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Section I

It was proved in [5] that there are only finitely many possible homotopy
types for the space of a mod p Finite associative H-space of a given rank. The
character of the proof given there suggests that one might be able to replace
the strict associativity assumption by the weaker hypothesis that the space
supports an A(p)-structure and reach the same conclusion. We show how to
refine the argument of [5] using the results of [7] to establish this.
We work at a fixed odd prime p; at the prime 2 the matters discussed here

are either vacuous or known. We lose no generality in assuming that all spaces
are simply connected as the general case of Theorem 1.1. below follows from
this special case (see paragraph 5 of [5]). In addition all spaces are assumed to
be p-localizations of finite connected CW-complexes, [4, 10]; thus an A(k)-
space [8], [9] means a mod p Finite A(k)-space, etc.

Let X be an A(p)-space. The rationalization of X is of the form
1-IK(Q, 2ni- 1), 1 <i<r where r=r(X) is the rank of X, the ni are
ordered so that 1 < n < n 2 < < n and the dimension of X is d(X)
E(2n 1).

THEOREM 1.1. Let X be a mod p Finite A(p)-space of rank r. Then there
are only finitely many possible homotopy types for the space X.

There are infinitely many possible homotopy types for the space of an
A(k)-space of given rank where k < p: one can construct these to taking
cartesian products of odd dimensional spheres localized at p (see the proof of
Theorem 17 of [9, part 1]). In the opposite direciton, Theorem 1.1 with
"A(p)-space" replaced by "A(k)-space" where k > p follows quite easily by
combining results of [5] and [7]. The case k p is a little less obvious.
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In general the properties of A(p)-spaces are not transparent. If a product of
spheres at the prime 3 supports an A(4)-structure, then the spheres have
dimensions 1, 3 or 5 (see [6]); but if a product of spheres supports a homotopy
associative H-multiplication at the prime 3, it is not known if the set of
possible dimensions is bounded as the rank increases [3]. More generally it is
not known if every A(p)-space has the homotopy type of a loop space
although the spectacular advances made in the last decade in understanding
Finite mod p loop spaces use the A(o)-structure in an essential manner, see
for example [1].

In Section 2 we make some deductions from results in [5] and [7] and
complete the proof of Theorem 1.1. in Section 3.

Section 2

We assume that X as in Theorem 1.1 is given a finite mod p cellular
structure of p-local cells giving a ’homology decomposition’ and that the maps
defining the A(p)-structure, Mi: K X ---> X, are cellular [9].
Theorem 1.1 is established once it has been shown that there is a constant B

depending only on r such that d(X) < B (see [2]). We associate with each X
a strictly increasing finite sequence (Lk} for 1 < k < r where L,
E(2n -1), 1 < < k, and use the sequence to place X into one of two
families. X is in the first family’if for each k < r, n,+l --< P3Lk," it is in the
second if for some k < r, nk/ > P3Lk and then is defined to be the largest
such k and we set q n t+ 1- It is sufficient to show that n < C in the first
situation and q < D in the second, where C and D are constants depending
only on the rank.
We will concentrate exclusively on the second family where q > p3L until

the final paragraph of this section. So W, the L skeleton of X, inherits from X
an A(p)-structure using Lemma 2.6 of [5]. The A(p)-space W has rank t,
dimension L and the inclusion r: W-o X is an A(p)-map. The rational
cohomology ring of X, H*(X, Q), is E(x1, x2,..., Xr), an exterior algebra
over Q on primitive generators (xi) with dimensions (2n- 1), and

H*(W, Q) E(x, x’2, xtt)

where x r*(xi) and r*(xi) 0 for > t. Similar results hold for the Z/2Z
graded complex K-theory of X and W with Qv-coefticients;

g*(g) E(ul, u2,... Ur)

an exterior algebra over Qv on odd dimensional generators { u }, and

e(u , u;)
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where u[ r*(ui) for < and r*(ui) 0 otherwise, as proved in Corollary
2.4 of [51.
We consider the K-theory of X and associated spaces filtered with the

Chern character, or equivalently, the rational y-filtration as in Section 3 of [5].
As r" W X is an A(p)-map, it induces maps of projective spaces r:
WP XPk for k < p (see [9]). (It will be clear from the context precisely
what is intended where similar notations are used for different maps.) The
exact sequence of the pair (WP k, WPk-t) for k < p implies that Hi(Wp, Q)

0 for > k(L + 1); the case k p is Corollary 2.8(b) of [5]. So for k < p,

(2.1)
< k(L

r*" H*(XP, Q) ---> H*(WP k, Q) is an isomorphism in dimensions
+ 1) and zero otherwise.

We will apply (2.1) using the fact that ch (R) Q induces isomorphisms

K*( XP) (R) Q = H*( XP, Q) and K*(WP’) (R) Q =- H*(WP’, Q)

as follows. The first non-zero class in H*(XP, Q) of dimension greater than
k(L + 1) has dimension at least 2q (in fact, precisely 2q as is shown in the
proof of Proposition 2.3). So if z K(XP) is not a torsion class (which we
will prove is always true) and r*(z) 0 inK(WP), then z lies in filtration
2q. If one applies this argument for k 1 when XP SX and WP SW,
then the choice of the generators { ui} for K*(X) ensures that their suspen-
sions lie in filtration 2q for > and any non trivial linear combination otiu
for 1 < < t, when suspended, lies infiltration less than 2q. (We will not halve
the indices on the filtered groups as was done in [5].)
We consider for k < p the diagram in (2.2) of exact sequences; see (3.3)

of [7].

