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"And finally, in an attempt to unify the entire subject into a coherent whole, difficulties of a different
order are encountered, and some central unifying principle has still to be discovered." (Lewin,
Polylogarithms and Associated Functions [L] p. xv.)

1. Introduction

Few mathematicians would disagree with the assertion that the logarithm
is one of the most important functions in mathematics. During the nine-
teenth century an analogous function, the dilogarithm, was the subject of
much research. First defined by Leibnitz in 1696, the dilogarithm was
subsequently studied by Euler, Spence, Abel, Hill, Jonquire Kummer,
Lindel6f, Lobachevsky, and many others [L]. Recently there has been a
resurgence of interest in this remarkable function, due in large part to the
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work of Bloch [B1], [B2], [B3] in number theory and K-theory; Gabrielov,
Gelfand and Losik [GGL] on the combinational formula for the first Pontrja-
gin class; Wigner (see [B2] and [Dpl]) on group cohomology; not to mention
the scholarly work of L. Lewin [L]. Other recent work includes [A1], [A2],
[A3], [Bel], [BGSV], [D4], [Dpl], [Dp2], [DS], [GM], [Li], [Lo], [M1], [M2],
[R1], [R2], [R3], [Z1], [Z2].
The dilogarithm has properties analogous to those of the logarithm. It has

been widely believed, both in the nineteenth century and more recently, that
these two functions should be the first two elements of an infinite sequence
of higher logarithms which share analogous properties. To date, several
sequences of such functions have been proposed, but no function beyond the
dilogarithm in any of these sequences is known to possess all the desired
properties.

In this paper, we propose a new approach to constructing higher loga-
rithms {Lp} which will produce what we believe should be the true general-
izations of the logarithm and the dilogarithm. The difficulty in this approach
lies in constructing the functions Lp; once existence is established, the
function will automatically possesses the desired properties. This is to be
contrasted with the classical approach where the difficulty lies in establishing
that given functions possess the sought after properties. As evidence for our
program, we have constructed the first four functions; the first three being
constructed in this paper.

In the epilogue we explain how a p-logarithm Lp appears as a component
of an interesting cocycle whose class in the Deligne-Beilinson cohomology

of a certain simplicial space G.p, of Zariski open subsets of various Grass-
mann manifolds, is a kind of universal pth Chern class. This provides an
explanation for the importance of the dilogarithm in K-theory.
The fascinating and important number theoretic aspects of polylogarithms

have been completely neglected in this paper. Nonetheless, we believe that
our new trilogarithm function will possess interesting number theoretic
properties analogous to those of the dilogarithm. An excellent survey of these
remarkable properties of the dilogarithm can be found in [Z1].

The problem of generalizing the logarithm and the dilogarithm
The logarithm log x, may be defined as the analytic continuation of the

power series

xn
(1.1) -log(i-x) E , Ix <1

n=l
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1/2

FIo.

to C*. It possesses three fundamental properties: one analytic, one topologi-
cal, and one algebraic in nature.

Analytic property. The logarithm may be written as a line integral

x dz
log x --of a logarithmic 1-form on C*.

Topological property. The logarithm is a multivalued function on C*. Let
r0 be homotopy class of loops based at (say) 1/2 in C with winding number 1
about 0 (Fig. 1). Let M(r0) be the monodromy operator whose value on a
function is its analytic continuation along r0. Then

M( o-0) log x log x + 2i.

In other words, M(r0) acts on the two dimensional vector space of germs of
functions at z 1/2 with basis log x, 1 through the matrix

1 2rri)M(cr)= 0 1

The monodromy group is the discrete, 1-step unipotent group

1 Z(1))0 1

where Z(p) denotes the subgroup (27ri)PZ of C.

Algebraic property.
tion

The logarithm satisfies the three term functional equa-

log x log xy + log y 0

provided that appropriate branches have been chosen. The logarithm owes
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much of its utility to this functional equation which can be thought of as a
2-cocycle condition. When suitably interpreted, the logarithm represents the
universal first Chern class.

The classical dilogarithm function ln2(x), which we review in Section 4, may
be defined as the analytic continuation of the power series

xn
(1.2) ln2(x) ] 2"

n=l //

It has three properties analogous to those of the logarithm.

Analytic property. The dilogarithm may be written as an iterated line
integral of logarithmic 1-forms of length two

fo dzdz fo fo dwdzlnz(x) 1-z z 1-w z

of the type studied systematically by K.-T. Chen (see [C2], for example). This
expression shows that the dilogarithm can be analytically continued to any
point of C {0, 1}.

Topological property. The dilogarithm is a multivalued function on
C {0, 1. Let o.0 be the homotopy class of loops in C {0, 1} based at 1/2
that encircle 0, and o- the homotopy class of loops based at 1/2 that encircle
1 (Fig. 2). Denote the corresponding monodromy operators by M(o-0) and
M(o-1). Then

M( o-0)ln2( x) ln2(x), M( o-1)ln2( x) ln2(x) 27ri log x.

In other words, M(o-0) and M(o-1) act on the three dimensional vector space
of germs of functions at z 1/2 with basis ln2(x), log x, and 1 via the
matrices

M(o-0) 0 1 2zri M(o-1) 0 1 0
0 0 1 0 0 1

The monodromy group associated to lnz(x) is the discrete, 2-step unipotent

FIG. 2
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group

1 Z(1) Z(2)
0 1 Z(1)
0 0 1

Algebraic property.
Rogers [Ro], by

If we define b(x), a form of the dilogarithm due to

&(x) 1/2(ln(x) ln(1 x)),

then b(x) satisfies the 5 term functional equation

b(x)-4(y) +b(Y/X)-b x-1 +b y(x- 1)

provided that we choose the branches of each of the five terms carefully. The
five functions

x,y,y/x,(y- 1)/(x-i), x(y- 1)/y(1-x)

arise naturally as the cross ratios of the four element subsets of the configu-
ration (y, x, 1, 0, ) of five points on the projective line. A functional equa-
tion, equivalent to the one above, was discovered by Spence in 1809,
rediscovered by Abel in 1828, and then again by many others. (The form
above is due to Rogers [Ro].) When suitably interpreted, this five term
equation is a 4-cocycle condition, and the cocycle associated to b(x) repre-
sents the second Chern class in certain cases ([GGL], [B2], [GM], [Dpl], [DS],
[Bell).

The quest for higher logarithms
No red blooded mathematician could compare the properties of the

logarithm and dilogarithm above without wondering if they were the first two
terms of an infinite sequence of higher logarithms possessing the following
properties:

Analytic property. The pth logarithm should be defined by integrating a
closed iterated integral of logarithmic 1-forms of length < p.

Topological property. The pth logarithm should be a multivalued function
whose associated monodromy group is discrete, and unipotent of length
exactly p. (The last condition will imply, in particular, that the pth logarithm
cannot be expressed as a polynomial of functions obtained by integrating
iterated integrals of length < (p 1).)
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Algebraic properly. The pth logarithm should satisfy a natural functional
equation. Since it is expected that the pth logarithm will be naturally
associated with the pth Chern class, this equation should be a 2p-cocycle
condition, and therefore be of the form

2p

E ( 1)Y-p(Ay(x)) O,
j=O

where the Aj(x) are algebraic functions from a variety into the domain

The classical higher logarithms, or polylogarithms as we shall call them, are
the naive generalizations of the logarithm and dilogarithm obtained by
extrapolating from (1.1) and (1.2):

xn
lnp(x) ] --, Ixl < 1.

n=l

These first appeared in the literature in the late eighteenth century (see [L]).
The integral formula

lnp(x) lnp_ 1(Z) T 1--ZZ Z

shows that ln,(x) can be analytically continued to a multivalued function on
C- {0, 1} and that it is an iterated integral of length p. Its monodromy
group is a discrete, unipotent group of length exactly p [R2]. The polyloga-
rithms therefore possess the desired analytic and topological properties. As
for the algebraic property, the lower polylogarithms satisfy many functional
equations, but the number of terms in the functional equation of each
considered most natural by Lewin [L; p. 239] is given in the following table.

p 1 2 3 4 5

No. of terms 3 5 9 20 33

No pattern in these equations is discernable and no generalization has been
found for the higher polylogarithms.
Another definition of real higher logarithms was proposed in [GM] for

even p. They are real valued functions defined on a real algebraic variety.
These satisfy the algebraic property; however, it is not clear that these extend
to complex valued functions defined on the complex points of their domains,
nor that these functions would possess the analytic and topological proper-
ties. We hope that these functions will turn out to be the analogues of the
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Bloch-Wigner-Ramakrishnan functions [R3], [Z2] of the higher logarithms
proposed later in this paper.

Lewin, in his discussion of functional equations satisfied by the higher
polylogarithms [L; pp. 238-240], comments that

"It is difficult to believe that no formulas exist for the higher orders, but a radically new structure is
necessary for further progress." (p. 238),

and

"... the complexity of the present results make a completely new approach imperative if much
progress is to be made." (p. 240).

Higher logarithms
The higher logarithms that we propose will be functions, not of a single

complex variable, but of a point in a complex algebraic manifold Gp ofp-1
dimension p2 which is an open subset of the self dual Grassmann manifold
of p 1 dimensional linear subspaces of p2p-1. More precisely, Gff is the
open subset of the Grassmann manifold G(q, PP+q) of q dimensional linear
subspaces sc of PP+q that are transverse to the configuration of coordinate
hyperplanes. Figures 3-5 depict elements of the real GI, G12 and G02. In Fig.
3, the line sc is required to avoid the vertices of the coordinate simplices, so
G C* C* with coordinates (a, b). In Fig. 4, sc is required to avoid the
edges of the coordinate simplices. In Fig. 5, sc is required to avoid the
coordinate axes, so that G0z C* C*.

Since the transversality requirement defining GaP is a generic condition, we
call G’ the generic part of the grassmannian. The manifold Gp

_
on which

we expect the p-logarithm to be defined is "self dual".

G

F. 3
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FIG. 4

62
0

FIG. 5

The idea that higher logarithms should be functions on the GoP is due to
Gelfand and MacPherson [GM]; their higher logarithms are defined on the
real points of Gqp. Damiano [Da] showed that the only possibly non-zero
Gelfand-MacPherson higher logarithms occur when q 2p 1.
When q > 0, there are p + q + 1 face maps Ai: GaP Gf_x; A takes the

element { c_ PP+q of G’ to its intersection with the ith coordinate hyper-
plane = PP+q- of PP/q. The face maps Ai" GI G and Ai: G21 G2o
are illustrated Figs. 6 and 7.
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FIG. 6

FIG. 7

In our approach, the existence of a p-logarithm function Lp
that it satisfies the functional equation

will guarantee

2p

(1.3) E ( 1)JA’L, O,
j=0

where the A are the 2p + 1 face maps G; ---> G;_ 1. Because the function
L, will be multivalued, one has to be very careful with branches. (These
issues are dealt with in Section 2, where we lay down a categorical framework
for dealing with multivalued functions and forms.)

The higher logarithm bicomplex
The p-logarithm function is a component of a cochain in a certain double

complex which we now describe briefly. A detailed description of it is given in
Sections 3 and 5.
For fixed p, the face maps Ai: G --> G_ satisfy the usual identities dual

to those that hold between the faces of a simplex. This means that {G’}q__ 0 ,
is a truncated simplicial variety G:. It is natural to put Gff in dimension
p + q as there are p + q + 1 face maps emanating from it. If we apply a
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contravariant, abelian group valued functor to Gf, we will obtain a cochain
complex with differential

p

E (-1)’A.
i=O

More generally, if we apply a contravariant, cochain complex valued functor,
we will obtain a double complex. We will apply the multivalued de Rham
complex functor " which is constructed in detail in Section 3.

Briefly, the complex of multivalued differential forms on a complex alge-
braic manifold X is

sS"(x) + sa’(x),

where fl’(X) denotes the holomorphic forms on X with logarithmic singu-
larities at infinity, and (X) consists of all multivalued functions on X
obtained by integrating a relatively closed iterated integral3 of elements of
Ol(x). Both (X) and I’(X) come equipped with a canonical filtration,
called the weight filtrationn; if X= GaP, then W2(X)consists of those
functions obtained by integrating iterated integrals of length not exceeding 1.
Thus, for example,

log x --lnp(x) =jo 1-z

p-1

Wzp(C {0 1/)Z Z

Combining these filtrations defines a weight filtration on ’(X).
Neglecting the problem of choosing branches, which is dealt with in

Section 5, we obtain a double complex

by applying W2pfV to the simplicial space G.p. The differential D is the total

3An iterated line integral I is relatively closed if its value on a path y depends only on the
homotopy class of 3’ relative to its endpoints.

4This is the weight filtrations in the sense of Deligne [D1].
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differential d + A*. For example, the double complex for p 3 is

T T T T
W6i(G23) W6fil(G23) W6fi2(G23) ’3(G23)

T T T T
W6(G13) -----) W6fil(G 13) ----) W6fi2(G13) 3(G13 )

T T T T
W6(G) W6fil(Go3) W6fi2(Go3) -----)’3(G03).

The manifold Gff is just PP minus the union of the coordinate hyper-
planes, and is isomorphic to (C*)p. On this there is a canonical p-form, the
"volume" form:

dxpdXl A A lqt,( Gg).vOlp
x1 Xp

DEFINITION. A p-logarithm is a 2p- 1 cochain Zt, in the Grassmann
bicomplex W2t,’(G.v) that satisfies the equation DZt, volt,.

Note that it is not at all clear that such a cochain Zt, exists. The first
obstruction is that volt, be closed in the double complex as

A* volt, D volp O2(Zp) O.

This can be verified by direct computation for small values of p.

THEOREM (9.7). For all p, A* volt, 0.

