prime}\right),\left\{\varphi_{2}\left(b_{i}+I_{2}\right)\right\} i=1, \ldots, r$, is such that $b_{i}=g_{i}\left(X_{1}, \ldots, X_{k}\right) i=1, \ldots, s$ and $\varphi_{1}\left(b_{i}+I_{1}\right) i=1, \ldots, s, s \leq r$ is a basis for $L(t D)$. It then follows that in the relation

$$
m-\sum_{i=1}^{r} c_{i} b_{i} \in I_{2}, c_{i}=0 \quad \text { for all } \quad i>s \quad \text { and } \quad m-\sum_{i=1}^{s} c_{i} b_{i} \in I_{1}
$$

Lemma 2.8. Suppose $D=\sum_{i=1}^{r} m_{i} P_{i}, m_{i} \in Z$, is a divisor on a smooth projective curve X of genus g with function field $K(X)$. Given a set of rational functions $\left\{x_{1}, \ldots, x_{k}\right\}, x_{i} \in \mathscr{L}(D)$, choose any $s, 1 \leq s \leq r$. Suppose in $\left\{x_{1}, \ldots, x_{k}\right\}$ there exists at most one rational function x_{j} such that $v_{p_{s}}\left(x_{j}\right)=0$ for each integer $\mathcal{O},-m_{s} \leq \mathcal{O} \leq t$, then if $\sum_{i} k_{i} x_{i}=0, k_{i}=0$ for all x_{i} such that $v_{p_{s}}\left(x_{i}\right) \leq t$.

The above will be used in the following situation.
Lemma 2.8A. Suppose

$$
D=D_{0}+\sum_{i=1}^{k} \frac{\beta_{i}}{\alpha_{i}} P_{i}, D_{0}=\sum_{p \in X} n_{p} P, n_{p} \in Z
$$

is a divisor on a smooth projective curve of genus g. Suppose

$$
x_{i, j} \in L\left(p_{i j} D\right)-L\left(p_{i j} D-P_{i}\right)
$$

where

$$
\frac{p_{i j}}{q_{i j}}=\left[a_{i 1}, \ldots, a_{i j}\right]\left(p_{i 0}=1, q_{i 0}=0\right)
$$

Then in $L(n D)$ the set $\left\{x_{i, j}^{s} x_{i, j+1}^{t}\right\}$ where i is fixed and $s p_{i j}+t p_{i j+1}=n$ is linearly independent. Here s and t range over all nonnegative solutions to the diophantine equation $s p_{i j}+t p_{i j+1}=n$.

Proof. By the theorem on convergents in the appendix each element in the set is a rational function r with $v_{p_{i}}(r)$ of a different order \mathcal{O},

$$
-n n_{p_{i}} \geq \mathcal{O} \geq-n n_{p_{i}}-\left[n \frac{\beta_{i}}{\alpha_{i}}\right] .
$$

Now Lemma 2.8 applies.
DEFinition 2.9A. Let x be a homogeneous element of $\mathscr{L}(D)$. Thus $x \in L(n D)$ for some n and suppose x is not in the image of

$$
\varphi_{i}: L(i D) \oplus L((n-i) D) \rightarrow L(n D)
$$

for any $i=1,2, \cdots(n-1)$. Then x is called a primitive element of $\mathscr{L}(D)$.
It is clear if there exists a primitive element in $L(n D)$, any set of homogeneous generators for $\mathscr{L}(D)$ must have an element of degree n.

Lemma 2.9. Suppose $D=D_{1}+(\beta / \alpha) P$ is a divisor on a smooth projective curve of genus g with function field $K(X)$. Suppose $0<\beta / \alpha<1$ and $s \in Z$ is the order of P in D_{1}. Let $\alpha / \beta=\left[a_{1}, \ldots, a_{k}\right]$ have convergents $p_{j} / q_{j}=$ $\left[a_{1}, \ldots, a_{j}\right]$ (by convention $p_{0}=1, q_{0}=0$).
(1) If $\operatorname{deg} p_{j} D \geq 2 g$ then in $\mathscr{L}(D)$ any x_{j} of degree p_{j} such that

$$
x_{j} \in L\left(p_{j} D\right)-L\left(p_{j} D-P\right)
$$

is primitive.
(2) Suppose $\operatorname{deg} p_{j} D \geq 2 g$ for $j=0, \ldots, k$ and $t \in Z^{+}$. The set

$$
S=\left\{x_{j}^{m} x_{j+1}^{n}: m p_{j}+n p_{j+1}=t\right\}
$$

is a set of $[t \beta / \alpha]+1$ linearly independent elements of $L(t D)$.
(3) For a fixed positive integer $v<k$, the set

$$
S_{1}=\left\{x_{j}^{m} x_{j+1}^{n}: m p_{j}+n p_{j+1}=t, j \geq v, n \neq 0 \text { if } j=v\right\}
$$

is a linearly independent set with $[t \beta / \alpha]-\left[t q_{v} / p_{v}\right]$ elements. In (2) and (3), m and n are defined as s and t were in Lemma 2.8A.

Proof. If $\operatorname{deg} p_{1} D \geq 2 g$ then there exists $f \in L\left(p_{j} D\right)-L\left(p_{j} D-P\right)$ by Riemann Roch. We claim that f is primitive. It is sufficient to see that if m is an arbitrary monomial $m=\Pi y_{l}^{m_{l}} \in L\left(p_{j} D\right)$, then $v_{p}(m)>v_{p}(f)$ where each y_{l} is an element of degree $n_{l}, n_{l}<p_{j}$. Now $v_{p}(f)=-p_{j} s-q_{j}$. Given y_{l} of $\operatorname{deg} n_{l}, n_{l}<p_{j}, y_{l}$ is such that $v_{p}\left(y_{l}\right) \geq-\left[n_{l} \beta / \alpha\right]-n_{l} s$.

Now we know by Fact 7 in the appendix that

$$
\left[n_{l} \frac{\beta}{\alpha}\right]=\left[n_{l} \frac{q_{j-1}}{p_{j-1}}\right] \quad \text { if } \quad n_{l}<p_{j}
$$

We have $\sum n_{l} m_{l}=p_{j}$ and

$$
v_{p}(m) \geq-\sum n_{l} m_{l} s-\sum m_{l}\left[n_{l} \frac{q_{j-1}}{p_{j-1}}\right]=-p_{j} s-\sum m_{l}\left[n_{l} \frac{q_{j-1}}{p_{j-1}}\right]
$$

Suppose

$$
\sum m_{l}\left[n_{l} \frac{q_{j-1}}{p_{j-1}}\right] \geq q_{j}
$$

Then

$$
\sum m_{l}\left(n_{l} \frac{q_{j-1}}{p_{j-1}}\right) \geq q_{j}
$$

which implies

$$
\sum m_{l} n_{l} q_{j-1} \geq p_{j-1} q_{j}
$$

Using Fact 2 of the appendix ($p_{j-1} q_{j}-q_{j-1} p_{j}=1$), we get

$$
\sum m_{l} n_{l} q_{j-1} \geq 1+q_{j-1} p_{j}
$$

which implies

$$
p_{j} q_{j-1} \geq 1+q_{j-1} p_{j}
$$

This is impossible so $v_{p}(m)>-p_{j} s-q_{j}=v_{p}(f)$ and $\mathscr{L}(D)$ has a primitive x_{j} of $\operatorname{deg} p_{j}$ where $x_{j} \in L\left(p_{j} D\right)-L\left(p_{j} D-P\right)$.

Proof of (2). By the theorem on convergents in the appendix each element in S is a rational function with a pole at P of a different order \mathcal{O} such that $-t s \geq \mathcal{O} \geq-t s-\left[\beta_{t} / \alpha\right]$. Furthermore for each \mathcal{O} there exists a rational function $f \in S$ such that $v_{p}(f)=\mathcal{O}$. The set S therefore has $[t \beta / \alpha]+1$ elements; it is linearly independent by Lemma 2.8.

Proof of (3). Using the argument of (2), the subset S^{\prime} of S given by

$$
S^{\prime}=\left\{x_{j}^{m} x_{j+1}^{n}: j=0, \ldots, v-1, m p_{j}+n p_{j+1}=t\right\}
$$

is a linearly independent set of $\left[t q_{v} / p_{v}\right]+1$ elements. In $L(t D), S_{1}=S-S^{\prime}$ and so is a linearly independent set of $[t \beta / \alpha]-\left[t q_{v} / p_{v}\right]$ elements.

In the theorems that follow it is always assumed that

$$
D=D_{0}+\sum_{i=1}^{n} \frac{\beta_{i}}{\alpha_{i}} P_{i}
$$

is a divisor on a smooth projective curve X such that $D_{0}=\Sigma_{p \in X} n_{p} P$, $n_{p} \in Z, 0<\beta_{i} / \alpha_{i}<1$, and the P_{i} 's are distinct.

The j th convergent of α_{i} / β_{i} refers to the fraction

$$
\frac{p_{i j}}{q_{i j}}=a_{i 1}-\frac{1}{a_{i 2}-\frac{1}{a_{i 3}-\cdot}}=\left[a_{i 1}, \ldots, a_{i j}\right]
$$

where $\alpha_{i} / \beta_{i}=\left[a_{i 1}, \ldots, a_{i k_{i}}\right] . x_{i, j} \in \mathscr{L}(D)$ is always a rational function of degree $p_{i j}$ such that $x_{i, j} \in L\left(p_{i j} D\right)-L\left(p_{i j} D-P_{i}\right)$.

Theorem 2.10. Suppose $a_{i_{1}}, \ldots, a_{i k_{1}} \geq 2$ and $\left[a_{i 1}, \ldots, a_{i j}\right]=p_{i j} / q_{i j}$ for all i. Let

$$
D_{1}=D_{0}+\sum_{i=1}^{n} \frac{q_{i j_{i}}}{p_{i j_{i}}} P_{i} \text { and } \quad D=D_{0}+\sum_{i=1}^{n} \frac{\beta_{i}}{\alpha_{i}} P_{i}
$$

Here if $j_{i}>0, p_{i j_{i}} / q_{i j_{i}}$ is a convergent of $\alpha_{i} / \beta_{i}=p_{i k_{i}} / q_{i k_{i}}$ and D_{0} as always is an integral divisor. If $D_{0} \geq 0$ we may have $j_{i}=0$ using the convention $q_{i 0}=0$, $p_{i 0}=1$. Otherwise $1 \leq j_{i} \leq k_{i}$. Assume further:
(1) For $1 \leq i \leq n$ if $j_{i} \neq k_{i}$ there exists

$$
x_{i, j_{t}} \in L\left(p_{i j_{i}} D_{1}\right)-L\left(p_{i j_{i}} D_{1}-P_{i}\right)
$$

In the case $j_{i}=0$ this is the constant function which we denote by $x_{i, 0}$.
(2) We have $\operatorname{deg} m D_{1} \geq 2 g-1$ whenever $m \geq \min p_{i j_{i}+1}, 1 \leq i \leq n$.
(3) There exists a minimal set of generators $\left\{y_{1}, \ldots, y_{l}\right\}$ for $L\left(D_{1}\right)$ such that for all r either (a) deg $y_{r} \leq \min p_{i j_{i}+1}, 1 \leq i \leq n$, or (b) y_{r} is the sole generator corresponding to a convergent, i.e.,

$$
y_{r} \in L\left(p_{t s} D_{1}\right)-L\left(p_{t s} D_{1}-P_{t}\right)
$$

for some $s \leq j_{t}$ and for $i \neq r, y_{i} \notin L\left(p_{t s} D_{1}\right)-L\left(p_{t s} D_{1}-P_{t}\right)$.
Choose elements $x_{i, j}$ of degree $p_{i j} \in L\left(p_{i j} D\right)-L\left(p_{i j} D-P_{i}\right)$ where $j_{i}<j$ $\leq k_{i}, 1 \leq i \leq n$. It then follows that $\left\{y_{1}, \ldots, y_{l}, x_{i, j}, \ldots, x_{n, k_{n}}\right\}$ is a minimal set of homogeneous generators for $\mathscr{L}(D)$.