(2.2)

,/*-(x’-) g*-(e*x) - g,(Xl) ’-, g,(x,-) g*(ex*)

g,(wv) -x) g,)g*-(w-) *-() g*(W ()

Here i_" XP- XP is the inclusion and E is the total space of the
quasi-fibration p: E XP- as is usual. The vertical homomosms are
induced from r: W X. The space Eg has the homotopy type of the k-fold
join of X with itself and an isomosm
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is defined after the proof of Lemma 2.2 of [5]. The dement

A(k)(Zl Z2 ) Zk)

is denoted by z z2 z where z g*(X).
The corollary to Theorem B of [7] implies that K*(X) is an exterior algebra

on odd dimensional A(k 1)-primitive classes for k < p. Let S: K*(X)
K*(SX) be the suspension isomorphism. Theorem A of [7] for k < p implies
that

(2.3) K*(XPk) Qp[v1, v2,..., Ur] k+l ) Sk,

K*(WPk) Qp[v, v.,..., vt’]

where Qv[ ]k+ denotes a polynomial algebra truncated at height k + 1, Sk
is defined below and is a free Qp-module and an ideal such that S /*(XPk)

0, and ii "*t,_(vi) S(ui) for 1 _< _< r. Any choice of (vi} satisfy-
ing the last equation will serve in (2.3). The summand S is the submodule of
I(XPk) spanned by elements of the form 6k(Z * 22 2k) where z e
g(X) and at least one z is decomposable. The composition

,,(e-) 5 ,, +(xP*-,) P- ** +(
is given explicitly in Proposition 2.4 of [7].

P,*6k-(Z * Z2 * * Zk- 1)

E (- a)z,, ..., (Ez;, z;,), ..., z_,

1 <j<k- 1, wherezyeK(X) and M*(zy)=zy(R)l+,zj(R)zy +l(R)zy
is induced from the H-space multiplication M: X X X.

A useful first application of (2.4) is that K(XP’) is torsion flee. We
consider

g-l(E-l)

If I(XP’) has p-torsion, there exists v e I-I(XPp-l) not divisible by p
with p;(v)=pw 4 0, since g(XP’-x) is torsion free. For dimensional
reasons, v Sp_. We have a contradiction using (2.4) or Lemma 3.5 of [7].
(We do not assert that K*(XP1") has no torsion.)



]66 J.R. HUBBUCK AND M. MIMURA

The fact that K(XPv) is torsion free enables us to extend from k < p to
k < p a corollary to a result of Thomas [11].

(2.5). Let zix gi2, Zik I(xpk) satisfy ii lk_l(Zij)’* S(uij ) for
each j, 1 < j < k. Then

k(Uil * Ui2* * Uik ) ZilZi2 Zik.

This follows from the corresponding result in rational cohomology (see Theo-
rem 4.1 of [7]) and the fact that

ch" K(XP’) -o Heven( Xpk, Q )

is a monomorphism for k < p.
We now strengthen (2.3).

LEMMA 2.1. For k < p, the homomorphism r*" K*(XP) --, K*(WPk) is
surjectioe. The classes (v } and (v; } in (2.3) can be chosen so that v; r*(vi)
for < t and r*(vi) 0 for > t, and r*(Sk) S[.

Proof. As XP SX, the case k 1 follows from Corollary 2.4 of [5]. We
argue by induction using (2.2) and the fact that

is surjective for all k. Naturality implies that we may define v; by v r*(v)
for < t. For > the induction hypothesis implies that by adding to o an
element in the image of , we can ensure that r*(oi)= 0. The definitions
imply that r*(S) S[,.
We will assume that generators (o} have been chosen as specified in

Lemma 2.1. It follows from (2.1) that each vi for > lies in filtration 2q.

LEMMA 2.2. Let v IO(xp) where k < p and suppose that

it_ (o) I?(xP

lies in filtration 2q. Then there exists z I-(Ex) such that v + 6(z) lies in

filtration 2q.

Proof Since Hi(WPk, Q) 0 for > k(L + 1) and r*i_l(V)
I(WP-) lies in filtration 2q which is greater than k(L + 1), we deduce
that *’*r t_l(v) 0. So by the exactness of (2.2), there exists z’ /*-(Ew)
with 6(z’) r*(v). As s* is surjective, let s*(z) -z’. Then r*(v + 6(z))

0, as required.



THE NUMBER OF mod p A( p)-SPACES 167

We use these lemmata to prove the following key proposition. Recall that
K o(XPP) is a free Q,-module.

PROPOSITION 2.3.
v v 0 mod p.

There exists v Io( XP) of exactfiltration 2q such that

Proof. Let S(Xt+l) H2q(sx, Q) be the suspension of the generator Xt+ 1.