This we prove by taking residues and exploiting the action of the symmetric
group on G ’. P. Cartier [Ca] has given a very elegant proof of the vanishing
of A* volt, using Cartan’s theory of basic forms.
Note that the component Lt, of a p-logarithm Zt, in W2p(G;_ 1) satisfies
(i) A*Lp EPo( 1)l’Lp O,
(ii) Lt, is obtained by integrating a relatively closed iterated integral of

logarithmic 1-forms of length not exceeding p.

We shall call Lt, a p-logarithm function. It clearly possesses the desired
analytic and algebraic properties. As for the topological property, the analyti-
cal property implies that Lt, has unipotent monodromy group of length < p.
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To say that the group has length exactly p is equivalent to showing that Lp is
indecompo.sable; that is, Lp cannot be expressed as a polynomial of elements
of WEp_2Y(G_ 1).

Neither the cochain Zp nor the function Lp is unique. The cochain can be
adjusted by coboundaries and the function by functions of the form A’G,
where G W2p#(GpP_2), which satisfy the functional equation trivially. (One
can find more canonical representatives with the aid of the symmetric group.
This is discussed in Section 9.)
Here is our main result.

THEOREM. For p 1, 2, 3, there is a p-logarithm which is unique modulo
coboundaries. In each case, the associated p-logarithm function is indecompos-
able and non-trivial in

When p 1, the cochain log x Wz(C*) represents Z and the func-
tional equation A* log x 0 is the usual one. (See (6.3).)
At first glance it seems that the 2-logarithm function cannot be the

classical dilogarithm or Rogers’ function b(x) as L2 is defined on G12 while
4(x) is defined on C {0, 1}. However, an element of Gx2 is a line in p3 that
intersects the four coordinate hyperplanes in four distinct points. Taking : to
the cross ratio of these four points defines a function

zr" Gx2 C {0,1}.

In (6.4)we show that there is a representative of Z2 where

L2 7r*b 7r2/6.

Similarly, there is a projection of G22 onto the domain of the functional
equation of b(x), and the functional equation A’L2 0 is just the pullback
of Rogers’ functional equation.
Both the logarithm and the dilogarithm have single, real valued cousins

which also satisfy natural functional equations. In the case of the logarithm,
this function is the logarithm of the absolute value Da: C* R defined by
z log lxl. It satisfies the functional equation

DI(X) DI(XY) + Dl(Y) 0

and possesses the symmetry property

o’*D sgn(o-) D1
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for all tr in the symmetric group on 2 letters, 2, which acts on C* by letting
the generator take z to z -1. The functional equation implies that D
represents a cohomology class in HI(GL(C),R). This class is the first
Cheeger-Simons Chern class 1 Of the universal flat bundle over BGL(C),
the classifying space of stable, fiat complex vector bundles. It also defines the
first regulator mapping rl: KI(C)= C* R.
The single valued cousin of the dilogarithm is the Bloch-Wigner function

[B1] (see also [Z1])

D2: C- {0,1} - R

which is defined by

D2(z) Im Ins(z) + arg(1 z)loglz[.

It satisfies the 5-term functional equation

D2(x) -De(y) +D2(Y/X) -D2 x- 1 + D2 y(x- 1)

Viewing C {0, 1} as the space of ordered 4-tuples of distinct points on the
projective line modulo projective equivalence, we see that Ea, the symmetric
group on 4 letters, acts naturally on C {0, 1}. The Bloch-Wigner function
satisfies the symmetry condition

o’*De sgn(o’) De

for all tr 4. Just as D represents 1, D2 represents the second Cheeger-
Simons Chern class

H3(GL(C),R)
of the universal flat bundle over BGL(C) [Dpl], and, by composition with
the Hurewicz homomorphism K3(C) H3(GL(C)), it defines the regulator
mapping re: K3(C) R [B2].

In Section 11 we construct the single valued cousin of the 3-10garithm
function constructed in Section 8. It is a single valued function D3:Y23 R,
where

( ordered (4 + q)-tuples of )/yq3 points in pC, no 3 on a line
projective equivalence.

The seven ways of forgetting a point give 7 maps Aj: Y33 - 23. We show that
D3 satisfies the functional equation

6

E (-1)SAjD3 0
j=O
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and that it possesses the symmetry property

o-*D3 sgn(0-) D3

for all tr 6, where 6 acts on Y23 by permuting the points. We expect
that D3 represents the third universal Cheeger-Simons Chern class 3
HS(GL(C), R) and that the composition of the Hurewicz homomorphism

with D3 is the regulator mapping r3: Ks(C) R. As a step towards estab-
lishing these properties, J. Yang has proved that D3 represents an element of
HScts(GL3(C), R) and thus defines a map Ks(C) R which is necessarily a
multiple of Borel’s regulator.
The definition of higher logarithms given above is only part of a more

complicated definition of higher logarithms as cocycles in the multivalued
Deligne-Beilinson complex of the simplicial variety G.. We give this defini-
tion in the Epilogue and sketch a proof of the result that, when p 1, 2, 3,
the Deligne-Beilinson cohomology group

HP(Gf Q(p))

is isomorphic to Q and spanned by the class of the p-logarithm. The expected
role of these classes as universal Chern classes for algebraic K-theory is
explained in [BMS].

This paper is the result of rumination over work done at the Institute for
Advanced Study in 1985-86 and at the Institut des Hautes Etudes Scien-
tifique in the spring of 1986. We thank both these institutions for their
hospitality and support. The first author would also like to gratefully ac-
knowledge the support of an AmericanMathematical Society Fellowship.

It is great pleasure to thank A. Beilinson, P. Cartier, P. Deligne, M.
Goresky, M. Levine, J.-L. Loday, M. Nori, A. Nicas, D. Ramakrishnan, V.
Schechtman, and the many others with whom we have had fruitful conversa-
tions related to this work. Special thanks go to Pierre Cartier and Jun Yang,
who both read the manuscript carefully and saved us from many an embar-
rassment. Needless to say, all remaining errors and misprints are our respon-
sibility. We also thank Frances Chen for her patient and careful typing of this
manuscript.

2. Multivalued differential forms

The complex of holomorphic differential forms on a complex manifold M
will be denoted by E’M and the category of connected complex manifolds
and holomorphic maps by z’n. A multivalued differential form on M, a
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complex manifold, is a holomorphic differential form on its universal covering
manifold M. To ensure that multivalued forms and their pullbacks under

holomorc maps are well defined, we have to enrich the category n.
Define dC’n to be the category whose objects are universal covering projec-
tions rr: 1 M and whose morphisms f: - 7r’ are commutative squares

M -- M’.

We will usually abuse notation and represent objects of ’n by the underly-
in.g manifold M. The complex./’(rr) of multivalued differential forms on
M M is defined to be E’M and will frequently be denoted by/’M. The
multivalued de Rham complex functor M E’M defines a contravariant
functor

(2.1) /"n d.g. algebras,

from sC’n into the category of differential graded algebras. We can define the
fundamental group (M) of an object r M ofn to be the set of deck
transformations of M M. Thus we have a short exact sequence of groups

1 7FI(M) Aut -’-M Autn M 1

and the action of "n’l(M) on / gives F’M the structure of a right rrl(M)
module. The assignment of rrl(M) to/r - M defines a functor

(2.2) de’n Groups.
We now give an alternative and more concrete description of the category

e’n and the functor E’. Define the category ’n, to be the category whose
objects are pairs (M, x), where M is a connected complex manifold and
x M. The morphisms (M, x) (N, y) of ’n, are pairs (f, y), where f:
M N is holomorphic and y is a homotopy class of paths in N from y to
f(x).

The standard construction of a pointed universal covering (3r, 2)of a
pointed manifold (M, x) as the set of homotopy classes of paths in M

FIG. 8



HIGHER LOGARITHMS 407

emanating from x defines a functor e’n, --, seen. This is an equivalence of
categories. The basepoint of / fixes an action of zrl(M,x)on
Consequently, the composite of se’n, - /n with the fundamental group
functor (2.2) defines a functor ’n, --, Groups that takes (M, x) to Zrl(M, x).

Define the multivalued de Rham complex functor

#’" e’n, - d.g. algebras

to be the composite of the functor se’n, ’n with the multivalued de
Rham complex functor (2.1). This functor has an alternative description. Let
(M, x) be an object of e’n, and (/, $) - (M, x) the corresponding object
of xe’n. By identifying a neighbourhood of in M with a neighbourhood of x
in M, we see that a multivalued differential form on (M, x) can be viewed as
the germ of a holomorphic differential form on M at x that admits analytic
continuation along all paths in M. The pullback of a multivalued form o) on
(N, y) along a morphism (f, y): (M, x) (N, y) can be computed as follows:
First analytically continue w along y from y to f(x) and then pull back the
result.ing germ to obtain a germ of a form at x. The right action of .n-l(M, x)
on E’(M,x) also admits a simple description. If g .n-l(M,x) and o)
E’(M, x), then w.g is obtained by analytically continuing o) around a loop
in M that represents g.

Finally we remark that the fundamental group functor xe’n, --, Groups
takes the morphism (f, y): (M, x) - (N, y) to the composite

7rl(M, x) f* 6’n’(N,f(x)) ----) "rrl(N,y ),

where b is the natural isomorphism defined by y.
(2.3) Denote the category of smooth irreducible complex algebraic varieties

and morphisms by ’. This categ.ory can be enriched in the same way as
to obtain equivalent categories ’ and

(2.4) Examples of multivalued functions can be constructed using iterated
integrals. Suppose that M is a complex manifold. Denote the space of
piecewise smooth paths y: [0, 1] M by PM. Let zr: PM - M M be the
function that takes a path y to its endpoints (y(0), 7(1)). Let Px, yM be the
fiber zr-l(x, y). Let {wi: A} be a finite set of holomorphic 1-forms on M
and

n

(2.5) I ai( C,
s=0 KA

be an iterated line integral on PM. We say that I is relatively closed if its
restriction to each Px, yM is closed. That is, the value of I on a path y
depends only on its homotopy class relative to its endpoints. For each choice
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of basepoint x M, I defines a multivalued holomorphic function fi, x on M.
Its value at a point p of a simply connected neighbourhood U of x is

Yi, (p) =I(y)

where y Px, pU.
Chen [C2; (1.5.2)] has proved that I is relatively closed if and only if

dI 0, where

fd (D1 (’Or (D1 (Di-1 d(Di(Di+l (Dr
i=1

r-1

i=l

(2.6) The formula

fa (DI (Dr I(DI (Dil(Di+l (Dr
f

/3 i=0 a

([C1], [C2; (2.2.2)], see also [H1; (2.9)]) implies that the analytic continuation
of fl, x along the path y from x to y is fj, y, where I is given by (2.5) and

n

J= sO aK (Dkl’’’(Dki f(Dki+l
Igl--s i=O

(Dk2.

3. A class of multivalued forms appropriate for algebraic geometry

Suppose that X is a smooth alg._ebraic variety. As is well known [Hk], there
is a compact algebrai_c manifold X that contains_ X as a Zariski open subset
and such that D X- X is a divisor in X with normal crossings. (That is,
locally D has equation ZlZ2 z 0 with respect to local holomorphic
coordinates (Zl,..., zn) in X.)
A holomorphic p-form (D on X is said to have logarithmic singularities at

infinity (with respect X X) if it is meromorphic on X and locally to is of
the form

(3.1) E EqJ A A A
k=0 J ZJl Zjk

where q is holomorphic on U, a coordinate neighbourhood in X in which D
has equation

Z1Z2 Z 0

with respect to the holomorphic coordinates (Z1,... Zr, W1,... Ws). Follow-
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ing Deligne [D1], we say that to has weight < if each term of (3.1) has fewer
than p logarithmic terms (i.e., k < p). In particular, to has weight p if
and only if it extends to a holomorphic p-form on X.
Denote the vector space of holom._orphic p-forms on X with logarith-

mic sin._gularities at infinity by fP(X log D) and those_ of weight < by
W/fV(X log D). The former comprises a complex I’(X log D)which has the
following properties due to Deligne [D1; (3.2.14)].

(3.2) PROPOSITION. (i) Every element of 12"(X log D) is closed.
(ii) The natural map 12"(X log D) --> H’(X, C) is injective. In particular

dim f’(. log D) <

(iii) The image of WII2P(X log D) HP(X, C) is FPWIHP(X, C), where
F" and W. denote the Hodge and weight filtrations of the canonical mixed Hodge
structure on H’(X). m

(3.3) COROLLARY. The image of the natural inclusion Wll)’(X log D)-->
E "X is independent of the compactification X -> X.

Proof. If Y, Z are compact algebraic manifolds with normal crossing
divisors E

___
Y, F

___
Z such that

X=Y-E=Z-F,

then there is a third compact algebraic manifold X._containing a normal
crossings divisor D and morphisms f: X--. Y, g" X Z which induce
isomorphisms

X- D -) Y- E and X- D -) Z F.

Consequently, we have a commutative diagram

g*
W/fl "(X log D), Wf"(Z log F)

a’(Ylog E) E

Since each map in this diagram is injective, the result follows from (3.2)(iii).

In other words, the notion of a holomorphic form on a smooth variety X
having logarit__hmic singularities at infinity is independent of the compactifi-
cation X --, X chosen, and we denote the algebra of such forms by I2"(X).
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Likewise, the weight filtration W. of fY(X) is independent of the compacti-
ficatio and we obtain a functor (fY(X), W.) from the category of smooth
varieties into the category of filtered, graded commutative .algebras.
Our complex of multivalued forms will be defined as linear combina-

tions of elements of O’(X), where is a ring of multivalued functions that
we now define.
Denote the vector space of all iterated integrals of the form

(3.4) ., failwi2... Ogir,

where each (.0 -I(x), by A(X). View A(X) as a subalgebra of the
smooth functions PX C. Pointwise multiplication of functions induces the
shuffle product

(3.5) fwl...t.Or(R) ftOr+l...Wr+s
where r ranges over the shuffles of type (r, s) ([C1], see also [H1; (2.11)]).
The homomorphism

(I)" T(III(x))’-A(X), (-O

from the tensor algebra on fl(x) into A(X) is clearly surjective. Applying
Chen’s algebraic description of iterated integrals [C2; (4.1.1)] we obtain:

(3.6) PROPOSITION. (a) dO is an isomorphism.
(b) A homogeneous iterated integral of length s

Is E f A( X)

is relatively closed if and only if, for each integer r [1, s 1],

in

E O)jl OOjr_ A OJjr ( (.Ojs 0
I/I =S

The weight filtration

s-r-1

@ Hi(X)

0 W0 ( W W2 ’l(x)
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of "I(x) extends to a weight filtration W. of the tensor algebra T(I(x))
and hence to A(X). The shuffle product (3.5) preserves the weight filtration.
That is, the image of WiA(X)(R) WA(X) is contained in Wi+jA(X). An
algebra with a filtration W. satisfying this condition will be called a filtered
algebra.
Denote the space of relatively closed elements of A(X) by H(A(X)).