Proof. For each m let B_{m} be a basis of $L\left(m D_{1}\right)$ and let

$$
\begin{aligned}
c_{m}= & \left\{x_{i, j}^{s} x_{i, j+1}^{t}: j_{i} \leq j \leq k_{i}-1, s \neq 0 \text { if } j=j_{i}, 1 \leq i \leq n,\right. \text { and } \\
& \left.s, t \text { range over all nonnegative integers such that } s p_{i j}+t p_{i j+1}=m\right\}
\end{aligned}
$$

We will show that $B_{m} \cup \mathbf{C}_{m}$ is a basis for $L(m D)$.
Step 1. We show that

$$
l(m D)=l\left(m D_{1}\right)+\sum_{i=1}^{n}\left[\frac{q_{i k_{i}}}{p_{i k_{i}}} m\right]-\left[\frac{q_{i j_{i}}}{p_{i j_{i}}} m\right] \text { for all } m
$$

If $m<\min p_{i j_{i}+1}$ then $L(m D)=L\left(m D_{1}\right)$ since $\left[q_{i k_{i}} / p_{i k_{i}} m\right]=\left[q_{i j_{i}} / p_{i j_{i}} m\right]$ for all i by Facts 7 and 11 in the appendix.

For $m \geq \min p_{i_{i}+1}$, by Riemann Roch, condition 2 and the fact that $\operatorname{deg} m D \geq \operatorname{deg} m D_{1}$ we have

$$
\begin{aligned}
l(m D) & =\operatorname{deg} m D+1-g \\
& =\operatorname{deg} m D_{1}+\sum_{i=1}^{n}\left[\frac{q_{i k_{i}}}{p_{i k_{i}}} m\right]-\left[\frac{q_{i j_{i}}}{p_{i j_{i}}} m\right]+1-g \\
& =l\left(m D_{1}\right)+\sum_{i=1}^{n}\left[\frac{q_{i k_{i}}}{p_{i k_{i}}} m\right]-\left[\frac{q_{i j_{i}}}{p_{i j_{i}}} m\right] .
\end{aligned}
$$

Step 2. By repeated application of Lemma 2.9,

$$
\begin{aligned}
\left|B_{m} \cup C_{m}\right| & =l\left(m D_{1}\right)+\sum_{i=1}^{n}\left[\frac{q_{i k_{i}}}{p_{i k_{i}}} M\right]-\left[\frac{q_{i j_{j}}}{p_{i j_{i}}} m\right] \\
& =l(m D)
\end{aligned}
$$

By Lemma 2.9 and Lemma 2.8, $B_{m} \cup C_{m}$ is a linearly independent set. Thus

$$
\left\{y_{1}, \ldots, y_{2}, x_{i, j}, \ldots, x_{n, k_{n}}\right\}
$$

generates the ring $\mathscr{L}(D)$. It must now be seen the set is minimal. The element $x_{i, j}$ cannot be generated by other elements since $x_{i, j}$ is primitive in $\mathscr{L}(D)$ by Lemma 2.9. It is clear that

$$
y_{i} \notin\left\langle y_{1}, \ldots, y_{i-1}, y_{i+1}, \ldots, y_{l}, x_{i, j}, \ldots, x_{k, k_{n}}\right\rangle
$$

as $\operatorname{deg} y_{i} \leq \min p_{i j_{i}+1}$ or y_{i} is a primitive element in $\mathscr{L}(D)$.
Corollary 2.10A. Let D_{1} and D be as above. If $P_{R}(t)$ is the Poincaré power series for $\mathscr{L}\left(D_{1}\right)$ then

$$
P_{R}(t)+\sum_{i=1}^{n} \sum_{l=j_{i}}^{k_{i}-1} \frac{1}{\left(1-t^{p_{i l}}\right)\left(1-t^{p_{i l+1}}\right)}-\frac{1}{\left(1-t^{p_{i l}}\right)}
$$

is the Poincaré power series for $\mathscr{L}(D)$.
Proof. This follows by comparing $\cup B_{m}$ and $\cup\left(B_{m} \cup C_{m}\right)$ where B_{m} is a basis for $L\left(m D_{1}\right)$ and $B_{m} \cup C_{m}$ is the basis chosen in Theorem 2.10 for $L(m D)$.

Given $D_{1}<D$ as in Theorem 2.10, it has been seen that the degrees of the elements in a minimal set of homogeneous generators for $\mathscr{L}(D)$ can be easily obtained when those for $\mathscr{L}\left(D_{1}\right)$ are known. Theorem 2.12 shows that if the degrees of the generators for the corresponding ideal of relations for $\mathscr{L}\left(D_{1}\right)$ are given, those for $\mathscr{L}(D)$ can be deduced.

Proposition 2.11 is an elementary fact which is used extensively in the proof of Theorem 2.12. We can assume that if $\left\{y_{1}, \ldots, y_{s}\right\}$ is a set of homogeneous generators for $\mathscr{L}\left(D_{1}\right)$ the basis for each vector space $L\left(n D_{1}\right)$ consists of elements of the form $\Pi y_{i}^{n_{i}}$, i.e., the basis elements are monomials. The proof is straightforward and will be omitted.

Proposition 2.11. Let D be a divisor on a smooth projective curve of genus g and suppose $\mathscr{L}(D)$ is isomorphic to $F\left[X_{1}, \ldots, X_{s}\right] / I$. Suppose M is a monomial of $\operatorname{deg} t$ in $F\left[X_{1}, \ldots, X_{s}\right]$. Given $M-m_{i} \in J \subset I, m_{i}$ monomials of degree t, to show $M-f^{M} \in J$ one need only see that $m_{i}-f^{m_{i}} \in J$ for each i.

Theorem 2.12. Suppose D_{1} and D are as in Theorem 2.10. Recall that

$$
D_{1}=D_{0}+\sum_{i=1}^{n} \frac{q_{i j_{i}}}{p_{i j_{i}}} P_{i}, \quad D=D_{0}+\sum_{i=1}^{n} \frac{\beta_{i}}{\alpha_{i}} P_{i}
$$

where if $j_{i} \neq 0, p_{i j_{i}} / q_{i j_{i}}$ is a convergent of $\alpha_{i} / \beta_{i}=p_{i k_{i}} / q_{i k_{i}}$. By Theorem 2.10 we know that if

$$
\mathscr{L}\left(D_{1}\right) \cong \mathbf{C}\left[Y_{1}, \ldots, Y_{s}\right] / I_{1}
$$

then

$$
\mathscr{L}(D) \cong \mathbf{C}\left[Y_{1}, \ldots, Y_{s}, X_{i, j}, \ldots, X_{n, k_{n}}\right] / I
$$

We now show I is generated by I_{1} together with $\left\{M-f^{M} \mid M\right.$ is a quadratic monomial and $X_{i, j} \mid M$ for some $\left.i, j 1 \leq i \leq n, j_{i}+1 \leq j \leq k_{i}\right\}$. The proof is by induction on $\sum_{i=1}^{n}\left(k_{i}-j_{i}\right)$. Suppose $\sum_{i=1}^{n}\left(k_{i}-j_{i}\right)=1$. By the hypotheses and Theorem 2.10 we have a set of homogeneous generators $\left\{y_{1}, \ldots, y_{s}, x_{i, j_{i}+1}\right\}$ for $L(D)$, for some particular i, and we have some

$$
y_{k}=x_{i, j_{i}} \in L\left(p_{i j} D_{1}\right)-L\left(p_{i j} D_{1}-P_{i}\right) .
$$

Now $x_{i, j_{i}+1} \in L\left(p_{i j_{i}+1} D\right)-L\left(p_{i j_{i}+1} D-P_{i}\right)$ is the only "new" element. Let

$$
J=\left\langle I_{1}, Y_{l} X_{i, j_{i}+1}-f^{Y_{l} X_{i, j_{i}+1}}\right\rangle, \quad 1 \leq l \leq s .
$$

If $J \neq I$ there exists a relation $R \in I$ of smallest degree r such that $R \notin J$. To prove R cannot exist we look at the set

$$
S=\left\{M_{k}-f^{M_{k}}: M_{k} \text { is a monomial of degree } r \text { and } M_{k}-f^{M_{k}} \notin J\right\}
$$

and show that S is empty. For each $M_{k}-f^{M_{k}} \in S$ we must have $X_{i, j_{i}+1} \mid M_{k}$ as otherwise $M_{k}-f^{M_{k}} \in I_{1} \subset J$. Find $M_{s}-f^{M_{s}} \in S$ so that t_{s} is the smallest positive integer where $X_{i, j_{i}+1}^{t_{s}} \mid M_{s}$ but $X_{i, j_{i}+1}^{t_{s}+1}+M_{s}$. We know there exists a Y_{t} such that $Y_{t} \neq X_{i, j_{i}}$ and $Y_{t} \mid M_{s}$ since $X_{i, j_{i}}^{m_{j}} X_{i, j_{i}+1}^{m_{2}}$ is a basis element. We have

$$
\frac{M_{s}}{Y_{t}}-f^{M_{s} / Y_{t}} \in J
$$

by choice of r. By Proposition 2.11, $M_{s}-f^{M_{s}} \in J$ if for each summand m_{k} of $Y_{t} f^{M_{s} / Y_{t}}$ we have $m_{k}-f^{m_{k}} \in J$. By Lemma 2.6, 2.7 and the fact that $I_{1} \subset J$ we need only see that $m_{l}-f^{m_{l}} \in J$ for $m_{l}=c_{l} X_{i j_{i}+1}^{m_{1}} X_{i j_{i}}^{m_{2}} Y_{t}$. By Lemma 2.13 which follows the proof, we get $m_{1} \leq t_{s}$. We know that

$$
X_{i, j_{1}+1}^{m_{1}-1} X_{i, j_{i}}^{m_{2}}\left(X_{i, j_{i}+1} Y_{t} \cdots f^{X_{i, j_{i}+1} Y_{t}}\right) \in J
$$

Each summand of $X_{i, j_{i}+1}^{m_{1}-1} X_{i, j_{i}}^{m_{2}} f^{X_{i, j_{i}+1} Y_{t}}$ is a basis element or a monomial m for which $m-f^{m}$ must be in J by choice of t_{s}, so in either case Proposition 2.11 applies to show $m_{l}-f^{m_{l}} \in J$. Thus $M_{s}-f^{M_{s}} \notin S$. The supposition that S is
nonempty leads to a contradiction and the proof of the case $\Sigma\left(k_{i}-j_{i}\right)=1$ is finished.