Then there exists

Yq n2q(sPp-l, Q)

with ii ip_2(Yq)* S(xt+ 1). We consider the exact sequence

H2q(xP, Q) ---- H2q(xp-, Q) H2q(E, Q)

For dimensional reasons H2q(Exp, Q) 0 and so

lp_’* (Y2q) Yq for some Y2q (- n2q( XPP, Q).

We choose v’ I(XPp-l) not divisible by p such that ch(v’) Ym; SO in
particular v’ has exact filtration 2q. Therefore by naturality and the fact that
ch" /*(Ex) ---, H*(E, Q) is mono, there exists v I(xe) with i*p-

v’ and by Lemma 2.2 we can choose v to have filtration 2q. We need to
ensure that v p : 0 mod p and this may not be true unless ii’ e-’*
0 mod p. We show that we can modify v to achieve this.

LEMMA 2.4. There exists o Io( XP) of exact filtration 2q such that

ii t,_’* l(O) , 0 mod p in I(SX).

Proof. Let v’ above be expressed as + d + c where t7 ,flivi is a linear
combination of {vi} in I(XP-I), d is decomposable and a polynomial in
( vi} and c S,_1. If we map v’ to I(SX), take the Chern character and use
the remarks following (2.1), it follows that the summation defining v runs over
> t. Let d be expressed explicitly as a polynomial in the form

q( v1, v2,..., vt) + e,

where e is a polynomial in which each monomial is divisible by v for some
> t. So e has filtration > 2q and as p(e) 0, e pulls back to I((XP).

So we can assume that v’ 6 + {(Vl,..., vt) + c is nonzero mod p, has exact
filtration 2q and pulls back to K(XP’). To establish Lemma 2.4, we must
show that 6 4:0 mod p. We argue by contradiction and assume that 6 0
mod p. Now p(v’) 0 in /(E) and also

p(q(vl, og.,..., vt) ) =0.
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Therefore p*(c) -p*(). But p* restricted to Sp_l is a monomorphism
(see the proof of Proposition 4.2 (B), of [7]; the missing hypotheses are not
needed for this) and has torsion free cokemel (Lemma 3.5 of [7]). Therefore
c 0 rood p. Also r*(v’)--0 and r*(v)= q(v, v,..., v;)+ r*(c), using
Lemma 2.1. As r*(c) 0 modp, q(v{,v,...,vt’ ) 0 modp and so
q(v1, v2,..., vt) 0 mod p. Thus v’ 0 mod p, which is false. So t7 0
mod p as required.

Let v be as in Lemma 2.4. The lemma following completes the proof of
Proposition 2.3.

LEMMA 2.5. In KO(xpv), v v 0 mod p.

i*Proof By (2.5), By(u. u* * u) v v where ii v-l(v) S(u). If
v v 0 rood p, there exists c I-I(XPv-l) with p(c) u.u.... u
mod p, as the groups are torsion free. For dimensional reasons c Sv_ and
the formula of (2.4) shows immediately that this is impossible.
We return in this final paragraph of Section 2, to the case when X lies in the

first family, that is n k+ <- P3Lk for all k < r. Much simpler arguments than
those given above ensure that:

PROPOSITION 2.6.
that v =b 0 mod p.

There exists v IO(xp) of exact filtration 2 n, such

Section 3

We consider M K(XP) as a filtered ring with the rational 3,-filtration.
M is a free Q,-module of dimension less than 2+1)rX) by Corollary 2.8(a) of
[5] applied to X. We again use Corollary 2.8(b) of [5] to deduce that M2n 0
for 2n > p(d(X) + 1).

PROPOSITION 3.1. Let dimo M < and m2pnm+2 O, where rn is a con-
p

stant. Assume that there exists v M2n with v 4= 0 mod p. Then n < C(l, m),
a constant depending upon and m.

This is Proposition 3.2 of [5] using the fact that (v) v’ mod p.
Let X be a member of the first family, that is, n 2 < p3L1, n <_ p3L2,...
< P3Lr-1. Then as in the proof of Theorem 3.1 of [5], we deduce that

L < (1 + 4p3)r-12n and p(L + 1) < 4(1 + 4p3) -pn.

We let 1 2(p+l)r, 2m 4(1 + 4p3)r-l, v be as in Proposition 2.6 and
n nl and deduce that n < C(l, m) C as required. So d(X) is bounded.
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In general we argue by induction on rank, rank one being covered by the
case above. We assume that if the rank is less than r, then the dimension is
less than E(r). We need only consider X in the second family and by the
induction hypothesis, d(W)= L < E(r). Then

and so

d(X) L < (1 + 4p3)r-22q + E(r)

p(L + 1) < p((1 + 4p3)r-22q + E(r) + 1).
As all terms in this last expression are bounded except for q, we can choose a
constant m so that p(L + 1) < 2pqm. We again apply Proposition 3.1 with

2(p+l)r, m as chosen, v as in Proposition 2.3 and n q. So q < C(I, m)
D. So d(X) is bounded by B(r) in all cases and the proof of Theorem 1.1 is

completed.
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