This is a subalgebra of A(X). The weight filtration of A(X) restricts to a
weight filtration of It(A(X)).
As in (2.5), for each choice of basepoint x X, the linear map

(H)(A(X)) -+/(X, x)

that takes I to fz, x is an injective algebra homomorphism. Denote its image
by (X, x). It is a filtered algebra.
The following result follows directly from (2.6).

(3.7) PROPOSITION. If y is a pth in Xfrom x to y, then the natural map

o( x, x) -+ ,o( x, )

defined by analytically continuing germs along 7 restricts to a filtration preserving
algebra homomorphism

#(x, x) -+ (x,

Consequently, the assignment of #(X, x) to (X, x) defines functors from the
categories , and (see (2.3)) into the category of filtered commutative
algebras, m

The multivalued algebraic de Rham complex of the object X of is
defined to be

(3.8) fi(x) #(x) (R)c n(x).

This has a natural weight filtration defined by

w,n(x) E
i+j--I

w#(x) (R) w,.n’(x).

To justify calling fl’(X) a complex of multivalued forms, one needs to
show that the natural homomorphism

ft’(x) -+ ’(x)
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is injective. This follows from another application of the algebraic.characteri-
zation of iterated integrals [C2; (4.2.1)]. The differential of E’(X) thus
induces a differential on I’(X). The following proposition can be proved,
either directly using the definition of iterated integrals or by using the
general formula [C2; (1.5.2)] for the differential of an iterated integral.

(3.9) PROPOSITION.
map

The differential of ’(X, x) is induced by the linear

v: A(X), n’(x) + A(X) (R) ’(x),
(to ( ) (,Or) ) to (to + t) (,Or_l)

(3.10) COROLLARY. The association of ’(X) to an object X of " defines
a functor from s" into the category of filtered, commutative differen.tial graded
algebras. In particular, each term of the weight filtration of f’(X) is a
subcomplex.

Since ’I(x) is finite dimensional, each W(X) is a finite dimensional
complex vector space. Analytically continuing elements of W/(X) about
loops based at x X defines a monodromy representation

7/’1( X, x) --) Aut Wd(X).

It follows from (2.6) that this action is trivial mod W_(X)which proves:

(3.11) PROPOSITION. Each WI(X) is a unipotent Try(X, x) module.

(3.12) Examples. (i) If X is a smooth variety and f ’*(X).’=
H(X, .) is an invertible function, then

/.x d___flog f(x) log f(Xo) + JXo f WE(X)"

(ii) The dilogarithm is given by the formula

ln2(x) 1-z z W4(C {0, 1}),

the kth polylogarithm by

Ink(x) 1 z

k-1

W2k(C- (0,1}).z z
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(3.13) Remark. Define the irregularity q(X) of a smooth variety X to be

dim H(., f) dim -1(),

where X is any smooth completion of X. According to Deligne (3.2)(iii),
q(X) dim W1121(X). Thus, if q(X) 0, then lql(x) is purely of weight 2.
In this case the weight filtration of (X, x) is essentially its filtration by
length:

closed iterated integrals in A(X) of)Wl (x,x)
length < s when 2s,2s + 1.

The irregularity of every Zariski open subset of a simply connected variety is
zero. In particular, every Zariski open subset of a grassmannian has irregular-
ity zero.
The tensor algebra T(fI(x)) is graded by tensor length. The isomorphism

(I) induces a grading

A(X) A,(X)
/=0

of A(X). By (3.6)(b), this grading passes to a grading

H(A(X)) ( H(At(X))
/=0

of the relatively closed elements of A(X). When q(X) 0,

arll_l(X) 0 and GCll(X) H(At(X)).

For example, if q(X) 0, then

Gr’(X) HI(x),

Gr4W(x) ker{ () 2Hi(X) cu__p H2(X) }.

4. The dilogarithm

In this section we give a more or less classical approach to the functional
equation of the dilogarithm or, more accurately, its variant, Rogers’ function.
Throughout this section, we identify C- {0, 1} with the space of equiva-

lence classes of ordered 4-tuples of distinct points in p1 under the action of
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PGL(2); the orbit of (z0, z1, z2, Z3) goes to its cross ratio

[ZO’Z "Z2"Z3] (Zo Z2)/(Z1 Z2)
(zo-z3)/(z-z3) C- {0,1}.

Let Y be the space of equivalence classes of ordered 5-tuples of distinct
points in p modulo the action of PGL(2). Since PGL(2) acts 3 transitively
on p a, each orbit of PGL(2) on the set of ordered 5-tuples of distinct points
contains a unique point of the form (y, x, 1, 0, oo). It follows that Y is
isomorphic to

(C 0, 1} ) 2 diagonal

with coordinates (x, y).
There are 5 maps

(4.1) Ay’Y--> C {0,1};

the jth map takes the orbit of (Z0, ZI,..., Z4) to the
(Zo,..., j,..., z4). An elementary calculation yields the formulas:

(4.2) Aj(x, y)

x, j=0,
y, j=l,

y/x, j=2,

(y- 1)/(x- 1), j=3,

x(y- 1)
y(x- 1)’ j=4.

orbit of

To lift the diagram
Ao

Y C {0, 1}
,4

to the category ’ (see (2.3)), choose a basepoint (x0, Y0) of Y, a basepoint a
of C {0, 1}, and paths y. in C {0, 1} from a to A(xo, Y0), J 0,..., 4.
We would like to find all

F W4’(C {0, 1})

that satisfy the functional equation

4

A’F:= E (-1)iA?F=
j--0
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where c is a constant. Adding a constant A to F changes the constant c in
the functional equation by A. So we might as well assume that c 0 and seek
only those F that satisfy A*F O.
There is a second natural normalization. Set

tol= ql(c (0,1}).

Choose loops tr0, tr in C {0, 1} based at a, that satisfy

tOk 2rri6yk.

Analytically continuing any F W4(C {0, 1}) along the commutator

0, m o-0o-o-7 m-
alters F by a constant. This can be seen using (2.6). When the classical
dilogarithm In e is continued along [tr0, try], its value increases by (27ri)e. We
seek all

which satisfy

F W4(C {0, 1})

[tro,o’l]*F F + (2’rri) 2, A*F O.

If F W4(C- {0, 1}) satisfies A*F 0, then so does its equivalence
class F in

Gr4W(c {0, 1}) --- H’(C (0, 1}, C) (R):.

(This last isomorphism is a special case of (3.13).) The equivalence class F
does not change when F is analytically continued (2.6). We shall call F the
symbol of F. For example, the symbol of In e is -tOl (R) tOo.

(4.3) PROPOSITION. There is no F W4(C {0, 1}) which is congruent to
In 2 mod W2 and which satisfies the equation A*F O.

This follows by applying the homomorphism

d log (R) d log" ’*(Y) (R)z g*(Y) H’(y)(R)2

to the following formula. Note that the previous result does not contradict
the classical Abel-Spence functional equation for In 2 [L; 1.5] as that equa-
tion has a term which is a quadratic polynomial in log x and log(1 x).
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(4.4) PROPOSITION. In *(Y) (R)z #’*(Y),

4

E (- 1)J(Ay
j=O

1)(R)Ay =x(R)x +y(R)y-(x(R)y+y(R)x)

+(y(R)(x- 1) + (x- 1) (R)y)
-((y- 1) (R)y+y(R) (y- 1)).

A straightforward calculation shows that

4 jdAj dAj 4 dAj dAj
E(-1) -27. A’ E(-1)J (R)

j=O /=0 Aj- 1 Ay-
4 ( dAj dAj dAj dAy )o( 1) (R) + (R)

J= A,-1 T. T
are linearly independent in Hi(y)(R)2. Since the image of the right hand side
of (4.4) in Hi(y).2 is symmetric, we have"

(4.5) PROPOSITION.
symbol

/f F W4(C- {0, 1}) satisfies A*F 0, then F has

F h(0)0 (R) 0) 0)1 (R) 0)0)"

By (2.6), we have

[a’o, trl]*F F + 2h
fo.00) 0 fo.10)0
f 0) f 0)

Oo

F + 2A(2rri) 2.

So, if we normalize F so that [tro, trl]*F F + (2"rri)2, then F must have
symbol

(oo (R) oa o (R) Oo).

(4.6) To guarantee the existence of a function F with symbol 1/2(.0)0 (R) 0)1

0)1 (R) 0)0) satisfying A*F 0, it is necessary to choose the lift to ’ of the
diagram

Ao

r C {0, 1}
2t
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more carefully. Choose a basepoint (xo, Y0) of Y and a basepoint a of
C {0, 1} satisfying:

(i) a, x0, Y0 are real;
(ii) a > 1, x0> land Y0- 1 <x0<y0.

Then each Aj(xo,yo) is real and > 1. Choose the path yj from a to

A(xo, Y0) to be the unique linear path from a to A(xo, Yo) in R {0, 1}.

(4.7) THEOREM.
satisfies

There exists a unique function F W4(C {0, 1}) which

(4.8) [o"0, o’]*F F + (2ari) z, A*F 0

where the functional equation is computed using the lift of theA to described
in (4.6). In fact, F b 7r2/6, where dp is Rogers’ function.

Proof We first prove uniqueness. The uniqueness of F modulo W2’ was
established in the discussion following (4.5). So if F + A is another function
satisfying (4.8), then

A W2(C- {0,1}).

The equivalence class of A modulo W0-- C is then an element of

GrzW(c {0, 1}) HI(c {0, 1})

which satisfies the equation A* 0 in HI(y). Since A*: HI(c {0, 1}) --Hi(y) is injective, it follows that 0. That is, A is a constant c. But then

c A*F + A*C A*(F + A ) =0,

which establishes the uniqueness of F.
To prove existence, first cut C by a curve that does not intersect the upper

half plane Im z > 0, and intersects the real axis only at 0 and 1 (Fig. 9).
Choose the branch of log z on this cut plane that agrees with the usual
logarithm on the positive real axis.

0

Fxc. 9
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The choice of basepoint in (4.6) ensures that the numberator a and
denominator b of each of the 10 functions

y- 1 x(y- 1)A 0 =x, A =y, A 2 =y/x, A 3 A 4x- 1’ y(x- 1)’

Ao- 1 =x- 1 A- 1 =y- 1, A2- 1
y-x
X

y -x y -xA 1 x- 1’ A 4 1 yl,"’x 1)

is real and positive in a neighbourhood of (x0, Y0) in

Ya (Re {0, 1})2 diagonal.

Consequently, log(a/b)= log a log b for each of these 10 functions in a
neighbourhood of (x0, Y0) in Y.

Define F by

lz( dz
log(z-1)

dz )F(z) =- logz z- 1

lfz l(faz- (co0o) -o)w0) + - log a o9

This has symbol 1/2(w0 (R) to
Now

o (R) Oo).

log( a 1) fa

d(A*F ) =A*dF

A* (log log(z 1) |Zz_ 1 - "
Since we have chosen our basepoints and branch of log z carefully, we may
apply log (R) d log to (4.4) to conclude that dA*F 0 in a neighbourhood of
(x0, Y0) in Y. Since F is holomorphic, this implies that A*F equals a constant
c. Replacing F by F- c we obtain the desired function. I

5. The Grassmannian complex

Denote the ordered set {0, 1,..., n} by [n]. View Cn+l as the complex
vector space with basis [n] and canonical coordinates (z0,..., zn). View P" as
the corresponding projective space. Each strictly increasing function f:
In] [m] induces a linear inclusion P(f): P pro. In particular, the jth
face map dj is the unique order preserving injection [n 1] [n] that omits
the value j. The image of the induced map P(dj.): P"- P is the jth
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coordinate hyperplane Hi, canonically coordinatized. Define the coordinate
simplex A(Pn) of pn to be the union of the coordinate hyperplanes Hi.
Define the k-skeleton of A(Pn) by

Ak(Pn) Uf(Pk)

{Union of the k-dimensional coordinate planes of pn}.

where f ranges over the strictly increasing functions [k] - [n].
Denote the Grassmann manifold of n dimensional linear subspaces of pm

by G(n, pm).

5.1 DEFINITION. For positive integers p, q, we define

Gq { G(q, PP+a)" n Ap_I(PP+q ) }.

This is the top stratum of the "pieceification" of G(q, PP+q), introduced in
[GGMS].
The condition that n Ap_ be empty is easily seen to be equivalent to

the condition that sc be transverse to each stratum of A(PP+q). Consequently,
each strictly increasing map

f.[p+rlo[p+ql

induces a morphism G’ --, Grp that takes sc G’ to its intersection f-l( n
f(pp+r)) with pp+r. In particular, we have the face maps

A" Gqp G_I, 0 Nj Np + q,

obtained by intersecting with the coordinate hyperplanes. These satisfy the
usual identities satisfied by face maps of simplicial spaces.

Suppose that r and s are positive integers with r < s. Let A[r, s] be the
full sub-category of the category of all ordinals and strictly increasing maps
whose objects are the ordinals [k] with r < k < s. A contravariant functor
from A[r,s] into a category will be called an (r,s)-truncated simplicial
object of .