For $\sum_{i=1}^{n}\left(k_{i}-j_{i}\right)>1$ consider an appropriate $D^{\prime \prime}$ such that $D_{1}<D^{\prime \prime}<D$. Use the induction hypothesis on $\mathscr{L}\left(D_{1}\right)$ and $\mathscr{L}\left(D^{\prime \prime}\right)$ and then again on $L\left(D^{\prime \prime}\right)$ and $\mathscr{L}(D)$

In Lemma 2.13 we simplify notation by writing P for the particular P_{i} in Theorem 2.11; $X_{i, j_{i}}$ will be simplified to $X_{j}, X_{i, j_{i}+1}$ to X_{j+1}, and the labels for convergents will be simplified accordingly.

Lemma 2.13. If $X_{j+1}^{t} \mid M$ but $X_{j+1}^{t+1}+M$ and $f^{M}=\sum_{l} c_{l} B_{l}$, then $X_{j+1}^{t+1}+B_{l}$ for any l.

Proof. Suppose Y_{i} is of degree s_{i} then $M=X_{j+1}^{t} \Pi Y_{i}^{n_{i}}$ is of degree $d=t p_{j+1}+\sum n_{i} s_{i}$ and

$$
v_{p}\left(X_{j+1}^{t} \prod Y_{i}^{n_{i}}\right) \geq-t q_{j+1}-\sum n_{i}\left[s_{i} \frac{q_{j}}{p_{j}}\right]-d l_{p}
$$

where l_{p} is the order of P in D_{1}.
Suppose there exists $B_{l}=X_{j+1}^{m_{1}} X_{j}^{m_{2}}$ where $m_{1} \geq t+1$, in f^{M}. We have

$$
\left.\begin{array}{rl}
m_{1} p_{j+1}+m_{2} p_{j}=d \\
t p_{j+1}+\sum n_{i} s_{i}=d
\end{array}\right\} \Rightarrow \sum n_{i} s_{i}=\left(m_{1}-t\right) p_{j+1}+m_{2} p_{j} .
$$

Lemma 2.9 and Lemma 2.8 imply

$$
\begin{equation*}
t q_{j+1}+\sum n_{i}\left[s_{i} \frac{q_{j}}{p_{j}}\right] \geq m_{1} q_{j+1}+m_{2} q_{j} \tag{1}
\end{equation*}
$$

As

$$
\left[\sum n_{i} s_{i} \frac{q_{j}}{p_{j}}\right] \geq \sum n_{i}\left[s_{i} \frac{q_{j}}{p_{j}}\right]
$$

(1) implies

$$
t q_{j+1}+\left[\left(\left(m_{1}-t\right) p_{j+1}+m_{2} p_{j}\right) \frac{q_{j}}{p_{j}}\right] \geq m_{1} q_{j+1}+m_{2} q_{j}
$$

Using Fact 2 of the appendix we get

$$
t q_{j+1}+\left[\left(m_{1}-t\right) \frac{\left(q_{j+1} p_{j}-1\right)}{p_{j}}+m_{2} q_{j}\right] \geq m_{1} q_{j+1}+m_{2} q_{j}
$$

which implies

$$
m_{1} q_{j+1}+m_{2} q_{j}+\left[\frac{t-m_{1}}{p_{j}}\right] \geq m_{1} q_{j+1}+m_{2} q_{j}
$$

But this is impossible if $m_{1}>t$ as then

$$
\left[\frac{t-m_{1}}{p_{j}}\right]<0
$$

Therefore $m_{1} \leq t . \square$
It should be noted that if $\left\{r_{1}, \ldots, r_{l}\right\}$ is a minimal set of homogeneous generators for $I_{1},\left\{r_{1}, \ldots, r_{l}, M-f^{M}: M\right.$ is quadratic and $\left.x_{i, j} \mid M\right\}$ may not be a minimal set for I. Each element $M-f^{M}$ is necessary but one can have some $r_{k} \in\left\langle M-f^{M}\right\rangle$. A case in which this occurs is given in Example 3.5. If, however, each r_{i} is of the form $r_{i}=M^{\prime}-f^{M^{\prime}}, M^{\prime}$ quadratic, then $\left\{r_{1}, \ldots, r_{l}, M-f^{M}\right\}$ is a minimal set for I.

As this is an important fact and will be used in Chapter 3 it is proved as a lemma.

Lemma 2.14. Assume $\mathscr{L}(D)$ is minimally generated by the rational functions y_{1}, \ldots, y_{s} and, for each n, B_{n} is a chosen basis of $L(n D)$. Then $\mathscr{L}(D)$ is isomorphic to $K\left[Y_{1}, \ldots, Y_{s}\right] / I, \varphi\left(y_{i}\right)=Y_{i}$. If the elements in the set $\left\{M-f^{M}\right.$: M is quadratic \} are a sufficient set of generators for I, they are a minimal set.

Proof. We only prove the last statement. From Lemma 2.5 and the fact that $K\left[Y_{1}, \ldots, Y_{s}\right]$ is noetherian we know I can be generated by a finite set of elements $r_{i}, i=1, \ldots, k$, such that $r_{i}=M-f^{M}$ where M is a monomial and f^{M} is the expression for M in terms of the basis. If $y_{j} y_{l}$ is not a basis element, $Y_{j} Y_{l}-f^{Y_{j} Y_{l}} \in I$ is a nontrivial element in I. As $\mathscr{L}(D)$ is minimally generated by the y_{i} 's, the terms $c Y_{k}$ and $c Y_{l}$ do not appear as summands in any r_{i} for any $c \in K$.

If $Y_{j} Y_{l}-f^{Y_{j} Y_{l}}=\sum_{i=1}^{k} g_{i} r_{i}$ where $g_{i} \in K\left[Y_{1}, \ldots, Y_{s}\right]$ the quadratic term $Y_{j} Y_{l}$ implies that for some $i, g_{i} \in K$ and $Y_{j} Y_{l}$ appears as a summand in r_{i}. But now since $Y_{j} Y_{l}$ is not a basis element, we must have $r_{i}=Y_{j} Y_{l}-f^{Y_{j} Y_{l}}$.

Corollary 2.14A. If $S=\left\{M_{i}-f^{M_{i}}\right\}$ is a set of generators for I, and M^{\prime} is quadratic but not a basis element then $M^{\prime}-f^{M^{\prime}} \neq 0$ and is in S.

Theorem 2.15. Assume D is a divisor on a smooth projective curve of genus g such that

$$
D=D_{0}+\sum_{i=1}^{n} \frac{\beta_{i}}{\alpha_{i}} P_{i}
$$

where β_{i} / α_{i} has convergents $p_{i j} / q_{i j}$. Suppose
(1) $\quad D_{0} \geq 0, \mathscr{L}\left(D_{0}\right) \cong C\left[Y_{1}, \ldots, Y_{s}\right] / I$ and $L\left(n D_{0}\right)$ has a basis B_{n},
(2) N is the largest positive integer such that $\beta_{i} / \alpha_{i}<1 / N$ for all i;
(3) $\left\{y_{1}, \ldots, y_{s}\right\}$ is a minimal set of generators for $\mathscr{L}\left(D_{0}\right)$ such that each y_{s} is of degree $\leq N+1$,
(4) $\operatorname{deg} D_{0} \geq(2 g-1) /(N+1)$.

Then

$$
\mathscr{L}(D) \cong C\left[Y_{1}, \ldots, Y_{s}, X_{1,1}, \ldots, X_{n, k_{n}}\right] / I^{\prime}
$$

where $I^{\prime}=\left\langle I, M-f^{M}: M\right.$ is a quadratic monomial with $\left.X_{i, j}\right| M$ for some $\left.i, j\right\rangle$. A basis for $L(n D)$ is

$$
\left\{B_{n}, x_{i, j}^{m_{1}} x_{i, j+1}^{m_{2}}: m_{1} p_{i j}+m_{2} p_{i j+1}=n .\right\}
$$

Proof. This follows from Theorems 2.10 and 2.12 where in the notation of those theorems, $\min p_{i j_{i}+1}=N+1$.

Chapter 3

In Chapter 3 several applications of the theorems of Chapter 2 are given. It is also shown that if D_{1} and D fulfill the hypotheses of Theorem 2.10 where $D_{1}<D$ and $G_{D}(1)>G_{D_{1}}(1)+1 \geq 3$ then $\mathscr{L}(D)$ is not isomorphic to the coordinate ring of a complete intersection. The results obtained in this chapter are collected together at the end in Table 2. The single most general result follows in Theorem 3.1.