(5.3) Notation. The (p, 2p)-truncated simplicial variety whose k simplices
are G’_p and whose face maps are as in (5.2)will be denoted by G.p.

(5.4) PROPOSITION. The (p, 2p)-truncated simplicial variety G.p
canonical lift to a ( p, 2p)-truncated simplicial object G.p of

has a
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To construct the lift we need an alternative description of Gff. The general
linear group acts on the generalized Stiefel variety

Sn {( u1,..., Un +m)" Uj Cn and u1,... un+m span Cn}.

via the diagonal action: g(u1,... Un+m) (gu1,... gUn+m). There is a natu-
ral bijection

S/GL(n) - G(m, cn+m),

where G(m, Cn+m) denotes the Grassmannian of m planes in cn+m: To
(U1,... Un+m) associate the kernel of the linear map C+m Cn that takes
the j’th standard basis vector ej to vj. Conversely, if V is an m plane in
Cn+m, choose an isomorphism cn+m/v Cn and let v. be e + V.

(5.6) PROPOSITION. Under the isomorphism (5.5), G corresponds to

( uo,... up +q)" u C t,, each p of the vectors v span Ct,}

and the face map Aj" G --, GqP_I is induced by the map

(UO,...,Up+a) (Uo,...,j,...,Up+I).

Proof of (5.4). Consider the curve v: C --, Cp defined by

v(t)

1

tP-1
Since

det

1 1 1
to tl

t t t
1-I (t,
i>j

it follows that

(v(O),v(1),...,v(p + q))

corresponds, via (5.6), to a point xq of G’. For each strictly increasing
function

f’[p+r][q+r],
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define a morphism

(f, /f)" (GAP, Xq) --) (af Xr)

in ’ by yf(t) (Vo(t),..., V,+r(t)), where

vy(t) =v((1-t)j+tf(j)), 0 < < 1.

(5.7) To better understand the topology of the GaP, we introduce the space

(ordered (p + q + 1)-tuples of points in }/YqP PP-a, no p of which lie in a hyperplane
PGL(p).

This is an affine variety of dimension (p 1)q. There is a principal (C*)p+q

fibration Gf -) Yap. This can be seen using the description (5.6) of G: each
(p + q + 1)-tuple of vectors in Cp determines p + q + 1 points in PP-1.

Since PGL(p) acts transitively on the generic ordered (p + 1)-tuples of
points in PP-1, we can choose homogeneous coordinates in PP-1 such that
each point in Yap is given by the columns of the p (p + q + 1) matrix

1

(5.8)
Ip A

1
1 1...1

all of whose p p minors are non-zero. This matrix also defines a point in

Gff which shows that the principal bundle Gff - Yap has a section. This
proves:

(5.9) PROPOSITION. As algebraic varieties GaP YqP (C*)p+q.

One should note that this product decomposition is not canonical as it
depends, for example, upon a choice of p + 1 of the p + q + 1 points in
pp-l.
For example, since Y is a point, G --- (C*)p. Since y2

___
C {0, 1} and

Y22 is the space Y defined in Section 4, G2 -= (C {0, 1}) (C*)3 and

622 ((C- {0,1})2- diagonal) (C*)4.

(5.10) Applying the multivalued de Rham complex functor (3.8) to the
canonical lift of G.p to ’, described in the proof of (5.4), we obtain a filtered
double complex
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The differential

A*" r(aL1) -’ fir(aqP)

is the alternating sum

q

j=0

of the maps induced by the face maps. Since the A satisfy the usual
simplicial identities, (A*)2 0.

It is natural to put S(Gf) in total degree p + s + t. The differential

D" fik(G) --> fik+l(G) fik(GqP+l )

is defined to be d + (-1)kA*. It satisfies D2 0.

6. Higher logarithms

Fix an integer p > 1. Denote the coordinates of P’ by [x0,...,x,].
Denote the hyperplane x 0 by Hi. Then

P

Gg =P’- [,.JH
j=0

Identify G with (C*)p by taking (Xl,... Xp) (C*)p to [1, Xl,... Xp] G.
Since

a"(Gg)

the p-form

dx dxp
X Xp

defines an element of W2p(’(G.p) of degree 2p that we shall denote by volp.

(6.1) DEFINITION. A p.-logarithm is an element Zt, of degree 2p- 1 in
the double complex Wzpfl’(G:) that satisfies the equation DZp vol,.

Denote the component of Z, in W2p(GpP_ 1) by L,. This is a multivalued
function defined by integrating an iterated integral of rational 1-forms on

Gff_ of length < p. The condition DZp vol, implies that Lp satisfies the
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2p + 1 term functional equation

2p

j=O

Since D2= 0, a necessary condition for the existence of a p-log is that
A*volp 0. This can be verified by direct calculation for p < 3. We give a
general proof of this in Section 9.
The following elementary observation will be useful for constructing

p-logarithms when p is small.

(6.2) PROPOSITION. IfX is a smooth variety, then, for each l,

H(Wt’( X)) =0.

Proof If w
function

is a closed element of WII(X), then the multivalued

is well defined and satisfies dF w. If

(Jt)=
I#1 =r

then F fZ, xo, where

Ill=r

which shows that F Wt&(X). I

We now show how the classical logarithm and dilogarithm fit into this
picture of higher logarithms.

(6.3) The logarithm. In the case p 1, the double complex is
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Identify G (_ p1) with C* by identifying A C* with [-A, 1] G. In
these coordinates,

VO11 -dh/h.

Identify G with C* C* by taking the line

xo +mx + mbx2 O, m :/: O, b :/: O,

in p2 to (b,m). With respect to these coordinates, the face maps A"
G Glo are given by the formulas

b, j=0,

Aj(b,m) bin, j= 1,

Thus

db d( bm) dm
-A*voll= b bm + =0.

Lift the diagram

to & by letting (1, 1) be the basepoint of G1 and 1 be the basepoint of G.
Since A.(1, 1) 1, this defines a lift of the diagram to

Let L W(G0) be the multivalued function

x dA
L(x) A

Then dL vol 11(G) and dA*L A*dL A*vol 0o Consequently,
A*L c, a constant, which is easily seen to be zero by evaluating at (i, i).
This function is clearly the unique element of Wz#(G) satisfying dL vol
and A*L O.

This shows that the classical logarithm is a 1-1ogarithm.

(6.4) The dilogarithm. When p 2, the double complex is

W4(G22) w4l(G22) 2(G22)

W4#(G12) W4fil(el2) "2(G12)

W4(G)) ----) W4fil(eo2) ----’2(G(2)2).



HIGHER LOGARITHMS 425

Verifying that A*vol 2 0 is left as an exercise. Identify G with (C*)2 as in
the beginning of this section. With respect to these coordinates,

7012 X y

Let

log x -- log y -- W4fil (Go2),

Then do vol 2. Now

dA*oo A*doJ A* vol z 0

so that A*o is a closed element of w4l(G12). By (6.2), w df, where

y(x) ,o w,(6,).

Since

a(A’f) A*( af ) (A*):o,=0,

A*f c, a constant. Set L2 --f- c, then A*L2 0. Thus (w, L2) is a 2-log.
Next we show that the 2-logarithm is unique up to a coboundary. The

difference between two 2-logs is a 3-cocycle in the complex. Suppose that

{e,) w41(0) * w4()

is a 3-cocycle. (That is, A*G 0, ds 0 and dG A*sC.) By (6.2), there
exists a function H e W4g(G02) such that dH s. Now

d(G A*H ) dG A*s=0,

which implies that G -A*H c, a constant. But, as usual,

c A*(G A*H) A*G O.

Consequently, G A*H and DH (s, G), so that the 2-log is unique up to a
2-coboundary.

It remains to relate L2 and its functional equation to the Rogers’ function
and its functional equation.
We identify the space Y12, the space of ordered 4 tuples of points in p

modulo PGL(2), with C {0, 1} via the cross ratio. The space Y22 is just the
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space Y defined in Section 4. Let

7r,’GC- {0,1} and 7r2"GY
be the standard projections defined in (5.7). For each j, the diagram

(6.5)
Y C- {0,1)

Aj

commutes. In fact it commutes in s: The canonical basepoint

1 1 1 1).L(2)x- 0 1 2 3

of G2 defined in (5.6) projects to a 4/3 C {0, 1}, while the basepoint

1 1 1 1 1) GL(2)x2= 0 1 2 3 4

of G projects to (x0, Y0) (4/3, 3/2) Y. These basepoints are consistent
with the choices made in (4.6). Moreover, the path from x to A.(x2) in G2

projects to a path homotopic to the path y. defined in (4.6). Thus, if we lift
the basepoint preserving projecti.ons 7r, 7r2 to in the obvious way, then
the diagram (6.5)commutes in

Let F W4(C {0, 1}) be the function given by (4.7). Recall that F
b- rr2/6, where b is Rogers’ function. Then, as (6.5) commutes in
rr’F W4(Gt2) satisfies the functional equation A*(rrF) 0. We do not
know whether L2 -rr’F, but at least we have"

(6.6) PROPOSITION. L2 + rrF A*W2(G2o). Consequently there is a rep-
resentatiue of the 2-logarithm of the form

w4fi’(Oo ).

Proof We begin by showing that L2 -= -rr’F mod Wz(G12). As in Sec-
tion 4, we shall call the residue of a function G W4(G2) modulo
Wz(G2) the symbol of G. By (2.6), does not change under analytic
continuation. From (3.13) it follows that the set of symbols is

Gr4W( X) Ker{H’(X)*2 cup---- HZ(x)},
when X C {0, 1}, G, G2, (more generally, for any variety with q(X) 0).
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The assertion that L2
that

zrF mod W2 thus follows from the assertion

( dz_7_ dz dz --;-dz ) + A,( dx__ (R)
dy dy

(R) --dx )__(R) z 1 z 1
(R)

x y y x

0 in fII(G2,) (R)2.

This can be verified by a straightforward calculation. (Note that this formula
also implies that A* vol 2 0.)
To show that L2 + "rr?F A*W2(G), first note that, since L2 + 7rF

d(L2 + "rrF) a(G)
and moreover that A*(d(L2 + rc?F)) O.
The following fact may be verified by a direct calculation.

(6.7) PROPOSITION. The sequence

Hi(Go2 ) A*
----> H’(G21)

is exact.

A* ,HI(G)

This result thus implies that d(L2 + 7rF)= A’to for some to l(G02).
Setting

G(x) o,0
we have L2 + -F -A*G c, a constant, but

That is, L2

c A*c A*L2 A*’n’F (A*)2G 0.

-TrF mod A*W2#(G) as claimed, m

Finally, we show that the function L2 does not trivially satisfy the func-
tional equation A*L2 0. That is, L2 A*W4(G). To see this first recall
from (5.9) that

612 (C*) 3 X (C- {0, 1})

which implies that

7r1(G12) Z3 X (O’0,
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where (0.0, 0.1) is the free group generated by loops 0.0, 0.1 in C {0, 1} that
encircle 0 and 1, respectively. It follows from (4.7) and (6.6) that the analytic
continuation r0, r1]*L2 around the commutator r0, rx satisfies r0, r]*L2
L2 -(27ri)2. On the other hand, the fact that 7rl(G02) is abelian implies

that A./,[0.0, 0-1] 1 in rl(G02) for each j. From this it follows that elements
of A*(G) are invariant under analytic continuation around [0.0, ’1] which
shows that L2 A*(G).

(6.8) The trilogarithm-first steps. In this case the double complex looks like

W6(G23) ----) W6filCG23) ---) W6fi2(G23) f).,3(G)

w6 ( 1

W6i)(G03)

W6fil(G13) W6fi2CG13) "3(G 13 )

W6fil(G) W6fi2(Go3) "3(G03).

Once again, A*vol 3 0 in 123(G3), which can be verified by a direct
calculation using (3.2)(iii).
We begin the process of finding a 3-logarithm by setting

1( dy
A

dz
r/ log x z

dx dz
+Iogz-- A-- W6fim(Go3)log y - A - x y

This satisfies dr/ vol 3. Now

d(A*q) =A*(dv) =A*vol3 0.

To proceed, we have to be able to solve the equation

d -A*+, s W6fi1(G13).

Thus the first (and, as we shall see shortly, the only) obstruction to finding a
3-logarithm is the cohomology class

[A*] H2(W6,’(G31)).

(Unfortunately we cannot simply integrate A’r/ to find : as we did in the
cases of the logarithm and dilogarithm.) The vanishing of this cohomology
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group will be established in the Section 8, Corollary (8.7). Given this
vanishing result, the existence and uniqueness of the 3-log follow:

If [A’r/] 0, then there exists : W61(G3) which satisfies

ds + A*’0 0.

Now A*: w6l(G3) is a closed 1-form as

a(A*:) A*(a:) -A*(A*,)) 0.

We may therefore apply (6.2) to obtain a multivalued function F W6#’(Gz3)
satisfying dF A*. Now

d( A*F) A*( dF) ( A*)2 0,

so that A*F c, a constant. Setting L3 --F- c, we obtain a function
L3 W6(G23) that satisfies the 7-term functional equation

6

(-1)jAjL3 =A*L3 0;
/=o

and Z3 (r/, sc, L3) is a 3-10garithm.
To establish the uniqueness of Z3 modulo coboundaries, we have to show

that

=0.

Suppose that

c , G) w6(b’(Go h’(G,

is a 5-cocycle. The condition DC 0 is equivalent to the conditions

dr/ =0, dsc+A*r/ =0, dG=A*.

Provided that we can solve the equation

(6.9) doJ ’r/, o W6hl(G),

we can solve the equations

dH-A*oJ , A*H= G, H W6#(G3).

by what should now be a familiar argument using (6.2). The existence of a
solution to (6.9) follows from the following result.
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(6.10) PROPOSITION. For all p, k >_ 1 and I > 0 Hk(WI’(G)) O.