Theorem 3.1. Let D be a divisor on a smooth projective curve of genus g such that

$$
D=D_{0}+\sum_{i=1}^{k} \frac{\beta_{i}}{\alpha_{i}} P_{i}, \quad \frac{\beta_{i}}{\alpha_{i}} \in Q
$$

We assume without loss of generality that D_{0} has integer coefficients, $0<\beta_{i} / \alpha_{i}$ <1, and the P_{i} 's are distinct. Suppose $\operatorname{deg} D_{0} \geq 2 g+2$. For each β_{i} / α_{i} find the convergents $p_{i j} / q_{i j}, j=1, \ldots, k_{i}$, of the decomposition of

$$
\frac{\alpha_{i}}{\beta_{i}}=\left[a_{i 1}, \ldots, a_{i k_{i}}\right]
$$

Let $p_{i 0}=1$ and let $\varphi_{\alpha_{i}, \beta_{i}}=\sum_{j=1}^{k_{i}} t^{p_{i j}}$. Suppose $S=\left\{\left(i, j, i^{\prime}, j^{\prime}\right): 1 \leq i \leq i^{\prime} \leq k\right.$,
$1 \leq j \leq k_{i}, 1 \leq j^{\prime} \leq k_{i^{\prime}}$, and finally $j-j^{\prime} \geq 2$ if $\left.i=i^{\prime}\right\}$. Then

$$
\begin{aligned}
& G_{D}(t)=G_{D_{0}}(t)+\sum_{i=1}^{k} \varphi_{\alpha_{i}, \beta_{i}} \\
& R_{D}(t)=R_{D_{0}}(t)+\sum_{i=1}^{k}\left(G_{D_{0}}(t) \varphi_{\alpha_{i}, \beta_{i}}-t^{p_{i 1}+1}\right)+\sum_{\left(i, j, i^{\prime} j^{\prime}\right) \in S} t^{p_{i j}+p_{i^{\prime} j^{\prime}}} \\
& P_{D}(t)=P_{D_{0}}(t)+\sum_{i=1}^{k} \sum_{j=0}^{k_{i}-1}\left(\frac{1}{\left(1-t^{p_{i j}}\right)\left(1-t^{p_{i j+1}}\right)}-\frac{1}{\left(1-t^{p_{i j}}\right)}\right) \\
& G_{D}(1)=G_{D_{0}}(1)+\sum_{i=1}^{k} k_{i} \\
& R_{D}(1)=R_{D_{0}}(1)+\frac{1}{2}\left(\Sigma k_{i}\right)\left(2 G_{D_{0}}(1)+\Sigma k_{i}-3\right)
\end{aligned}
$$

Proof. In [8], Saint-Donat proves that

$$
G_{D_{0}}(t)=\left(\operatorname{deg} D_{0}+1-g\right) t
$$

and

$$
R_{D_{0}}(t)=\frac{\left(G_{D_{0}}(t)\right)^{2}-t G_{D_{0}}(t)-2 t^{2} \operatorname{deg} D_{0}}{2}
$$

Now if $\operatorname{deg} D_{0}>2 g-1$ then D_{0} is base point free so we can assume D_{0} is effective. It is not difficult to see that D_{0} and D satisfy the hypotheses of Theorem 2.10. As an immediate consequence of Theorem 2.10,

$$
G_{D}(t)=\left(\operatorname{deg} D_{0}+1-g\right) t+\sum_{i=1}^{k} \varphi_{\alpha_{i}, \beta_{i}}
$$

The elements represented in $G_{D}(t)-G_{D_{0}}(t)$ are rational functions $x_{i, j}, j>0$ of degree $p_{i j}$ such that $x_{i, j} \in L\left(p_{i j} D\right)-L\left(p_{i j} D-P_{i}\right)$. Let $x_{i, 0}$ be the constant function and one of the generators for $\mathscr{L}\left(D_{0}\right)$. For each n, a basis for $L(n D)$ is $B_{n}=\left\{\right.$ basis for $\left.L\left(n D_{0}\right), x_{i, j}^{n_{1}} x_{i, j+1}^{n_{2}}\right\}, n_{1} p_{i j}+n_{2} p_{i j+1}=n$, $n_{2} \neq 0$ if $j=0$. It follows that

$$
P_{D}(t)=P_{D_{0}}(t)+\sum_{i=1}^{k} \sum_{j=0}^{k_{i}}\left(\frac{1}{\left(1-t^{p_{i j}}\right)\left(1-t^{p_{i j+1}}\right)}-\frac{1}{\left(1-t^{p_{i j}}\right)}\right)
$$

by considering $\cup_{n} B_{n}$.
By Theorem 2.12, Lemma 2.14, and Saint-Donat's result, the ideal of relations is minimally generated by $\left\langle M-f^{M}\right\rangle$ where M is quadratic (i.e., has
precisely 2 factors). The terms in $R_{D}(t)-R_{D_{0}}(t)$ are as follows. The summands in

$$
\sum_{i=1}^{k} G_{D_{0}}(t) \varphi_{\alpha_{i}, \beta_{i}}
$$

represent the elements $X_{i, j} Y_{s}-f^{X_{i, j}, Y_{s}}$ where Y_{s} corresponds to a generator for $\mathscr{L}\left(D_{0}\right)$. As there exists $Y_{s}^{s}=X_{i, 0}$ and $x_{i, 0} x_{i, 1}$ is a basis element, $\sum_{i=1}^{k} t^{p_{n}+1}$ must be subtracted out. The summands in

$$
\sum_{\left(i, j, i^{\prime} j^{\prime}\right) \in S} t^{p_{i_{j}}+p_{\prime^{\prime \prime}}}
$$

represent elements $X_{i, j} X_{i^{\prime}, j^{\prime}}-f^{X_{i, j}} X_{i, j^{\prime},} . G_{D}(1)$ gives the number of elements in a minimal set of homogeneous generators for $\mathscr{L}(D) . R_{D}(1)$ is as stated as each time a new generator $x_{i, j}$ is added to a set of l generators one gets $l-1$ new nontrivial relations $M-f^{M}$ where M is quadratic and $x_{i, j} \mid M$. Therefore if $G_{D}(1)-G_{D_{0}}(1)=s$ then

$$
R_{D}(1)-R_{D_{0}}(1)=G_{D_{0}}(1)-1+G_{D_{0}}(1)+\cdots+G_{D_{0}}(1)+s-2 .
$$

With one additional proposition one can extend the results of Theorem 3.1 to the case in which deg $D_{0}=2 g+1$ or $D_{0}=K$ where K is the canonical divisor on a nonhyperelliptic curve of genus $g>3$. Saint Donat has shown that in both these cases $G_{D_{0}}(t)$ is a polynomial of degree one and $R_{D_{0}}(t)$ has at most degree 3 . Theorem 3.3 can then be proved as a direct consequence of the following.

Proposition 3.2. Let D be as in Theorem 3.1 only without the supposition that $\operatorname{deg} D_{0} \geq 2 g+2$. Suppose instead we are given $D_{0}>0, \operatorname{deg} 2 D_{0} \geq 2 g-1$ and

$$
G_{D_{0}}(t)=a_{1} t+a_{2} t^{2}, \quad R_{D_{0}}(t)=b_{2} t^{2}+b_{3} t^{3} .
$$

Then the conclusions of Theorem 3.1 hold for $\mathscr{L}(D)$. Furthermore the coefficient of t^{3} in $R_{D}(t)$ is $b_{3}+\left(a_{1}-1\right) N$ where N is the number of fractions in D which are $>1 / 2$.

Proof. All follows as in Theorem 3.1 except for the statement about $R_{D}(t)$. Assume S is a minimal set of relations for the ideal of relations of $\mathscr{L}\left(D_{0}\right)$. We claim that if $f \in S$, then $f \notin\left\langle S-\{f\}, M-f^{M}\right\rangle, M$ a quadratic monomial such that $X_{i, j} \mid M$ where $x_{i, j}$ is one of the new generators for $\mathscr{L}(D)$. Let N be the number of fractions in D which are $\geq 1 / 2$. The degrees of the new
generators are all ≥ 2 and $x_{i, j}$ is of degree 2 if and only if $j=1$ and $\beta_{i} / \alpha_{i} \geq 1 / 2$. The degrees of the quadratics M are therefore ≥ 3 and there are precisely $N\left(a_{1}-1\right)$ of degree 3 which are not basis elements. (Recall $L(D)$ has a generator x_{0} which is the constant function and $x_{0} x_{i 1}$ is a basis element). Suppose

$$
f=r+\sum_{i=1}^{k} g_{i}\left(M_{i}-f^{M_{i}}\right), \quad r \in\langle S\rangle, \text { some } g_{i} \neq 0
$$

Now it must be that $\operatorname{deg} f=3$ and $g_{i}=c$ but this implies that the right hand side has a quadratic term which is divisible by a new generator while the left hand side does not. Therefore

$$
f \notin\left\langle S-\{f\}, M-f^{M}\right\rangle
$$

Theorem 3.3. Let D be a divisor on a smooth projective curve such that

$$
D=D_{0}+\sum_{i=1}^{k} \frac{\beta_{i}}{\alpha_{i}} P_{i} \quad \text { where } 0<\frac{\beta_{i}}{\alpha_{i}}<1 \text { and } D_{0}=\sum_{p \in X} n_{p} P, n_{p} \in Z
$$

Suppose $\operatorname{deg} D_{0}=2 g+1$ or $D_{0}=K$ where K is the canonical divisor on a non-hyperelliptic curve of genus $g>3$. Then the conclusions of Theorem 3.1 hold for $\mathscr{L}(D)$.

Proof. One can assume without loss of generality that $D_{0}>0$. Now apply Saint Donat's results from [7] and [8] along with Proposition 3.2 to get the result.

Thus far we have looked at examples in which $D_{0}>0$. The divisor of Example 1.1,

$$
D=-P+\frac{\beta_{1}}{\alpha_{1}} P_{1}+\frac{\beta_{2}}{\alpha_{2}} P_{2}, g=0, \frac{\beta_{i}}{\alpha_{i}} \geq \frac{1}{2}
$$

provides a clear illustration of Theorem 2.10 where $D_{0}<0$.
Lemma 3.4. Let D be a divisor on a Riemann surface of genus 0 such that

$$
D=-P+\frac{\beta_{1}}{\alpha_{1}} P_{1}+\frac{\beta_{2}}{\alpha_{2}} P_{2}, \frac{\beta_{i}}{\alpha_{i}} \geq \frac{1}{2} \quad \text { for all } i
$$

Let $\varphi_{\alpha_{i}, \beta_{i}}$ and S be as in Theorem 3.1. Then

$$
\begin{aligned}
& G_{D}(t)=\sum_{i=1}^{2} \varphi_{\alpha_{i}, \beta_{i}}-t^{2} \\
& R_{D}(t)=\sum_{\left(i, j, i^{\prime}, j^{\prime}\right) \in S} t^{p_{i j}+p_{i^{\prime}, j^{\prime}}-t^{2} \sum_{i=1}^{2} \varphi_{\alpha_{i}, \beta_{i}}+t^{4}} \\
& P_{D}(t)=\sum_{i=1}^{2} \sum_{j=1}^{k_{i}-1}\left(\frac{1}{\left(1-t^{p_{i j}}\right)\left(1-t^{p_{i j+1}}\right)}-\frac{1}{\left(1-t^{p_{i j}}\right)}-\frac{t^{2}}{(1-t)^{2}}\right)+1 .
\end{aligned}
$$

Proof. For $D_{1}=-P+1 / 2 P_{1}+1 / 2 P_{2}$ one gets $\mathscr{L}\left(D_{1}\right) \simeq C\left[Y_{1}\right]$ where

$$
y_{1}=x_{1,1}=x_{2,1}=\frac{(z-P)^{2}}{\left(z-P_{1}\right)\left(z-P_{2}\right)}
$$

and is of degree 2 . Choose any other D satisfying the conditions of the lemma. The three conditions of Theorem 2.10 are shown to hold for D_{1} and D.

Condition 1 holds since we have $\operatorname{deg} 2 D=0 \geq 2 g$.
For condition $2, \operatorname{deg} n D \geq-1$ for all $n \geq 1$, and for condition 3 we see that the generator corresponds to a convergent.

The lemma now follows using Theorem 2.10 and 2.12 while keeping in mind that there is only one generator of degree 2 , no relations of degree 4 or of degree $p_{i, 2}+2, i=1,2$.

As mentioned in the introduction, the theorems of Chapter 2 can be used to find $G_{D}(t)$ and $R_{D}(t)$ for all rings of automorphic forms and in many cases the theorems are applied to Wagreich's results on automorphic forms with three and four generators. The following example uses one of Wagreich's results and illustrates the process of finding D_{1} given D.

Lemma 3.5. Suppose D is a divisor on a Riemann surface of genus 1, $D=(\beta / \alpha) P$, where $\beta / \alpha \geq 4 / 5$. The entries for $G_{D}(t)$ and $R_{D}(t)$ are as in the table.

Let α / β have convergents $p_{j} / q_{j}, j=1, \ldots, k_{i}$. By Fact 10 of the appendix for $1 \leq j \leq 4$ we have $p_{j} / q_{j}=(j+1) / j$.

We would like to find a divisor $D_{l}, D_{l}<D$, such that $\mathscr{L}\left(D_{l}\right)$ is understood and D_{l} together with D fulfills the hypotheses of Theorem 2.10.

As $A(G)$ with signature $\left(1 ; 0 ; e_{i}\right)$ is isomorphic to $\mathscr{L}\left(D_{i}\right)$ where D_{i} is a divisor on a Riemann surface of genus 1 such that

$$
D_{i}=\frac{e_{i}-1}{e_{i}}
$$

we consider the signatures $\left(1 ; 0 ; e_{i}\right), 2 \leq e_{i} \leq 5$ (see Table 1). The ring associated with $(1 ; 0 ; 2)$ is $\mathscr{L}\left(D_{2}\right)$ where $D_{2}=\left(q_{1} / p_{1}\right) P$ but $\mathscr{L}\left(D_{2}\right)$ does not fulfill condition 3 of Theorem 2.10 as the generators do not correspond to convergents and are of degree higher than p_{2}. Likewise for $(1 ; 0 ; 3)$ we have the ring $\mathscr{L}\left(D_{3}\right)$ where $D_{3}=\left(q_{2} / p_{2}\right) P$ but again $\mathscr{L}\left(D_{3}\right)$ does not fulfill condition 3 of Theorem 2.10. In the case of $(1 ; 0 ; 4)$ however, one has $D_{4}=\left(q_{3} / p_{3}\right) P$ where $\mathscr{L}\left(D_{4}\right)$ has generators of degrees p_{0}, p_{2}, p_{3}. By Lemma 2.9 one knows these generators are rational functions

$$
x_{j} \in L\left(q_{j} P\right)-L\left(\left(q_{j} D-P\right)\right.
$$

The hypotheses of Theorem 2.10 are easily seen to be satisfied and therefore

$$
G_{D}(t)=t+\sum_{i=2}^{k} t^{p_{i}}
$$

Using only Theorem 2.12 one can not completely determine $R_{D}(t)$ however. We know $R_{D_{4}}(t)=t^{9}$ and $R_{D}(t)$ will necessarily have terms $\sum_{i=2}^{k-2} \sum_{j=2}^{k-i} t^{p_{i}+p_{i+j}}$ $+\sum_{i=4}^{k} t^{1+p_{i}}$ (these correspond to elements ($\left.X_{i} X_{i+s}-f^{X_{i} X_{i+s}}\right) i \geq 2, s \geq 2$ or $i=0, s \geq 4$), but one cannot tell whether or not $R_{D}(t)$ will contain the t^{9} term. Consider the monomials in $L\left(9 D_{4}\right)$:
(*)

$$
\begin{aligned}
x_{0} x_{3}^{2} & \in L(6 P)-L(5 P), \quad x_{2}^{3} \in L(6 P)-L(5 P), \quad x_{0}^{9} \\
x_{0}^{6} x_{2} & \in L(2 P)-L(P), \\
x_{0}^{5} x_{3} & \in L(3 P)-L(2 P), \quad x_{0}^{3} x_{2}^{2} \in L(4 P)-L(3 P), \\
x_{0}^{2} x_{2} x_{3} & \in L(5 P)-L(4 P) .
\end{aligned}
$$

By Lemma 2.8, the relation for $\mathscr{L}\left(D_{4}\right)$ is necessarily of the form

$$
r=x_{0} x_{3}^{2}-c_{0} x_{2}^{3}-c_{1} x_{0}^{9}-c_{2} x_{0}^{6} x_{2}-c_{3} x_{0}^{5} x_{3}-c_{4} x_{0}^{3} x_{2}^{2}-c_{5} x_{0}^{2} x_{2} x_{3}, \quad c_{0} \neq 0
$$

Next, consider $\mathscr{L}\left(D_{5}\right)$ where $D_{5}=4 / 5 P=\left(q_{4} / p_{4}\right) P$. As could be predicted using Theorem 2.10, $G_{D_{5}}(t)=t+t^{3}+t^{4}+t^{5}$. But now $R_{D_{5}}(t)=t^{6}+t^{8}=$ $t^{p_{4}+p_{0}}+t^{p_{4}+p_{2}}$ and the t^{9} term does not appear. This implies

$$
r \in\left\langle X_{0} X_{4}-f^{X_{0} X_{4}}, X_{2} X_{4}-f^{X_{2} X_{4}}\right\rangle
$$

It can be seen that

$$
X_{2}\left(X_{0} X_{4}-f^{X_{0} X_{4}}\right)-X_{0}\left(X_{2} X_{4}-f^{X_{2} X_{4}}\right)=c r
$$

as

$$
\begin{gathered}
X_{0} X_{4}-f^{X_{0} X_{4}}=X_{0} X_{4}-b_{1} X_{2}^{2}-b_{2} X_{3} X_{0}^{2}-b_{3} X_{2} X_{0}^{3}-b_{4} X_{0}^{6} \\
X_{2} X_{4}-f^{X_{2} X_{4}}= \\
X_{2} X_{4}-d_{1} X_{3}^{2}-d_{2} X_{3} X_{2} X_{0}-d_{3} X_{2}^{2} X_{0}^{2} \\
-d_{4} X_{3} X_{0}^{4}-d_{5} X_{2} X_{0}^{5}-d_{6} X_{0}^{8}
\end{gathered}
$$

and Lemma 2.8 implies $b_{1} \neq 0, d_{1} \neq 0$. Therefore

$$
\begin{aligned}
& \frac{1}{d_{1}}\left[X_{0}\left(X_{2} X_{4}-f^{X_{2} X_{4}}\right)-X_{2}\left(X_{0} X_{4}-f^{X_{0} X_{4}}\right)\right]-r \\
& \quad=a_{1} X_{2}^{3}-a_{2} X_{0}^{9}-a_{3} X_{0}^{6} X_{2}-a_{4} X_{0}^{5} X_{3}-a_{5} X_{0}^{3} X_{2}^{2}-a_{6} X_{0}^{2} X_{2} X_{3} .
\end{aligned}
$$

Using (*) and Lemma 2.8 we get $a_{i}=0$ for all i. By Lemma 2.14,

$$
R_{D}(t)=\sum_{i=2}^{k-2} \sum_{j=2}^{k-i} t^{p_{i}+p_{i+j}}+\sum_{i=4}^{k} t^{1+p_{i}}
$$

If $3 / 4<\beta / \alpha<4 / 5$ then the degree 9 relation will be necessary as a generator in the ideal of relations as one can see, from Facts 10,11 and Lemma A. 2 of the appendix, that all new additional generators necessary for $\mathscr{L}(D)$ will be of degree >8.

In finding the degrees of generators and relations for all rings of automorphic forms the case of $g=0$ is the most complicated. Here if $A(G)$ has signature $\left(0 ; s ; e_{1}, e_{2}, \ldots, e_{r}\right), A(G) \simeq \mathscr{L}(D)$ where D is a divisor on a Riemann surface of genus 0 and

$$
D=-2 P+s P+\sum_{i=1}^{r} \frac{e_{i}-1}{e_{i}} P_{i}
$$

If $s \geq 2$, Theorem 2.10 and 2.12 can be applied and the results are listed in Table 2. The case $s=1, r=2$ is taken care of by Lemma 3.4. Rings with signatures $s=0, r \leq 5$ can be understood by applying Theorem 2.10 and 2.12 to Wagreich's result on rings of automorphic forms with few generators. The rest of the cases, i.e., $s=1, r>2$ and $s=0, r \geq 6$, will be taken care of by Lemma 3.8. For the purpose of understanding $A(G)$ one is only interested in

$$
D=-n P+\sum_{i=1}^{k} \frac{e_{i}-1}{e_{i}} P_{i}
$$

where $n=1$ or 2 and $k \geq 3 n$ but the more general case of

$$
D=-r P+\sum_{i=1}^{k} \frac{\beta_{i}}{\alpha_{i}} P_{i}, \quad k \geq 3 r, \frac{\beta_{i}}{\alpha_{i}} \geq \frac{1}{2}
$$

is just as easily studied.
We first consider the divisor $D_{1}=-r P+\sum_{i=1}^{k} 1 / 2 P_{i}, k \geq 3 r$, and then apply Theorems 2.10 and 2.12 to understand the general case.

Lemma 3.6. Let D_{1} be a divisor on a Riemann surface of genus 0 such that $D_{1}=-r P+\sum_{i=1}^{k} 1 / 2 P_{i}, k \geq 3 r, P \neq P_{i}$. One can make a specific choice of generators to show that for $\mathscr{L}\left(D_{1}\right)$:
(1) $G_{D_{1}}(t)=(k-2 r+1) t^{2}+(k-3 r+1) t^{3}$.
(2) $\quad R_{D_{1}}(t)=\binom{k-2 r}{2} t^{4}+(k-2 r)(k+3 r) t^{5}+\binom{k-3 r+2}{2} t^{6}$.
(3) $\quad P_{D_{1}}(t)=\frac{(k-2 r)\left(1+t^{3}\right)}{\left(1-t^{2}\right)^{2}}-\frac{(k-2 r-1)\left(1+t^{3}\right)}{\left(1-t^{2}\right)}$.
(4) A basis for $L\left(t D_{1}\right)$, t even, is

$$
B_{t e}=\left\{x_{2 r}^{t / 2-k_{1}} x_{2 r+l}^{k_{1}}, x_{2 r}^{t / 2}\right\}, k_{1}=1, \ldots, t / 2, l=1, \ldots, k-2 r
$$

Here $x_{2 r+m}$ is a generator of degree 2 and

$$
x_{2 r+m}=\frac{(z-P)^{2 r}}{\left[\prod_{i=1}^{2 r-1}\left(z-P_{i}\right)\right]\left(z-P_{2 r+m}\right)}, \quad m=0, \ldots, k-2 r
$$