Proof. In this case (G) is the polynomial ring

C[log Xl, log Xp]

generated by the logarithms of the coordinate functions. Consequently,

(G) C[log Xl,...,log xv] (R) A -1
which is the free graded commutative algebra generated by the vector space
spanned by

dxj
logxy, x---.’ j 1,...,p.

Since d log xj dj/Xj, this vector space is acyclic. Thus each

W/( Gg) (polynomials 1}in log xy,
xj

of degree < -l
is acyclic as claimed.

Modulo the existence of the first lift r/, we have proved the existence and
uniqueness of the 3-10garithm. The non-triviality of L3 modulo A*W6(G3)
will be established in Section 10.

7. Higher albanese manifolds

Consider a complex algebraic manifold X satisfying l(s)--Hi(x, C).
An equivalent condition is that q(X).’= hl’(.) be zero, where . is any
smooth completion of X. In particular, each GaP and YP is such a variety.
We use the methods of Chen [C3] to construct an inverse system of complex
nilmanifolds and maps of X into this inverse system:

X

mlb3(X) mlb2(X) mlbl(X).

There is a more general construction of higher albanese manifolds, due to
Deligne [D3], that applies to all smooth varieties. For details, see [HZ] and
[H2].
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The strategy behind proving the vanishing of the obstruction to the
existence of a 3-10garithm is to replace G13 by its albanese AIb2(G3). In
second half of this section we construct a multivalued de Rham complex for
AlbS(X, x) and establish the vanishing

Hk(Wlfi’(AIbS( X, x))) 0

when k > 0. In the next section we give a condition under which the natural
homomorphism

Wtl’(AlbS( X, x)) ---> Wtfi"( X, x)

is a quasi-isomorphism and show that this condition is satisfied by each Gp
1"

The free Lie algebra L(HI(X)) generated by HI(X C) is naturally graded
by bracket length:

L(H,(X)) ( LS(HI(X))

where L denotes the elements of L which are homogeneous of degree s. The
lower central series

L(HI(X)) IL > IZL >

of L satisfies

UL ]) Lr.

Observe that there is a natural isomorphism

L2(HI(X)) A2HI(X).

Let R be the ideal of L(HI(X)) generated by the image of the dual of the
cup product

H2(X) --+ AaHI(X).
Set

gs L(H(X))/(R + Is+ 1L).

The grading of L induces a grading

p=l
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of each g. Since H(X) is pure of weight -2, it is natural to define a weight
filtration on 9s by

2p -1

The 9s form an inverse system

91 +- 92 +- 93 +-

of filtered Lie algebras. Let

G - G2 G3

be the corresponding inverse system of simply connected nilpotent Lie
groups.

Consider the element to of

’1(X) ) Ha(X) c_. -l(g) (R) 9s

that, using the identification Hi(x)-= 121(X), corresponds to the identity
homomorphism

id Hom(HI(X),Ha(X)) Ha(X) (R) HI(X) ’l(x) (R) HI(X).

By (3.2), dr% 0. Since [t%, t%] 2t0s A to 0 by the choice of the ideal
R, to defines an integrable connection on the trivial principal G bundle
Gs X X: if u: X G is a locally defined section, then

(7.1)

Parallel transport of 1 G along a path y in X defines an element T(y)of
Gs. The resulting function on the path space

T" PX G

is given by the formula

T( y ) l + fvto + fvto to + ....
(The formula should be interpreted inside a faithful, unipotent matrix repre-
sentation of G.)
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For each choice of basepoint x X, we obtain a sequence of compatible
monodromy representations

The following result follows directly from Chen’s method of power series
connections [C2], [C3].

(7.2) PROPOSITION. The homomorphism

p" "WI( X, x) ---> limG

induced by the P is the complex form of the Malcev completion of 7’rl(X x)
[Mv]. In particular, the homomorphisms ps induce isomorphisms

[Gr’n’l(X,x)] (R) C --, GrOGt, >_s

where G I"1 >_ I‘2 >_ 1,3 >_
H.

denotes the lower central series of the group

Denote the image of p by F. Proposition (7.2) implies that F is a discrete
subgroup of G. Define the sth albanese manifold of (X, x) by

AlbS(X, x) F \ G.
These form an inverse system of complex nilmanifolds

with

Albl(X, x) - Alb2(X, x) -
AlbX(X, x) Hi(X, C*)

and with the fiber of the map Alb Alb-1 being [GrTrl(X x)] (R) C*.

(7.3) Example. When X C {0, 1},

0 C C){2- 0 0 C
0 0 0

the Lie algebra of the Heisenberg group

1 C C
0 1 C
0 0 1
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The connection form (.0 2 is

z-1
dz

0 0 z
0 0 0

and the homomorphism /92 takes 3’ to

0 1

0 0

z-lz

f, dz
1

The group F2 is conjugate to the subgroup

1 Z(1) Z(2)
0 1 Z(1)
0 0 1

of G2. Here Z(p) denotes the subgroup (2"rri)PZ of C. m

Define the sth albanese mapping

0x: X Alb(X, x)

by 0xS(y) Ts(y), where y is a path in X from x to y and T is the transport
map associated to the connection os. Since o is integrable, T(y) depends
only on the relative homotopy class of y.

(7.4) Example. (a) When s 1, then

0x: X Albl(X, x) -= Hi(X, C* )

is given by 0xl(y) (fl(Y),..., fm(Y))where fl,..., fm *(X) are rational
functions satisfying f.(x) 1 and whose logarithmic derivatives form a basis
of Hi(x, Z(1)).

(b) When X= C {0,1} and s=2,

Ox2: C- {0, 1} --* Alb2(C- {0, 1},x)
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takes y C {0, 1} to the F2 coset of

0 1

0 0

fx’ dz fxV dz dz
z-1 z-1 z

fx
v dz
z

1

The composite of 0x2 with the biholomorphism

where

1 log(l-x) -ln2(x)
A 0 1 log x

0 0 1

takes y to the Hz coset of

1 log(l-y) -ln2(y)
0 1 log y
0 0 1

Consider AlbS(X, x) as an element of the category ’n defined in Section
2 by choosing the coset 1 of the identity as a bas,..._,epoint. Since the albanese
map 0] takes x to 1, it lifts to a morphism of e’n.

(7.5) PROPOSITION. The association of AlbS(X,x) to (X,x) defines a

functor from to n. The albanese mapping 0 is natural with respect to the
morphisms of these categories.

Identify the dual g* of g with the left invariant 1-forms of G. These
descend to 1-forms on Alb(X, x). The inclusion of g* into EI(AlbS(X, x))
induces a d.g. algebra homomorphism

%" () ---} E’(AIb(X, x)).

Here (g) denotes the Chevalley-Eilenberg complex associated to . (As a
graded vector space, it is isomorphic to the exterior algebra on *[-1]. The
differential is induced by the dual of the bracket.)
The following result is due to Nomizu [N]. It can be proved by induction on

s using the Leray-Serre spectral sequence.
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(7.6) PROPOSITION. 7" is a quasi-isomorphism, so that

H’(AIb(X,x)) H’(-’()) =- H’(,C).
Although the higher albanese manifolds are rarely algebraic, the forms

((gs) behave like logarithmic forms:

(7.7) PROPOSITION. The image of the homomorphism

Ox*: -,E’(X)

is contained in fI’(X). Consequently O induces a d.g. algebra homomorphism

Ox* -+ rr( x).

Proof It suffices to show that the image of * in El(x) is contained in
121(X). It follows from (7.1) that, locally, 0x satisfies the equation

dOl

So if Y TyX is a tangent vector at y X and q *
_
EI(AlbS(X)), then

(Ox*(q),Y) (o, dOx (Y)) (q,YAw) (qo oo,Y).

It follows that 0x*(q) q t%, which is an element of -I(x) as claimed.

We can associate a multivalued de Rham complex to Alb(X, x) in much
the same way as we did for X. Consider the space

H(B((s)))

of relatively closed iterated integrals of the form

foi O)ir

where each tOij "l(s). As in (2.4), the distinguished basepoin.t
Alb(X, x) determines an injective ring homomorphism

H(B(())) --+/(Alb(X, x),).

Denote its image by (Alb(X, x)).
Alternatively, we may describe (Alb(X,x)) as follows: Since G is a

simply connected nilpotent Lie group, the exponential map Gs is a
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biholomorphism so that the composite

exp
s "--’-) Gs --) AlbS( X, x)

is a universal covering of AlbS(X, x). With this choice of universal covering,
(AlbS(X,x)) may be identified with the subring of E() consisting of
polynomials on g. The equivalence of these two definitions can be proved
using the tautological connection on the principal G bundle G Gs --, G
whose connection form is the Maurer-Cartan form

id g*s (R) gs c_El(Gs) (R) gs.

The weight filtration on g induces a weight filtration on (gs). This, in
turn, induces a weight filtration on the relatively closed iterated integrals.
This transfers to a weight filtration on (AlbS(X, x))via this isomorphism

H(B(-d’(g,))) _= #(Alb’(X, x)).

The weight filtration may also be constructed from the isomorphism

(AlbS(X, x)) --- Sym(g*)
as the filtration corresponding to the weight filtration on Sym(g*) obtained
by extending the natural weight filtration W(g*) (g/W_l_l)* to Sym(g*).

Define the multivalued de Rham complex ’(AIb(X, x)) of Alb(X, x) to
be

#(A bS(X, x)) (R)

It is closed under exterior differentiation. The natural weight filtrations on
(Alb) and (gs) induce a weight filtration on l)’(Alb).
The following result generalizes (6.10).

(7.8) PROPOSITION. For each >_ 0 the complex W’(Alb(X, x)) is acyclic.

Proof. Since g is graded, the weight filtration of ’(Albs) is naturally
split and ’(Alb) is quasi-isomorphic to its associated graded

(7.9) Gr.Wh’(AlbS( X, x)).

Therefore it suffices to prove that l’(Albs) is acyclic.
To see this, first observe that, as graded algebras,

(Alb) Sym(s*) (R) A(g*[- 1]),
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the free graded algebra generated by Q g* g*[-1]. Filtering 1 by the
powers of its augmentation ideal I, we obtain a spectral sequence whose E
term is the free graded commutative algebra generated by I/I Q. Since
the matrix of the induced differential on I/I2 is

0 id
0 0)

with respect to the direct sum decomposition above, I/I 2 and hence the E
term of this spectral sequence is acyclic. The acyclicity of fi(Alb) follows.

Alternatively, the acyclicity of l(Alb) follows from the observation that it
is isomorphic to the one sided bar construction B(C, ’(g), (g))which is
well known to be acyclic.

Since O induces a d.g. algebra homomorphism ((g). --, f’(X), it induces
a homomorphism on iterated integrals, and hence on @.

(7.9) PROPOSITION. The albanese maps 0: X AlbS(X,x) induces a
homomorphism offiltered d.g. algebras

limh’(AlbS(X, x)) fi’(X,x)

which is an isomorphism in degree O.

8. Rational K(r, 1)’s and the existence of the 3-logarithm

In view of (7.8), the existence of the 3-log will follow if we can prove that

W6- (mlbs (a ) ) ..-, W6fi’(al3)
is a quasi-isomorphism for s sufficiently large. Suppose that X is a variety
satisfying q(X) 0. Set

I’(Alb(X)) lim(/’(Alb(X)).

In this section we give a criterion for the map

Ox*" Wtl’(Alb(X)) --+ W/h’(X)
to be a quasi-isomorphism for all I. (Such a map is commonly called a
W.-filtered quasi-isomorphism.) Since

(AIb(X)) --+ (X)
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is an isomorphism of filtered algebras (7.9), the problem reduces to giving a
criterion for the homomorphism C() f’(X) to be a quasi-isomorphism,
where

-d’() lim d’(

If we think of as a topological Lie algebra whose neighbourhoods of 0 are
the kernels of the natural homomorphisms , then (() is the complex
of continuous cochains on (see [H4]).
A variety X with q(X) 0 is a rational K(r, 1) if the composite

(8.1) va() --) f’(X) ’-) A’(X)

is a quasi-isomorphism. (Here A’(X) denotes the complex of C forms on
X.) For example, since mlbs((C*)n) (C*)n for all s, (C*)n is a rational
K(Tr, 1).

(8.2) PROPOSITION. If X is a smooth, rational K(Tr, 1) variety satisfying
q(X) 0 then"

(i) 0x*" d’(g) f’(X) is a filtered quasi-isomorphism.
(ii) 0*" ( "(Alb(X)) ( "(X) is a filtered quasi-isomorphism.
(iii) (Falk IF]) n’(x, C)= l’(X) AHx(X)/(R), where R

_
A2HI(X). (Such an algebra is called a quadratic algebra in [BG].)

(iv) (Kohno [K]) 1-In 1(1 t’*)*- Px(- t), where px(t) is the Poincard
series ofX and q dim g, the rank of the nth term of the lower central series

of rr(X) (cf. (7.2)).

Proof. The first assertion follows from (3.2). The second assertion follows
from the first using a spectral sequence argument. The third assertion follows
from (i), while the fourth follows from the fact that the complex

Grd’( 6) --+ H"( X) --+ 0

is acyclic and therefore has Euler characteristic zero.

The terminology "rational K(zr, 1)" deserves further explanation. Suppose
for the moment that X is a manifold with finitely generated fundamental
group. To rl(X) one can associate a complete pronilpotent Lie algebra
which, in the case when X is an algebraic manifold with q(X) 0, is the Lie
algebra lir s defined above. (An elegant construction of is given in
Appendix A of [Q].) There are various ways of constructing a d.g. algebra
homomorphism () - A’X which is an isorophism on H and injective on
H2. One method, analogous to our construction of (8.1), is to use the inverse
system of real albanese manifolds constructed by Chen in [C3]. In Sullivan’s
terminology, () - A’X is the 1-minimal model of X [S1]. One defines X
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to be a rational K(Tr, 1) if ’(g) A’X is a quasi-isomorphism, or equiva-
lently, if (g) is the minimal model of X. This terminology is motivated by
the fact that, for simply connected spaces, the generators of the minimal
model are dual to the homotopy groups of X. A space whose minimal model
has generators only in dimension 1 is, in some sense, a "rational K(Tr, 1)". As
we shall see later, there are K(Tr, 1)’s that are not rational K(Tr, 1)’s, and
there are rational K(-, 1)’s that are not K(zr, 1)’s.