A basis for $L\left(t D_{1}\right), t$ odd, is

$$
B_{t 0}=\left\{x_{2 r}^{(t-3) / 2-k_{1}} x_{2 r+l}^{k_{1}} y_{3 r}, x_{2 r}^{(t-3) / 2-k_{2}} x_{3 r+s}^{k_{2}}, y_{3 r+s}, x_{2 r}^{(t-3) / 2} y_{3 r}\right\}
$$

where $1 \leq k_{1} \leq(t-3) / 2,1 \leq l \leq r, 0 \leq k_{2} \leq(t-3) / 2$ and $1 \leq s \leq k-3 r$. Here

$$
y_{3 r+m}=\frac{(z-P)^{3 r}}{\left[\prod_{i=1}^{3 r-1}\left(z-P_{i}\right)\right]\left(z-P_{3 r+m}\right)}, \quad m=0,1, \ldots, k-3 r
$$

and $y_{3 r+m}$ is a generator of degree 3.
(5) The relations can be chosen as follows.
(a) For degree 4,

$$
\begin{gathered}
X_{2 r+k_{1}} X_{2 r+s}-c_{1} X_{2 r} X_{2 r+k_{1}}-c_{2} X_{2 r} X_{2 r+s}, \\
1 \leq k_{1} \leq k-2 r-1, k_{1}<s \leq k-2 r, \\
c_{2}=\frac{P_{2 r}-P_{2 r+s}}{P_{2 r+k_{1}}-P_{2 r+s}}, \quad c_{1}=1-c_{2}
\end{gathered}
$$

(b) For degree 5,

$$
X_{2 r+k_{1}} Y_{3 r+s}-c_{k, s}^{\prime} X_{2 r} Y_{3 r+s}-c_{k, s}^{\prime \prime} X_{l} Y_{m}-c_{k, s}^{\prime \prime \prime} X_{2 r} Y_{3 r}
$$

where $l=2 r, m=2 r+k_{1}$ if $k_{1} \geq r$ and $l=2 r+k_{1}, m=3 r$ if $k_{1}<r$. Here $1 \leq k_{1} \leq k-2 r ; 0 \leq s \leq k-3 r$ where $s \neq 0$ if $k_{1} \leq r$ and $k_{1}-r-s \neq 0$ if $k_{1}>r$.
(c) For degree 6,

$$
Y_{3 r+s} Y_{3 r+t}-\sum_{m=1}^{2} \sum_{l=1}^{r-1} c_{m l}^{s t} X_{2 r}^{3-m} X_{2 r+l}^{m}-c_{m}^{s t} X_{2 r}^{2} X_{3 r+s}-c_{0 m}^{s t} X_{2 r}^{2} X_{3 r+t}
$$

where $0 \leq s \leq k-3 r$ and $s \leq t \leq k-3 r$.
We leave the proof to the reader.
Lemma 3.8. Let D be a divisor on a Riemann surface of genus 0 such that

$$
D=-r P+\sum_{i=1}^{k} \frac{\beta_{i}}{\alpha_{i}} P_{i}, \quad k \geq 3 r, \frac{\beta_{i}}{\alpha_{i}} \geq \frac{1}{2}
$$

Then $G_{D}(t), P_{D}(t)$ and $R_{D}(t)$ are as given in Table 2.
Proof. Lemma 3.6 proves this lemma for $D_{1}=-r P+\sum_{i=1}^{k} 1 / 2 P_{i}, k \geq 3 r$. Let D be any other divisor satisfying the conditions of the lemma. The conditions of Theorem 2.10 are shown to be satisfied. For conditions 1 and 2, $L(2 D), L(3 D)$ nontrivial implies $L(n D) \supset L(2 D) \otimes L((n-2) D)$ is nontrivial for all $n \geq 4$ which implies $\operatorname{deg} n D>0$ for all $n \geq 2$. Condition 3 follows from the fact that all new convergents are of degree 3 or more. Theorem 2.12 and Corollary 2.11 finish the proof.

Finally, we show that if D_{1} and D fulfill the hypothesis of Theorem 2.10 where $D_{1}<D, \mathscr{L}(D)$ is rarely isomorphic to the coordinate ring of a complete intersection. Let I and I_{1} be the ideal of relations corresponding to $\mathscr{L}(D)$ and $\mathscr{L}\left(D_{1}\right)$ respectively. Let $Z(I)$ be the affine variety with coordinate ring isomorphic to $\mathscr{L}(D)$. Suppose D_{1} and D fulfill the hypotheses of Theorem 2.10 where $D_{1}<D$.

Lemma 3.9 (1). If $G_{D}(1) \geq G_{D_{1}}(1)+2$ and $G_{D_{1}}(1) \geq 2$ then $Z(I)$ is not a complete intersection.
(2) Suppose $G_{D}(1)-G_{D_{1}}(1)=1$ and call the new generator $x_{i, j}$. Then $Z(I)$ is a complete intersection only if $I_{D_{1}} \subset\left\langle Q M-f^{Q M}\right| Q M$ is a quadratic monomial such that $x_{i, j}|Q M\rangle$.

Proof. (1) Given $G_{D}(1)-G_{D_{1}}(1)=k$, Theorem 2.12 and Corollary 2.14A imply

$$
R_{D}(1) \geq G_{D_{1}}(1)-1+G_{D_{1}}(1)+\cdots+G_{D_{1}}(1)+k-2
$$

Since $G_{D}(1)=G_{D_{1}}(1)+k, Z(I)$ is a complete intersection only if

$$
R_{D}(1)=G_{D_{1}}(1)+k-2
$$

Now if $k \geq 2$ and $G_{D_{1}}(1) \geq 2$ we get $R_{D}(1) \geq 1+G_{D_{1}}(1)+k-2$.
(2) Since $G_{D}(1)=G_{D_{1}}(1)+1, Z(I)$ is a complete intersection if and only if $R_{D}(1)=G_{D_{1}}(1)-1$. With the new generator $x_{i, j}$ one gets $G_{D_{1}}(1)-1$ nontrivial relations $Q M-F^{Q M}$ where $Q M$ is a quadratic monomial such that $x_{i, j} \mid Q M$. By Corollary 2.14A these are necessary as generators for I. It follows that $Z(I)$ is a complete intersection only if these relations are sufficient to generate I.

Tables 1 and 2 now follow. The results in Table 2 have all been obtained by applying the theorems of Chapter 2 to the established results listed in Table 1. In Table 1 the entries in 1-3 are due to Mumford (see [4]) and Saint-Donat (see [7] and [8]) while the rest of the entries can be found in Wagreich's papers [10] and [11]. The number of relations of degrees 3 is not determined for the divisors given in 2 and 3. In Table 2 we consider divisors of the form

$$
D=D_{0}+\sum_{i=1}^{k} \frac{\beta_{i}}{\alpha_{i}} P_{i}
$$

where $0<\beta_{i} / \alpha_{i}<1$ and either $\operatorname{deg} D_{0} \leq 0$ or D_{0} is one of the divisors considered in Table 1. Recall that in Theorem 3.1 it was shown that for the divisor

$$
D^{*}=D_{0}+\sum_{i=1}^{k} \frac{\beta_{i}}{\alpha_{i}} P_{i} \text { where deg } D_{0} \geq 2 g+2 \text { and } 0<\frac{\beta_{i}}{\alpha_{i}}<1
$$

we have the following results. We let

$$
\varphi_{a_{i}, \beta_{i}}=\sum_{j=1}^{k_{i}} t^{p_{i j}}
$$

and let $S=\left\{\left(i, j, i^{\prime}, j^{\prime}\right): 1 \leq i \leq i^{\prime} \leq k, 1 \leq j \leq k_{i}, 1 \leq j^{\prime} \leq k_{i^{\prime}}\right.$, and finally $j-j^{\prime} \geq 2$ if $\left.i=i^{\prime}\right\}$. It was then shown that

$$
\begin{aligned}
& G_{D^{*}}(t)=G_{D_{0}}(t)+\sum_{i=1}^{k} \varphi_{\alpha_{i}, \beta_{i}}, \\
& R_{D^{*}}(t)=R_{D_{0}}(t)+\sum_{i=1}^{k}\left(G_{D_{0}}(t) \varphi_{\alpha_{i}, \beta_{i}}-t^{p_{i 1}+1}\right)+\sum_{\left(i, j, i^{\prime}, j^{\prime}\right) \in S} t^{p_{i j}+p_{i^{\prime} j^{\prime}}}, \\
& G_{D^{*}}(1)=G_{D_{0}}(1)+\sum_{i=1}^{k} k_{i}, \\
& R_{D^{*}}(1)=R_{D_{0}}(1)+\frac{\left(\sum k_{i}\right)\left(2 G_{D_{0}}(1)+\sum_{i=1}^{k} k_{i}-3\right)}{2} \\
& P_{D^{*}}(t)=P_{D_{0}}(t)+\sum_{i=1}^{k} \sum_{j=0}^{k_{i}}\left(\frac{1}{\left(1-t^{p_{i j}}\right)\left(1-t^{p_{i j+1}}\right)}-\frac{1}{\left(1-t^{\left.p_{i j}\right)}\right.}\right)
\end{aligned}
$$

Table 1

$\begin{aligned} & D=D_{0}+\frac{\beta}{\alpha} P_{1} \\ & D_{0}=\sum n_{p} P, n_{p} \in Z \\ & \text { Extra Conditions on } D \end{aligned}$	$G_{D}(t)$	$R_{D}(t)$	$P_{D}(t)$
1. $\operatorname{deg} D_{0} \geq 2 g+2, \frac{\beta}{\alpha}=0$	$\left(\operatorname{deg} D_{0}+1-g\right) t$	$\frac{\left(G_{D_{0}}(t)\right)^{2}-t G_{D_{0}}(t)-2 t^{2} \operatorname{deg} D_{0}}{2}$	$\frac{t \operatorname{deg} D_{0}}{(1-t)^{2}}+\frac{1-g t}{(1-t)}$
2. $\operatorname{deg} D_{0}=2 g+1, \frac{\beta}{\alpha}=0$	$(g+2) t$	$\frac{g(g-1)}{2} t^{2}+d t^{3}$	$\frac{t \operatorname{deg} D_{0}}{(1-t)^{2}}+\frac{1-g t}{(1-t)}$
3. $D_{0}=K, g>3, \frac{\beta}{\alpha}=0$,	$g t$	$\frac{(g-3)(g-2)}{2} t^{2}+d t^{3}$	$\frac{t(2 g-2)}{(1-t)^{2}}+\frac{1-g t+t-t^{2}}{(1-t)}$
non-hyperelliptic curve. ($d \neq 0$ implies curve is non-singular plane quintic or a triagonal covering of P^{1})			
4. $D_{0}=0, g=1, \frac{\beta}{\alpha}=\frac{1}{2}$	$t+t^{4}+t^{6}$	t^{12}	$\frac{1-t^{12}}{(1-t)\left(1-t^{4}\right)\left(1-t^{6}\right)}$
5. $D_{0}=0, g=1, \frac{\beta}{\alpha}=\frac{2}{3}$	$t+t^{3}+t^{5}$	t^{10}	$\frac{1-t^{10}}{(1-t)\left(1-t^{3}\right)\left(1-t^{5}\right)}$
6. $D_{0}=0, g=1, \frac{\beta}{\alpha}=\frac{3}{4}$	$t+t^{3}+t^{4}$	t^{9}	$\frac{1-t^{9}}{(1-t)\left(1-t^{3}\right)\left(1-t^{4}\right)}$
7. $D_{0}=0, g=1, \frac{\beta}{\alpha}=\frac{4}{5}$	$t+t^{3}+t^{4}+t^{5}$	$t^{6}+t^{8}$	$\frac{1-t^{9}}{(1-t)\left(1-t^{3}\right)\left(1-t^{4}\right)}+\frac{t^{5}}{\left(1-t^{4}\right)\left(1-t^{5}\right)}$