It is convenient to generalize this notion:

(8.3) DEFINITION. Let n be a positive integer. A manifold X with finitely
presented fundamental group is a rational n-K(Tr, 1) if the natural map
ff’(g)- A’X induces an isomorphism on Hk when k _< n and an injection
on Hn/l.

Every space is a rational 1-K(Tr, 1). Standard results in rational homotopy
theory yield the next result.

(8.4) THEOREM. (i) The property of being a rational n-K(zr, 1) depends only
on the homotopy type ofX.

(ii) IfX and Y are rational n-K(rr, 1)’s, then so are X Y and X v Y.
(iii) (Falk [F]) Suppose that F - E --, B is a fibration and that 7r I(B) acts

unipotently on H’(F, Q). IfF and B are rational n-K(Tr, 1)’s, then so is E.

Ideas behind the proof. (ii) Since Zra(X Y)= "Wl(X) zrl(Y), we have
6xY 6x 6Y so that ’(6xY) (6x) (R) (6Y) from which the asser-
tion about X Y follows. To prove the dual assertion, we give another
characterization of rational n-K(Tr, 1)’s. Let (Ax, 6) denote the complete
Hopf algebra associated to X by Chen’s method of formal power series
connections [C2; 3], [C3; 1]. For X to be a rational n-K(zr, 1), it is
necessary and sufficient for Hk(Ax, 6) to vanish when 0 < k < n. The
assertion for X v Y follows from the fact that (Ax v Y, ) is the completed
free product of (Ax, 6) and (Ay, 6) and the fact that homology commutes
with (completed)free products.

Assertion (iii) follows from the main result of [Ha] or one can consult
Falk’s proof, m

Since S C*, and since every affine curve is homotopy equivalent Co a
bouquet of circles, we have the next result.

(8.5) COROLLARY. Every affine curve is a rational K(Tr, 1).

The existence of the 3-log will follow from the next result.

(8.6) PROPOSITION. Each Gf is a rational K(zr, 1).
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Proof. If suffices to show that Y
coordinates (5.8), we see that

is a rational K(-, 1). Using the

y’ (C {0, 1})P-’ A,

where A denotes the fat diagonal of points (Z1,... Zp_ 1) whose coordinates

zj are not distinct. Forgetting the first coordinate defines a fibration Y( --,

whose fiber is the complement of p distinct points in C. Since
Y12 C {0, 1} and each of these bundles has trivial monodromy, the result
follows from (8.4) by induction on p. m

Combining this with (7.8)yields:

(8.7) COROLLARY. For each 1, Wl(V(Gf) is acyclic.

Combining this with (6.8) establishes the existence of a 3-log.

(8.8) THEOREM. There exists a unique 3-log Z3 W6’(Ga.)/coboundaries.

It is worth pursuing these ideas a little further as they may establish the
existence of p-logarithms for p > 3. (At worst they give a unified and
conceptual construction of the p-logarithms for p 1, 2, 3.)*

(8.9) THEOREM. Fix an integer p > O.
(1) If Gq is a rational (p-q- 1)-K(zr, 1) for 1 <_ q <_p, then the

p-logarithm, if it exists, is unique mod coboundaries.
(2) If each Gq is a rational (p q)-K(Tr, 1) for 1 <_ q <_ p, then there

exists a (necessarily unique) p-logarithm

Zp e W2pfi "( Gf)/coboundaries.

Proof
argument.

The proof follows from (8.2)(ii) using the evident spectral sequence

We conclude this section by giving Falk’s example [F] of an algebraic
manifold with q 0 that is a K(zr, 1), but not a rational K(Tr, 1). Let X be
the complement of the 6 lines x _+ 1, y + 1, x :tzy in C2.
This is a K(r, 1) as can be seen using Deligne’s theorem [D3] or directly as
follows (cf. [FR]): Consider the linear system

s(xz- 1)-t(y2- 1) =0, [s,t] P

*We have constructed a 4-logarithm by showing that G24 is a rational 2-K(zr, 1).
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Fro. 10

of conics in p2. The base locus of this system consists of the 4 points x + 1,
y +1. The family has 3 singular fibers x2= 1, y= 1 and x= y2. All
smooth fibers intersect the line at infinity in 2 points. It follows that X is a
fibration

el_ (6 points)

where each fiber is a smooth conic minus the 4 basepoints and the 2 points at
infinity, and that X is a K(zr, 1).
To prove that X is not a rational K(Tr, 1), we show that X C* is not a

rational K(zr, 1). To do this it suffices to show that H’(X C*) is not a
quadratic algebra. This follows by applying the following beautiful criterion
to

XC*=C3-{x= +z,y= +z,x= +y,z=0}.

(8.10) FAII’S CRITERION. Suppose that is a set of codimension 1 linear
subspaces of C n. Let X Cn- -e. If there exist hyperplanes
{L, H1,... Hk} c_ e such that

(i) cod(L N H CI CI nk) k,
(ii) for each i, j satisfying 1 < < j < n, there is no hyperplane H -{Hi, Hi} containing H Hi,

then H’(X) is not a quadratic algebra.

Applying Falk’s criterion with

H {z 0}, H2 {x y}, H3 {x -y}, L {x z}

shows that X C* is not a rational K(Tr, 1). Falk gives a similar argument to
show that the complement of the arrangement of hyperplanes in Ca corre-
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sponding to the reflection group D4, a K(Tr, 1) by [D2], is not a rational
K(zr, 1).

Another class of examples of algebraic manifolds with q 0 that are
K(zr, 1)’s but not rational K(zr, 1)’s arises as follows. Fix a smooth curve C in
p2 of genus > 1. Let X be any Zariski open subset of p2 C. Then X is
not a rational K(zr, 1) as Hi(x) is pure of weight 2 and H2(X) contains a
copy of Hi(c, Z(-1))which is of weight 3. Since the cup product preserves
weights, Hi(x) cannot generate H’(X). So, by (8.2), X cannot be a rational
K(zr, 1). By Artin’s theorem, there are many Zariski open subsets X of
p2 C that are K(zr, 1)’s.

9. Symmetry

In this section we exploit the action of the symmetric group on Gp to
construct a more canonical representative of the 3-logarithm. We also use
symmetry to prove the vanishing of A* volp for all p.
The symmetric group on n + 1 letters, En+l, acts on pn by permuting the

coordinates:

O’" [Z0"ZI’...’Zn] [Zo.(0)" Zo.(1)’..." Zo.(n)].

When n =p + q, this action induces an action of Xp+q+ on G. This gives
12"(G’) the structure of a Ep//x-module which does not seem to lift to a

Ev+q+l module structure on (l’(G’), W.).5 Nonetheless, by (2.6), we have:

(9.1) PROPOSITION. The action of Xp+q+ on Gp induces a Xp+q+ action
on the differential graded algebra

(Gr.W’(G),d).
The combinatorial differential

A* Gr.W( (Gff ) -- G.Wf (G )
behaves well with respect to the actions of Ep+q and Ep++ in a sense that
we now make precise. Denote the character of Em that takes a permutation
o- to its signature sgn(r) {1,- 1} by sgnm. Denote the isotypical compo-
nent of a Era-module V corresponding to sgn, by s(V) and its unique
Em-invariant complement by r(V). The following result is a special case of
(9.5) which is proved later in this section.

SHowever, the Xp+q+ action on l’(Gff) does lift to an action of the braid group Bp+q+ on
(I’(G’), W.). This can be seen from the proof of (5.4).
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(9.2) PROPOSITION.
where

A* preserves the decomposition V s(Vt) r(V ),

,Vt= GrVh’(Gf), q 1, q.

In particular, if v Vq_ spans a copy of sgnt,+q, then A*v spans a copy of
sgnp+q + provided that it is not zero.

Define the symbol of

p-1

Zp (Z,...,Z;_,) (- ( W2pP-q-l(ag).
q=0

to be its equivalence class Zp (Z’,..., Z;_ 1) in

p-1

GrpP-a-(GaP).
q=O

Since the volume form volp flP(G) spans a copy of sgn,+ 1, we have the
following refined version of (8.9) which follows from an argument using (7.8).

(9.3) THEOREM. Fix an integer p > O. If each G is a rational (p -q)-
K(Tr, 1) for 1 <_ q <_ p, then there exists a p-logarithm Zp whose symbol

’p (’,’’’, ’pP-I), Z-’ff Gr:p(P-q-l(G:)

has the properly that, for 0 < q < p, cr(Zff) sgn(cr)Zff, for all cr X,+q+ .
The representative of the dilogarithm that we constructed in (6.4) is of this

form.
We now prove (9.2). It is convenient to abstract the setting. Consider

as the group of automorphisms of the set In] {0, 1,..., n}. Suppose that M
is a CEt+ module for m- 1 and m. Suppose that we have C-linear
maps A:" Mm _.> Mrn for 0 < j < rn which satisfy

(9.4)

A:o(i- 2, i- 1),
Ai,

( 1, i) Aj ]Ai_ 1,

Ajo(i- 1,/),

j<i-1,

j=i-1,

j>i,

for j 0,..., m and 1,..., rn 1. Define A*" Mm-1 Mm to be
Em=o( 1):A.
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(9.5) LEMMA. If V is a Em-submodule ofMm-l, then the Em+l-SUbmodule
A*V ofM generated by A*V is a quotient of Ind V, the IL,n + -module induced
from V. Moreover, A* preserves the decompositions

M s(M1) r(M’).

In particular, A*s(V) is a Em+-submodule ofMm.

Proposition (9.2) is a special case of this lemma because of the next
proposition.

(9.6) PROPOSITION. The modules

Mt= VrV’(VtP_p)

and the mapsA Mt- ....> M satisfy (9.4) for all > p.

Proof. This is a direct consequence of the fact that the face maps

Aj P(dj)" p,-1 Vt

satisfy (9.4), where the P(d) are the face maps defined at the beginning of
Section 5.

Proof of (9.5). By replacing Mm- by V if necessary, we may assume that
Mm- V. The condition (9.4) implies that

Ai= (j,j- 1,...,1,O)oA o, j=O,...,m.

Let

Mm-1/m Ind Mm- CX + x

Define A’." Mm-1 "-> fil to be the composite

Mm-1 ---> (j,j- 1,...,1,0) (R) Mm-l’’> J’Im.

By the universal mapping property of induced representations, there is a
unique Em+l module homomorphism q" 1m’-’> Mm such that the diagram

Mm-1 M
A
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commutes when j 0. By construction of the , it commutes for all j, from
which it follows that the image of q contains A*Mm’. This establishes the first
claim.

If v M spans a copy of Sgnm, then by (9.4),

m

(i- 1, i)oA*v (i- 1, i) E (-1)YAjv

i-2

Y’ (-1)Aio(i- 2, i- 1)v + (-1)i-lziU
j=0

+ ( 1)iZi_lU +
rn

_
(-1)iAio(i- 1, i)v

j=i+l

-A*v.

Since the transpositions (i- 1, i) generate m+l, it follows that A’v, if
non-zero, spans a copy of Sgnm/ 1. Consequently, A*s(V) c_ s(Mm+ 1).
We will abuse notation and not distinguish between a representation and

its character. Since Ind V --V is surjective,

0 < (X,e-) < (X, Ind V) (Res X, V)

for all characters X of m+l" (Here Res X denotes the restriction of X to
Em.) In particular,

0 _< (Sgnm+l,-’) < (Sgnm, V).

Taking V to be r(Mm-1), we see that A*r(Mm-l) c_ r(Mm).

Now we establish the vanishing of A* volp using symmetric groups.

(9.7) THEOREM. For all p >_ 1, A*volp 0 in -P(Gf).

Since volp spans a copy of Sgnp+ in P(Gff), to prove (9.7), it suffices to
show that fP(G) does not contain a copy of Sgnp/ 2. We will prove this by
taking residues.

(9.8) LEMMA.
mapping

If D is a divisor in a smooth variety X, then there is a linear

Reso" Wtl’lk(x D) W/_2[k-l(o*),

where D* is the nonsingular part of D.
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This can be proved by using resolution of singularities [Hk] to reduce to
the case where D is a divisor with normal crossings in a smooth, complete
variety. The residue in the normal crossings case is constructed in [D1]. One
then checks that the result is independent of the resolution.
The residue has the following well known properties:

(9.9) PROPOSITION. (i) IfD is a divisor in X, then the sequence

ResD [’k-0 --, --, o) (o,)

is exact.
(ii) Iff: (X, D) (X, D) is an isomorphism, then the diagram

’k(x- D) -----k-l(D*)

fk(x-- D) k-I(D*)

commutes.

Since I-I’(X)= 0 for all smooth, complete rational varieties X and all
p > 0, repeated application of (9.9)(i)yields the next result.

(9.10) COROLLARY. Suppose that X X- U D and that UD. LI S,
is a stratification of D satisfying the condition that the closure S of each
stratum is a union of strata. IfX and each S are rational, then to t’(X) is
zero if and only if

Ress,
p Ressp_ Ress to 0

for all sequences (tel,... ap) for which codim S,,j j and Sj+
_
S,.

Our next task is to construct such a stratification of G(1, PP+), the
grassmannian of lines in P’+ 1. We will call a linearly imbedded Pq+ in PP+
a coordinate flat if it is the intersection of coordinate hyperplanes.

(9.11) LEMMA. There exists a stratification

G(1, P’+l) LIsa

of G(1, P’+ 1) with the following properties.
(i) Each S is smooth.
(ii) The closure of each stratum is a union of strata.
(iii) The top stratum is G.
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(iv) Each stratum & rational.
(v) The stratification is natural with respect to the inclusions G(1, Pq+ 1) _.

G(1, PP+ l) induced by the inclusions Pq+ pp+ of coordinate flats.
(vi) The stratification is invariant under the_ action_ of Ep+2 on_ G(1, PP+ 1).
(vii) For each chain of closed strata S,,

_
S2

_ _
S satisfying

P
cod S. j, there exists a transposition r Xp + 2 that stabilizes the whole cham,
i.e., r(Sj) Sj for every j.

Remark.
[GGMS].

These strata of G(1, Pp+I) are the grassmannian strata of

Proof. We prove the result by induction on p. When p 1 the proposi-
tion is true. Suppose that it is true for all q < p. By induction and naturality,
we can write

Y {l G(1,Pp+ 1). c_ A, where A is a coordinate hyperplane}.

as a union of strata

Y=I_IS

which satisfies (i), (ii), (iv), (v), (vi).
For each coordinate fiat A _c PP+ 1, we have the p + dim A dimensional

variety

DA {l G(1,Pp+I)" l(hA =/= }.

For each unordered pair of coordinate flats A, B that span pp+l and are
each of dimension < p, we have the dim A + dim B dimensional subvariety

Set

EA,B DA N DB.

B {C,D}<{A,B}

It is necessary to prove the disjointness of the SA, B. This follows directly
from the next Proposition. If A -- pm is a coordinate fiat in P", let

intA =A- 13B= (C*) m

where B ranges over the proper coordinate flats of A.
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(9.12) PROPOSITION. Suppose that A, B, C are distinct coordinate flats in P,
each of dimension < n- 2. If is a line in pn that intersects each of
int A, int B, int C, then is contained in a proper coordinate flat of P.

Proof Since is contained in the span (A, B), (B, C), (C, A) of each
pair of A,B,C, we are done if any of (A,B), (B,C) or (C,A) has
dimension < n. So we assume that each pair of A, B, C spans pn. Since
each of A, B, C has codimension > 2, there are 6 vertices (a vertex is a
coordinate flat of dimension 0) v0, v 1, v 2, v 3, v4, v5 such that each of the
intersections

<U0, UI> qA, <U2,U3> B, <U4,U5> f C

is trivial. Denote the unique n 6 dimensional coordinate flat complemen-
tary to (v0,...,vs) by D. If

_
D we are done. Otherwise project to

(v0,... v5 )
__

pS. Since D intersects each of int A, int B, int C non-trivially,
projects to a line in pS. Since each pair of A,B,C span en, the

projections of A, B, C to p5 are

A <u2,u3,u4, u5> B-- (Uo,U1,U4,U5) C (Uo, U1,U2,U3>

respectively. By eleme_ntary_linear_ algebra, there is no line in p5 that
intersects each of int A, int B, int C. This proves the proposition, m

(9.13) COROLLARY.

G(1,Pp+’) G II II u LI u llso.
dim A <p A, B ast"

dim A, B <p

This stratification clearly satisfies (i)-(vi). It remains to prove (vii). For this
we need a more complete description of the strata. By induction on p,

(9.14) G(1, Pp+I) LI Sc LI I_I SA,C lI LI SA,n,c
C (A’C) (A,B;C)

where
C ranges over all coordinate flats of pp+l and Sc is dense in the

grassmannian of lines in C;

dim Sc 2 dim C 2;
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(A; C) ranges over all pairs of coordinate flats A c_ C where A has
codimension > 2 in C;

dimSA;c=dimA +dimC- 1;

(A, B; C) ranges over all unordered pairs A, B of coordinate flats of a
coordinate flat C where A and B span C and A and B both have
codimension > 2 in C;

dim SA, B" C dim A + dim B.

(9.15) PROPOSITION. (1) All strata of codimension 1 in Sc are of the form
SA; c, where A has codimension 2 in C.

(2) All strata of codimension 1 in SA; c are of one of the following forms"

SA" D, where D is a hyperplane in C that contains A and codc A > 3,

SA, B. C where B has codimension 2 in C, A and B span C,
SD, where D is a hyperplane in C and codc A 2.

(3) All strata of codimension 1 in SA, B., c are of one of the following forms"

( A, D; C), where D is a hyperplane in B andA and D span C,
(A, D; E), where E is a hyperplane in C that contains A,
D=BNEandcodcA >3

(D; E), where E is a hyperplane in C that contains A,
D B N E, and codcA =2.

Denote the set of vertices of PP+ by [p + 1] {0, 1,..., p + 1}. To each
coordinate fiat we can associate its set of vertices, a subset of p + 1].
A decomposition

[p+l]= I_[ F,

can be associated to each stratum S of (9.14): To S, associate the 1, 2 or 3
coordinate fiats that index it. Each of these corresponds to a subset of
[p + 1]. The decomposition above is the coarsest decomposition of[p + 1]
for which each of these subsets is a union of the F,j. For example, the
decomposition associated to the stratum

(<0,...,q 1), (2,..., q + 1), (0,...,q + 1))

is
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{0, 1} tO {2,..., q 1} L) {q, q + 1} U {q + 2,...,p + 1}.

The following assertions are direct consequences of (9.15).

(9.16) PROPOSITION. Suppose that the decomposition associated to a stratum
S divides [p + 1] into m subsets. If Srs has codimension 1 in S, then the
common refinement of the decompositions associated to S and Sr divides
[p + 1] into m or m + 1 subsets.

(9.17) PROPOSITION.
stratum S is

If the decomposition of [p + 1] associated to the

m

[p+ 1]= II

then the stablizer of S in ,p+ contains

m

I-I Aut(F.).

We can now prove (9.11)(vii). Suppose that S S S is a
p

chain of closed strata of (9.14), where S,. has codimension j in G(1, PP+).
By (9.16) the common refinement of the decomposition associated to the S.
divides [p + 1] into at most p + 1 nonempty subsets F.. Since [p + 1] ha
cardinality p + 2, one of the F. must have at least 2 elements. By (9.17) there
is an involution tr Ep+ that stabilizes the chain. This completes the proof
of (9.11).

Proof of (9.7). Suppose that o "P(Gf) satisfies r’o sgn(r)o for
all r Ep/2- By (9.11)(vii), for each chain

of closed strata satisfying cod S,
stablizes it. Denote the operator

j, there is a transposition tr p+2 that

Ress Ress2... Ress,p" ak(Gf) -=)

by R. Since Ro f(S;) C, Ro is invariant under r, so that

Rto r*Rto Rtr *w Rto

This implies that Ro 0. So, by (9.10) and (9.11), o 0. This completes the
proof of (9.7).
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10. Non-triviality and indecomposability of the 3-logarithm

In this section we prove that each representative of the 3-logarithm
function is non-zero, not a product of logarithm and dilogarithm type
functions, and does not trivially satisfy the functional equation. More pre-
cisely, we shall prove:

(10.1) THEOREM. Let L3 W6 (G32) be a 3-logarithm function.
(i) L3 is not decomposable; that is, L3 cannot be expressed as a sum

N

L3 E FIG,,
i=1

where Fi, G W4(G3);
(ii) The residue class of L3 in W6(G3)/A*W6(G31) is not zero.

Here is our strategy for proving (10.1).
1. Calculate Gr as a representation of the symmetric group for G13

and G23.
2. Calculate explicitly the symbol L3 of one particular representative of

the 3-10g function.
3. Show that 3 spans a copy of the sign representation in Gr6W(G32)

whose projection to the indecomposable elements of Gr6W(G) is non-zero.
This will yield the indecomposability assertion.

4. Show that the indecomposable part of Gr6W(G) contains no copy of
the sign representation. An application of (9.2) will yield the second assertion
of (10.1).

We begin with some comments about the graded ring Gr.W and its
indecomposables. Let X be an algebraic manifold with q(X)= 0. As in
Section 3, we denote the algebra of iterated line integrals generated by
fl(x) by A(X) and the subspace of relatively closed iterated integrals in
A(X) by H(A(X)). These algebras are graded. For each x X, the
canonical homomorphism

/4(A(X)) + x),

is filtration preserving and induces a canonical isomorphism

H( A(X)) Gr.W(X)

which is natural with respect to morphisms X Y.
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The diagonal

A" fooa. OOr fool ooi (R) foo+l OOr
i=0

imparts the structure of a commutative Hopf algebra to A(X) and H(A(X))
[C1]. By the dual of the Poincar6-Birkhoff-Witt Theorem (see, for example
[H3]) H(A(X)) is canonically isomorphic, as an algebra, to the polynomial
ring C[Q] generated by its space of indecomposable elements Q 1/12.
Here I denotes the maximal ideal of iterated integrals with no constant
terms, and 12 denotes its square. Denote the idempotent I --, I correspond-
ing to the canonical splitting s: Q --* I of the quotient map I --, Q by y.

(10.2) PROPOSITION [H3]. The idempotent y is given by the formula

n m-1

E (-1)m ,E E fw(1)"’0)(n)
m=l rl + +rm=n (rsh(r rm)

where sh(ra,..., rm) denotes the shuffles of {1,..., n} of type (r,..., rm).
particular, when n 3,

0)10)20)3-- (0)10)20)3 + 0)30)20)1)

" E 0)tr(1)0)tr(2)0)tr(3)"
3

Alternatively, one can think of the Hopf algebra structure of Gr.W(x) as
coming from the coordinate ring H(A(X)) of the proalgebraic group G

lim G associated to X in Section 7.

Th--e space of indecomposables Q of Gr.W(x) is graded:

Q= [ Ql.
l=1

From either of the descriptions of Gr.W(X) above, it follows, when q(X)
0, that

Q’ Hom(GrW_tg, C),

where g is the Malcev Lie algebra associated to 7rl(X) in Section 7. Since g
has only even weights, and since the homomorphism (g) f’(X) induces
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an isomorphism on H and an injection on H2, we have:

(10.3) PROPOSITION. If q(X) 0, then Ql 0 when is odd,

and

Q2 H(X), Q4 ker(A2Hl(X) H2(X)}

Q6= ker{Q2 (R) Q4 2_ A3H(X)),

where lz is the cup product and u is induced by the natural map

H (R) A2H __> A3H 1.

(All cohomology groups above are with complex coefficients.)

Our next task is to compute the symbol

J’3 al’v[fi2(ao3) ill(G13) ) (G23)]
of a representative of the 3-10garit__hm. The representative Z3 will have the
property that each component of Z3 will span a copy of the sign representa-
tion (cf. (9.3)). It is first necessary to understand the first cohomology of G13
and G23.
Denote the free Z-module spanned by the q + 1 element subsets of

{0,...,p + q} by Mtp’q+ll. The action of p+q+l on the q + 1 element
subsets gives M[p’q+l] the structure of a Ep+q+l-module, called the Specht
module for the partition [p, q + 1]. Taking each canonical basis vector to 1
defines a Ep /q / 1-module homomorphism

(10.4) M[p,q+ 1] Z,

where Z is considered as a trivial p+q+ 1-module.

(10.5) PROPOSITION. As a ,p+q+l-module, HI(Gqp) is canonically isomor-
phic to the kernel of (10.4).

Proof From the description of G’ and the grassmannian G(q, Pp +q)
given in (5.5) and (5.6), it follows that

Gqp= G(q,PP+q) [,.JDs,
s

where S ranges over the q + 1 element subsets of {0,..., p + q} and Ds
denotes the divisor corresponding to those p + q + 1 tuples of vectors
(Uo,...,Up+q) where the vectors {v.: j S} are linearly dependent. The
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result follows directly from the equivariance of the Gysin sequence

0 "- Ha(Gff) " ) H2(pq+p)_2(Ds) H2(G(q, PP+q)) -- 0
s

as the middle term is isomorphic to the Specht module M[p’q+ll as a
+q+-module.

By oung’s correspondence, every representation of n corresponds to a
formal sum of partitions of n.

(10.6) COROLLARY. /jr F is a field of characteristic zero, then the p+q+l"
module HI(Gqp, F) corresponds to the formal sum ofpartitions

[p,q + 1] + [p + 1, q] + +[p +q,1]

and nl(yg, F) to HI(G, F) [p + q, 1].

Proof This follows immediately from (5.9) and (10.5) using Young’s rule
(see [J; 14.1]). m

(10.7) COROLLARY. The first Betti numbers of GaP and Yap are given by

bl(GqP) (p+q+ 1)lp bl(yqp)= (p+q+1)_p (p+q+ 1).

Observe that the Specht module Mtp’+ 1] Occurs aS HX(Lq), where LaP is
the restriction to Gp of the C* bundle associated to the line bundle (Ds)
over the grassmannian. It is convenient to write elements of

A’HI(G) and {)’HI(Gqp)

in terms of the natural basis of the larger modules

A’HI(Lqp) and ()’HI(L).
We shall denote the generator of Ha(Lg) corresponding to the subset S
{s0<s < <Sq}Of{O,...,p+q}bys0sx...%.
Suppose that v is an element of a n-module V. Define

Alt v sgn(tr)rv.
0"

(10.8) PROPOSITION. In the notation above, the volume form VOlp

1
volp .I Altp+l I /X 2 A A p.

is given
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(10.9) PROPOSITION. If X is an algebraic manifold with q(X)= 0 and
HE(x) pure of weight 4 (e.g., AEHI(X) - HE(x) onto), then

Grfi2( X) HX( X) (R) H2(X).

(10.10) COROLLARY. The symbol of the element rl of W62(Go3), con-
structed in (6.8), that satisfies dr/ vol 3 is

1
3!Alt40 (R) 1 A 2

Before proceeding, it is necessary to describe the face maps in terms of the
canonical bases.

(10.11) PROPOSITION. The map

Aj" HI(G) + ul(eqP+l )

takes S to dj(S) t3 {j), where dj is the jth face map.

dj: {O,...,p + q} --> {O,...,p + q + 1}.

(10.12) LEMMA.
and that

Suppose M" is a Ln-module that Mn is a Ln + "mdule

Aj" M __> M 0 < j < n

are maps satisfying (9.4). If v Mn-l, then

A*(hltn v) Altn+ l(Aov).