Table 2

$D=D_{0}+\sum_{i=1}^{k} \frac{\beta_{i}}{\alpha_{i}}, 0<\frac{\beta_{i}}{\alpha_{i}}<1$ Extra Conditions on D	$f(t)$	$g(t)$	$h(t)$	$f(1)$	$g(1)$
1. $\operatorname{deg} D_{0} \geq 2 g+1$					
2. $D_{0}=K$ non-hyperelliptic curve $g>3$					
3. $D_{0}=0 \mathrm{~g}=0$					
$\text { 4. } g=1, D=\frac{\beta_{1}}{\alpha_{1}} P, \frac{\beta_{1}}{\alpha_{1}} \geq \frac{3}{4} \text {, }$	$-t^{2}$	$\delta_{i j} t^{9}-\varphi_{\alpha, j,}{ }^{2}{ }^{2}$	$\frac{-t^{2}}{(1-t)}$	-1	$\delta_{i j}-k_{1}$
For $\delta_{i j}, i=j$ if and only if $\frac{3}{4} \leq \frac{\beta_{1}}{\alpha_{1}}<\frac{4}{5}$					
5. $g=0, D=-P+\frac{\beta_{1}}{\alpha_{1}} P_{1}+\frac{\beta_{2}}{\alpha_{2}} P_{2}$	$-t^{2}$	$2 t^{3}+t^{4}-\sum_{i=1}^{2} t^{2} \psi_{\alpha_{,}, \beta_{i}}$	$1+\frac{-t^{2}}{(1-t)^{2}}$	-1	$3-k_{1}-k_{2}$
$\frac{\beta_{i}}{\alpha_{i}} \geq \frac{1}{2}$ for all i					
6. $g=0, D=-r P+\sum_{i=1}^{k} \frac{\beta_{i}}{\alpha_{i}} P_{i}$	$-(2 r-1) t^{2}$	$\begin{aligned} & {\left[-(2 r-1) t^{2}\right.} \\ & \left.+(k-3 r+1) t^{3}\right] \end{aligned}$	$1+\frac{(-2 r+1) t^{2}}{(1-t)^{2}}$	$k-5 r+2$	$(k-5 r+2) \sum_{i=1}^{k} k_{i}$
$k \geq 3 r, \frac{\beta_{i}}{\alpha_{i}} \geq \frac{1}{2}$ for all i	$+(k-3 r+1) t^{3}$	${ }^{3} \quad\left(\sum_{i=1}^{k} \varphi_{\alpha_{i}, \beta_{i}}\right)$	$+\frac{(r-1) t^{3}}{(1-t)^{2}}$		$+\frac{(k-5 r)^{2}-13 r+k+2}{2}+2$
$r \in Z^{+}$		$\begin{gathered} +\left(2 r^{2}+r-k\right) t^{4} \\ +\left(6 r^{2}-2 r k-3 r\right) t^{5} \\ +\left(\begin{array}{c} k-3 r+2 \\ 2 \\ +k t^{3} \end{array}\right) t^{6} \end{gathered}$			

For each divisor D in Table 2 we give the polynomials $f(t)$ and $g(t)$ such that $G_{D}(t)=G_{D^{*}}(t)+f(t)$ and $R_{D}(t)=R_{D^{*}}(t)+g(t)$. The rational function $h(t)$, where $P_{D}(t)=P_{D^{*}}(t)+h(t)$ is also provided and the numbers $f(1)$ and $g(1)$ are computed. In the case

$$
\begin{align*}
g & =0, \quad D=D_{0}+\sum \frac{\beta_{i}}{\alpha_{i}} P_{i} \text { where } \operatorname{deg} D_{0} \geq 0 \text { or } \tag{*}\\
\operatorname{deg} D_{0} & =-1 \text { and } \frac{1}{2} \leq \frac{\beta_{i}}{\alpha_{i}} \leq 1,
\end{align*}
$$

Henry Pinkham has shown that $\mathscr{L}(D)$ is isomorphic to the coordinate ring of an affine surface with a single isolated rational singularity at zero. Jonathan Wahl has shown that this implies $R_{D}(1)=1 / 2(k-1)(k-2)$ whenever $G_{D}(1)=k$. A simple computation shows that for all the divisors listed in Table 2 which fulfill the conditions of (*) the entries satisfy Wahl's result.

Appendix

The Appendix gives all the facts about the convergents of the simple continued fraction α / β which are used in the paper. Given $0<\beta / \alpha<1$, consider the decomposition

$$
\frac{\alpha}{\beta}=a_{1}-\frac{1}{a_{2}-\frac{1}{a_{3}-} \cdot\left[a_{1}, \ldots, a_{k}\right] . . \frac{1}{a_{k}}}=[
$$

Let $p_{0}=1, q_{0}=0$ and let $p_{i} / q_{i}=\left[a_{1}, \ldots, a_{i}\right]$ be the convergents of the above decomposition. By induction one can prove the following two properties.

Fact 1. $\quad p_{i}+p_{i+2}=a_{i+2} p_{i+1}, q_{i}+q_{i+2}=a_{i+2} q_{i+1}$.
Fact 2. $\quad p_{i} q_{i+1}-p_{i+1} q_{i}=1$.
(See [2] for the standard proofs for 1 and 2). Adding and subtracting multiples of various p_{j} 's in 1 , one can see:

Fact 3. $p_{i}+p_{i+3}=\left(a_{i+2}-1\right) p_{i+1}+\left(a_{i+3}-1\right) p_{i+2}$.
Fact 4.

$$
\begin{aligned}
p_{i}+p_{i+k^{\prime}}= & \left(a_{i+2}-1\right) p_{i+1}+\left(a_{i+3}-2\right) p_{i+2}+\left(a_{i+4}-2\right) p_{i+3} \\
& +\cdots+\left(a_{i+\left(k^{\prime}-1\right)}-2\right) p_{i+k^{\prime}-2}+\left(a_{i+k^{\prime}}-1\right) p_{i+k^{\prime}-1}
\end{aligned}
$$

This holds for all k^{\prime} such that $3<k^{\prime} \leq k-i$. (The same property holds for the q_{i} 's.)

From these the following can be deduced.
Fact 5. $\quad p_{i} / q_{i}>p_{i+j} / q_{i+j}$ for $j \geq 1$ so $p_{i} q_{i+j}-p_{i+j} q_{i}>0$ for $j \geq 1$. (This follows from fact 2).

Fact 6. Given $\sum_{i} b_{i} p_{i}$ and $\sum_{i} b_{i} q_{i}, b_{i} \geq 0, b_{i} \in Z$, there exists $j, m, n \in$ $Z^{+} \cup 0$ such that

$$
\sum_{i=l}^{s} b_{i} p_{i}=m p_{j}+n p_{j+1}
$$

and

$$
\sum_{i=l}^{s} b_{i} q_{i}=m q_{j}+n q_{j+1}
$$

Proof. We use induction on $s-l$. If $s-l=1$, there is nothing to show. Suppose the fact is true whenever $s-l<t$ and $s-l=t$. Without loss of generality say $\min \left(b_{l}, b_{s}\right)$ is b_{l}. Then

$$
\sum_{i=l}^{s} b_{i} p_{i}=b_{l} p_{l}+b_{l} p_{s}+\sum_{i=l+1}^{s-1} b_{i} p_{i}+\left(b_{s}-b_{l}\right) p_{s}
$$

Now, using Fact 1, 3 or 4, replace the first two terms on the right hand side by

$$
b_{l} \sum_{i=+1}^{s-1} c_{i} p_{i}
$$

and then apply the induction hypothesis to the new right hand side. The proof is identical for the q_{i} 's.

Fact 7. For $n<p_{k},\left[n q_{k} / p_{k}\right]=\left[n q_{k-1} / p_{k-1}\right]$.
Proof. Suppose there exists an integer s such that

$$
n \frac{q_{k-1}}{p_{k-1}}<s \leq n \frac{q_{k}}{p_{k}}
$$

Then $n q_{k-1}<s p_{k-1} \leq n q_{k-1}+n / p_{k}$ as

$$
\frac{q_{k}}{p_{k}}=\frac{q_{k-1}}{p_{k-1}}+\frac{1}{p_{k} p_{k-1}}
$$

follows from Fact 2. Since $s p_{k-1} \in Z$ and is larger than $n q_{k-1}, s p_{k-1} \geq n q_{k-1}$ +1 which implies $n \geq p_{k}$, a contradiction.

Fact 8. If $m p_{i}+n p_{i+1}=t$ where $m, n \in Z^{+} \cup 0$ then $m q_{i}+n q_{i+1} \leq$ $t \beta / \alpha$.

Proof. Suppose not. Then

$$
\begin{equation*}
m p_{i} q_{k}+n p_{i+1} q_{k}=t q_{k} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
m q_{i}+n q_{i+1}>t \frac{q_{k}}{p_{k}} \tag{2}
\end{equation*}
$$

Multiplying by p_{k} in (2) and then subtracting (1) from (2) we get

$$
m\left(p_{k} q_{i}-p_{i} q_{k}\right)+n\left(p_{k} q_{i+1}-p_{i+1} q_{k}\right)>0
$$

This contradicts Fact 5.
Using the above one can show the following theorem.
Theorem A.1. Given any fraction $\beta / \alpha, 0<\beta / \alpha<1$, and any positive integer j, consider j and $[j \beta / \alpha]$. Choose any k^{\prime} in the set $\{0,1,2, \ldots[j \beta / \alpha]\}$. Then there exists non-negative integers m, n, i such that

$$
m q_{i}+n q_{i+1}=k^{\prime} \quad \text { and } \quad m p_{i}+n p_{i+1}=j
$$

where p_{i} and q_{i} are as above. Furthermore, whenever $m n \neq 0$ the integers m, n, i are unique.

Proof. The existence is shown by induction on the length of the decomposition of α / β. If the length is 1 then $\beta / \alpha=1 / s, s \in Z^{+}$. We have $p_{0}=1$, $q_{0}=0, p_{1}=s, q_{1}=1$. Choose any $j \in Z^{+}$and $l \in\{0,1, \ldots[j 1 / s]\}$. Now $l \leq j / s$ so $l s \leq j$ and one can write $j=n l s+r, 0 \leq r<l s, n \geq 1$. It follows that

$$
((n-1) l s+r) q_{0}+l q_{1}=l
$$

and

$$
((n-1) l s+r) p_{0}+l p_{1}=j
$$

Suppose existence holds whenever the decomposition is of length $k-1$ and α / β has decomposition of length k. It should be noted that $\beta / \alpha=q_{k} / p_{k}$ and has the same first $k-1$ convergents as q_{k-1} / p_{k-1}. Choose the smallest j for
which one can find no proper m, n, and i. If $j<p_{k},\left[j q_{k} / p_{k}\right]=\left[j q_{k-1} / p_{k-1}\right]$ by Fact 7. In these cases there exists m, n, i such that

$$
m p_{i}+n p_{i+1}=j \text { and } m q_{i}+n q_{i+1}=l
$$

since by the induction hypothesis existence holds for q_{k-1} / p_{k-1}. Therefore we can assume $j \geq p_{k}$. If $l \neq[j \beta / \alpha]$ then $l \in\{0,1, \ldots[(j-1) \beta / \alpha]\}$ so there exists m, n, i such that

$$
m p_{i}+n p_{i+1}=j-1, \quad m q_{i}+n q_{i+1}=l .
$$

But then

$$
p_{0}+m p_{i}+n p_{i+1}=j, \quad q_{0}+m q_{i}+n q_{i+1}=l .
$$

Using Fact 6 one can get the desired integers. Therefore assume $l=[j \beta / \alpha]$.
Now $j=n^{\prime} p_{k}+r, n^{\prime} \in Z^{+}, 0 \leq r<p_{k}$, and $\left[j q_{k} / p_{k}\right]=n^{\prime} q_{k}+\left[r q_{k} / p_{k}\right]$. But we know there exists m, n, i such that

$$
m p_{i}+n p_{i+1}=r, \quad m q_{i}+n q_{i+1}=\left[r q_{k} / p_{k}\right]
$$

Then

$$
n^{\prime} p_{k}+m p_{i}+n p_{i+1}=j, \quad n^{\prime} q_{k}+m q_{i}+n q_{i+1}=\left[j q_{k} / p_{k}\right]
$$

and again use Fact 6 to get the desired integers. Therefore there exists no smallest j and we can always find integers to satisfy the theorem.

We now show uniqueness.
Suppose there exists $m^{\prime}, n^{\prime}, i^{\prime}$ and $m, n, i \in Z^{+} \cup\{0\}$ such that

$$
m q_{i}+n q_{i+1}=J, \quad m p_{i}+n p_{i+1}=K
$$

and

$$
m^{\prime} q_{i^{\prime}}+n^{\prime} q_{i^{\prime}+1}=J, \quad m^{\prime} p_{i^{\prime}}+n^{\prime} p_{i^{\prime}+1}=K
$$

Without loss of generality assume $i^{\prime} \geq i$ and suppose $J>0$ and $J, K \in Z^{+}$. Now

$$
\frac{m q_{i}+n q_{i+1}}{m p_{i}+n p_{i+1}}=\frac{m^{\prime} q_{i^{\prime}}+n^{\prime} q_{i^{\prime}+1}}{m^{\prime} p_{i^{\prime}}+n^{\prime} p_{i^{\prime}+1}}
$$

Cross multiply and subtract the left hand side from the right hand side. We
have
(*) $\quad m m^{\prime}\left(p_{i} q_{i^{\prime}}-p_{i^{\prime}} q_{i}\right)+m^{\prime} n\left(p_{i+1} q_{i^{\prime}}-q_{i+1} p_{i^{\prime}}\right)$

$$
+m n^{\prime}\left(p_{i^{\prime}} q_{i^{\prime}+1}-p_{i^{\prime}+1} q_{i}\right)+n n^{\prime}\left(p_{i+1} q_{i^{\prime}+1}-p_{i^{\prime}+1} q_{i+1}\right)=0
$$

If $i^{\prime}>i+1$ and $J>0$ we claim that the left hand side of (*) is strictly positive. Suppose not. By Fact 5 the expressions $p_{j} q_{k}-p_{k} q_{j}$ are all positive so we must have $m m^{\prime}=m^{\prime} n=m n^{\prime}=n n^{\prime}=0$. One gets $m=n=0$ or $m^{\prime}=n^{\prime}$ $=0$. This is impossible if $J>0$. The claim then holds and $\Rightarrow i=i^{\prime}$ or $i+1=i^{\prime}$. If $i=i^{\prime}$ one gets

$$
\begin{gather*}
\left(m-m^{\prime}\right) q_{i}\left(n-n^{\prime}\right) q_{i+1}=0 \tag{3}\\
\left(m-m^{\prime}\right) p_{i}+\left(n-n^{\prime}\right) p_{i+1}=0 \tag{4}
\end{gather*}
$$

Multiply (3) by p_{i} and (4) by q_{i}, subtract (4) from (3) to get $n=n^{\prime}$. Then $m=m^{\prime}$ follows. If $i^{\prime}=i+1$ then

$$
m m^{\prime}+n n^{\prime}+m n^{\prime}\left(p_{i} q_{i+2}-p_{i+2} q_{i}\right)=0
$$

implies $m=n^{\prime}=0$ if $J>0$. Note that the expression for J and K is still unique in this case. The labeling is just different. One can write

$$
0 p_{i}+n p_{i+1}=J, \quad 0 q_{i}+n q_{i+1}=K
$$

or

$$
m^{\prime} p_{i+1}+0 p_{i+2}=J, \quad m^{\prime} q_{i+1}+0 q_{i+2}=K
$$

It is clear that $m^{\prime}=n$.
Fact 10. If $k /(k+1) \leq \beta / \alpha<1, k \in Z^{+}$, then

$$
\frac{\alpha}{\beta}=\left[2, \ldots, 2, a_{k+1}, \ldots, a_{n}\right]
$$

and has first k convergents $p_{j} / q_{j}=(j+1) / j, j=1,2, \ldots, k$.
Proof. Let $k=1$. If $1 / 2 \leq \beta / \alpha<1$ then $1<\alpha / \beta \leq 2$ so

$$
\frac{\alpha}{\beta}=\left[2, a_{2}, \ldots, a_{n}\right]
$$

Suppose the fact holds for $k \leq t-1$ and $k=t$ where $t>1$. Now $t /(t+1)$ $\leq \beta / \alpha<1$ implies $1<\alpha / \beta \leq(t+1) / t$. We have

$$
\frac{\alpha}{\beta}=2-\frac{1}{\frac{\beta}{2 \beta-\alpha}} \quad \text { and } \quad \frac{2 \beta-\alpha}{\beta} \geq 2-\frac{t+1}{t}=\frac{t-1}{t}
$$

By the induction hypothesis, $\beta /(2 \beta-\alpha)=\left[2, \ldots, 2, a_{t}, \ldots\right]$. The fact now follows.

Fact 11. For $0<\beta_{i} / \alpha_{i}<1, p_{j}<p_{j+1}, q_{j}<q_{j+1}$ for all $j \geq 0$.
Proof. The fact certainly holds for fractions with decomposition of length 1. Suppose it holds whenever the fraction has decomposition of length $k-1$ and α / β has decomposition of length $k \geq 2$. The fact holds for p_{k-1} / q_{k-1} so we must only show that $p_{k}>p_{k-1}, q_{k}>q_{k-1}$. We have $\alpha / \beta=\left[a_{1}, \ldots, a_{k}\right]$, $a_{i} \geq 2$. Now $p_{k-2}+p_{k}=a_{k} p_{k-1}$ by Fact 1 . So $p_{k}=a_{k} p_{k-1}-p_{k-2}$, and $p_{k}>\left(a_{k}-1\right) p_{k-1}$ as $p_{k-1}>p_{k-2}$. Therefore $p_{k}>p_{k-1}$ as $a_{k}>1$.

The same property holds for the q_{i} 's.
Lemma A.2. Assume $0<p_{l} / q_{l}<1$ and $0<p_{l}^{\prime} / q_{l}^{\prime}<1$. Suppose

$$
\frac{p_{l}}{q_{l}}=\left[a_{1}, \ldots, a_{l}\right], \frac{p_{l-1}}{q_{l-1}}=\left[a_{1}, \ldots, a_{l-1}\right]
$$

and

$$
\frac{p_{i}^{\prime}}{q_{l}^{\prime}}=\left[a_{1}, \ldots, a_{l-1}, b\right] .
$$

Then

$$
\frac{p_{l}^{\prime}}{q_{l}^{\prime}}=\frac{p_{l}+n p_{l-1}}{q_{l}+n q_{l-1}} \quad \text { for } \quad n \in Z
$$

where $p_{l}+n p_{l-1}>p_{l-1}$.
Proof. By Fact 2, $p_{l-1} q_{l}^{\prime}-q_{l-1} p_{l}^{\prime}=1$ and $p_{l-1} q_{l}-q_{l-1} p_{l}=1$. By elementary number theory, if x_{0} and y_{0} are a particular integral solution to the equation $p_{l-1} x-q_{l-1} y=1$ the general integral solution is

$$
x=\left(x_{0}+n q_{l-1}\right), \quad y=y_{0}+n p_{l-1}
$$

where $n \in Z$. By Fact $11, p_{l}^{\prime}>p_{l-1}$. The lemma now follows.

References

1. M. Atiyah and I. MacDonald, Introduction to commutative algebra, Addison-Wesley, Reading, Mass., 1969.
2. G. Chrystal, Text Book of Algebra, Adam and Charles Black, Edinburgh, 1886.
3. R. Gunning, Lectures on modular forms, Princeton University Press, Princeton, N.J., 1962.
4. D. Mumford, Varieties defined by quadratic equations, C.I.M.E., 1969.
5. P. Orlik and P. Wagrgich, Equivariant resolution of singularities with C^{*} action, preprint.
6. H. Pinkham, Normal surface singularities with C^{*}-action, Math. Ann., vol. 277 (1977), pp. 183-193.
7. B. Saint-Donat, On Petri's analysis of the linear system of quadrics through a canonical curve, Math. Ann., vol. 206 (1973), pp. 157-175.
8. __, Sur les equations definissent une courbe algebrique., C.R. Acad. Sci. Paris, Ser. A, vol. 274 (1972), pp. 324-327.
9. G. Springer, Introduction to Riemann surfaces, Addison-Wesley, Reading, Mass., 1957.
10. P. Wagreich, Algebras of automorphic forms with few generators, Trans. Amer. Math. Soc., vol. 262 (1980), pp. 367-389.
11. , Automorphic forms and singularities with C^{*}-action, Illinois J. Math., vol. 25 (1981), pp. 359-383.
12. J. Wahl, Equations defining rational singularities, preprint.

Albertus Magnus College
New Haven, Connecticut