Proof Denote the isotropy group of j in Xn,+l by X(j). Then

(j) (j,j 1,..., 1,0)(0)(0, 1,...,j).

As in the proof of (9.5)

Aj (j,j 1,...,1,O)oA o.

Since id, (1, 0), (2, 1, 0),..., (n, n 1,..., 1, 0) is a set of left coset represen-
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tative of E(0) in En+ 1,

n

iltn+l(Aou) E Z sgn(#)rAov
j=O (j 0)(0)

E (-1), sgn(#)#(J,...,O)Aov
j=O

n

E ( 1) E sgn(r)(rAjv
j=O

n, (-1)JAj(iltn v)

A*(iltn v ).

(10.13) COROLLARY. The symbol ofA*v is

1
A* --. Alt5 O1 (R) 02 A 03 Gr6W(2(G3t).

Our next task is to understand the relations in H2(G13). As a corollary of
the proof of (8.6) we have:

(10.14) PROPOSITION. The Poincard series of G and Y are

P P

gf(t) (1 + t)PVI (1 +it) and yf(t) 1-I (1 +it).
j=l j=2

Since G’ and Y’ are rational K(Tr, 1) spaces, their cohomology rings are
generated by H (see (8.2)). Since G’ Y (C*)p+ 1,

(af) (Y) () Cp+I and Qt(G) Q’(Y)

whenever > 2.

(10.15) PROPOSITION. We have dim Q4(G13) dim O4(Y13) 4. Moreover,
as a 5-module, Q4 is isomorphic to the irreducible representation corresponding
to the partition [2, 1, 1, 1].

Proof The first assertion follows from (10.3) and (10.14). To see the
second, note that Hi(Y13) corresponds to the partition [3, 2] and its second
exterior power to [3, 1, 1] + [2, 1, 1, 1]. The result follows as [3, 1, 1] has rank 6
and [2, 1, 1, 1] rank 4. I
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As in the proof of (10.12), we denote the stabilizer of j {0, 1, 2, 3, 4} in
E5 by E(j).

(10.16) PROPOSITION.
ments

The relation module Q4(G13) is spanned by the ele-

These are subject to the relation E=o(-1)JRj O.

Proof The single relation in H2(G12) is A*vol 2. By (10.8), 7012
1/2Alt30 A 1. So by (10.12), the relation in HZ(G12) is A*vol 2

1/2Alt4 O1 A 02. Viewing G13 as G2
2, we obtain 5 face maps Bj: G13 G2

1"

The elements Rj are given by

Rg Bff (A* vo12).

The second assertion follows by a direct calculation, or by applying (9.5) and
(10.15) to

B*’Q4(G) -’- Q4(G3).

The next step is to find the symbol

arfil(a31) (S2Hl(a) Q4) Hi(G13)

of an element sc of W61(G13) that satisfies ds + A’r/ 0. Here S2 denotes
the second symmetric power.
To find such an element sc, it suffices to find its symbol, for suppose that

u Gr6Wl(G)
satisfies du + A* 0 in Gr6W(2(G31). Choose as a lift a of u to W6fi1(G13).
Then dfi + A*7 is a closed element of W44(G13). By (8.7) and (8.6), there
exists v W4I(G3) satisfying dv dfi + A’r/ 0. The element fi v
has symbol u and satisfies dsc + A*7 0..

It is convenient to view

Gr6Wfi K (R) H
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as a subspace of (R) 3H1. Here K denotes the kernel Q4 ) S2H of the cup
product (R) 2/_/1

__
H2.

(10.17) By (3.9) and the preceding discussion, Grhl(G) is the
symbol of an element : of W6(/I(Gx3) satisfying de + A’r/ 0 if and only if
the image of under

id (R) cup’ 3Hi(G13) Hi(G13) H2(G13) Gr6Wfi2(G31)

(10.18) PROPOSITION. The element

" Alts[6(01 (R) 02 (R) 03)- 2(01 (R) 12 (R) 23)
+01 (R)23(R) 12+ 12(R)01(R)23]

of (R)3H1(G3) lies in K (R) H and satisfies (10.17). Consequently, it is the
symbol of an element of W61I(G3) which satisfies d + A*rl O.

(10.19) COROLLARY.
symbol

There is a 3-10garithm function L3 W6(G23) with

Z3 7- Alt6[-2(012 (R) 023 (R) 034) + 012 (R) 034 (R) 023 + 023 (R) 012 (R) 034].

Proof. This follows from (10.18) using (6.2) and (10.12).

(10.20) PROPOSITION. If L3 is as in (10.19), then T(L3) L3 so that L3 is
canonically indecomposable.

This proves that at least one 3-logarithm function is non-zero and inde-
composable. To prove that all representatives are indecomposable, we need
more explicit information about the multiplicities of the sign representation

W-- 3 3in Gr6 of G and G.

(10.21) LEMMA. The multiplicities of the sign representation in the modules
sail 1, Q4 (R) H I, and Q6 of G, G31, G3 and G are given by the following
table"

S3H Q4 (R) H 06

G 0 0 0

G3 1 1 0
3 2 1 1G2
G 1 0 0
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Proof. In all cases, S3H was calculated from (10.6)with the aid of a
computer. In the case of G03, Q4 and Q6 are zero, as g(G03) is abelian.
By the discussion preceding (10.15), Q6(y13)= Q6(G13). From (10.6) and

(10.15) it follows that Q4(y13)(R) HI(y3) contains no copies of the sign
representation. This and (10.3) imply that the sign representation has multi-
plicity zero in Q6(y13). Another calculation shows that the sign representa-
tion occurs in Q4(G13) (R) HI(G)with multiplicity 1.
To compute the entries for G3

3, note that

Gr6W__ S3H (Q4 (R) H ) ] Q6 ( 3H1"

Machine calculations using (10.6) show that the sign representation has
multiplicity 1 in S3H and (R) 3HI, from which we obtain the multiplicities
for G3

3"

To calculate the multiplicities for G we need more information about its
topology.

(10.22) PROPOSITION. The Poincar series of G32 and Y23 are

y32(t ) 1 + 14t+72t2+ 159t3 + 126t4 and g32(t ) (1 +t)Sy32(t).

Moreover, the cohomology rings H’(Y23) and H’(G) are both generated in
dimension 1.

Proof. Since G23 Y23 x (C*)s, it suffices to prove the result for Y23.
Forgetting one point defines a projection 7r: Y23 Y13 whose fiber Fp over
the point P of Y13 (C {0, 1})2 A is C2 minus the configuration in Fig.
11. The topology of the fiber of zr is independent of P, and r is a bundle
projection. Since the cohomology of the fiber [Br] and the base (8.2), (8.6) are

FIG. 11
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generated by H1, and since the Leray spectral sequence of zr degenerates at
E2 (by Leray-Hirsch Theorem), the cohomology of Y23 is also generated
by H 1.
The degeneration of the Leray spectral sequence also implies that

y(t) y31(t)PF(t ),

where PF(t) is the Poincar6 series of the fiber. Since F is affine of dimension
2, PF(t) has degree 2. The first Betti number of F is just the number of lines
in the configuration, which is 9. To compute the second Betti number, choose
the point P to be real. Then, by a theorem of Orlik and Solomon [OS], PF(1)
equals the number of connected components of the real points of Fp, which
is 31. Thus, PF(t) 1 + 9t + 21t 2, from which the result follows, m

Now we are ready to complete the proof of (10.21). From the discussion
preceding (10.15),

Q4(Y23 ) 04(623) and Q6(Y23) a6(a23 ).

From (10.3), (10.7) and (10.22) it follows that a4(y23) is a rank 19 submodule
of the E6-module A2H1(Y23). There are 3 possibilities, namely

(10.23) [3,1,1,1] + [2,2,1,1],
[4,1,11 + [2,2,1,1].

[5, 1] + [3,3] + [2,2, 1, 11,

By (10.3), a6(Y23) is the kernel of

Q4(Y23 ) Hi(y23) --) A3H1(Y23).

Since A3HI(Y3) contains no copy of the sign representation, and since, for
each of the possibilities for Q4, Q4(R) H contains one copy of the sign
representation, Q6 has exactly one copy of sgn 6. This completes the proof of
(10.21). m

To complete the proof of (10.1), we have to prove assertion (ii). To do this,
it suffices to show that the symbol L3 of a 3-10garithm function is not of the
form A*/3 for some/3 Gr’(G31). But this follows from the fact that

Gr- s3n (Q4 (R) H 1) [ Q6

and that this isomorphism is natural, so that

A*" Gr#(G31) - Gr6W(G)
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preserves this decomposition. The assertion (10.1)(ii)now follows from (10.20),
(10.21) using (9.2).

(10.24) Remark. The columns of the table in (10.21) may be regarded as
complexes with differential A*. The first two of these columns are exact. This
can be seen by noting that sS3HI(G) is spanned by

0-1 Alts[01 (R) 12 (R) 23 + 01 (R) 23 (R) 12 + 12 (R) 01 (R) 23],

that sQ4(G3) (R) HI(G3) is spanned by

0 Alts[2(01 (R) 02 (R) 03) 01 (R) 23 (R) 12 + 12 (R) 01 (R) 23],

and that sS3HI(G) is spanned by A*0-1 and

0-2 Alt6[012 (R) 234 (R) 045].

This implies that the homology of the complex

0 Gr(G) Gr(G31) --* Gr(G) Gr(G) 0

is one dimensional and spanned by the class of a trilogarithm.

11. Real Albanese manifolds and generalized Block-Wigner functions

In this section we construct a real valued, real analytic function

D3:Y23 .- R

whose pullback to G23 bears the same relation to the 3-10garithm function as
the Bloch-Wigner function does to the classical dilogarithm.

It is first necessary to construct the ring of Bloch-Wigner functions associ-
ated to a smooth variety X. Denote by. fiR(X) the ring of multivalued, real
valued functions on the object X of " consisting of poly.nomials with real
coefficients of the real and imaginary parts of elements of ’(X). The ring of
Bloch-Wignerfunctions ofX, Y’//(X), is defined to be the subring of l(X)
of single valued functions. Equivalently, Y/(X) is the subring of ’a(X)
invariant under monodromy:

The weight filtration W. of (X) induces weight filtrations on l(X) and
(x).
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PROPOSITION. The assignment of (Y(X), W.) to X defines a functor from
the category " of complex algebraic manifolds into the category of filtered
R-algebras.

(11.2) Examples. (a) If f,g gY*(X), then loglfl,loglgl
and loglfl loglgl WaogC/(X).

(b) The Bloch-Wigner function Imln2(z)+ arg(1- z)loglz[ is in
WaMg/(C- {0,1}). Likewise, Ramakrishnan’s analogues Rk(Z)of the
Bloch-Wigner function for the classical k-logarithms Ink(z) [R3] satisfy
Rk(z) W2kY//(C {0, 1}).

To simplify the discussion, we now assume that q(X) 0. As was pointed
out in the discussion preceding (7.8), an element of (X) may be viewed as a
multivalued function obtained by pulling back along 0 a multivalued func-
tion on AlbS(X) which is polynomial on the universal over gs of Alb(X),
provided that s is sufficently large.

s

X--- AlbS(X) F \ G

By the same token, an element of R(X) corresponds to a real polynomial
g ---> R on the real vector space underlying g, for s sufficiently large.
The group G is, in fact, the set of complex points of a Q-algebraic group
associated to Zrl(X, x). One way to see this is to note that the Baker-

Campbell-Hausdorff formula implies that the Q vector space spanned by
{log , g: , F} is a Q Lie algebra gs(Q) whose complexification is g.
Alternatively, one may use Quillen’s description of (K), K a field of
characteristic zero, as the set of group like elements of the truncated group
algebra Kzrl(X, x)/W__ [Q; Appendix A].
For a scheme over k and a field extension K/k, we denote the set of K

points .%<(K) of viewed as a scheme over k by restriction of scalars by
RK/k.

Elements of z(X) arise as real polynomial functions on the real variety
Rc/R which are F, and hence (R), invariant. In other words, they arise
as real polynomial functions on the homogeneous space (R) \ (C), which
is isomorphic to the real affine space A((R)).

(11.3) PROPOSITION. Pulling back elements of the coordinate ring R[c.-(R) \
,_4(C)] along the composite

X--> Alb(X) --> (R) \ (C)
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defines an injective ring homomorphism

R[,_,(R) \,_(C)]

These induce a filtered ring isomorphism

R[(R) \ (C)] lim R[(R) \ (C)] Yf’(X).

(11.4) COROLLARY. As a filtered ring, ;/(X) is &omorphic to

Sym({(R)*) lim Sym((R)*).

(11.5) COROLLARY. There is a graded algebra isomorphism

Gr.WYf’( X) (R) C =- Gr.W( x).
(11.6) Example. This is a continuation of (7.4)(b). Here X C {0, 1},

1 Z Z)F2= 0 1 Z
0 0 1

(R)= 0 1 R, 2(C)-" 0 1 C
0 0 1 0 0 1

Denote the coordinate functions ,of 2(R) and ’2(C) by

0 1 b and 0 1 y
0 0 1 0 0 1

Since

0 1 b 0 1 y 0 1 b+y
0 0 1 0 0 1 0 0 1

the function Im z Re x Im y is 2(R) invariant, and thus a function
on 2(R) \ 2(C). Composing the albanese mapping

X

02 C {0, 1} --> F2 \ ,.’2(C),

1 log(1 -x)/27ri -ln2(x)/(27ri)2

0 1 log x/2
0 0 1
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with the composite

yields the Bloch-Wigner function.

Suppose that ’ is an R-algebraic group whose R points form a simply
connected nilpotent Lie group. Denote the lower central series of W by

Let L. be the filtration of the coordinate ring of W dual to the lower central
series of W. This gives K[W(K)] the structure of a filtered ring. When W is
the group associated to the fundamental group of zrx(X, x), then

L.C[ C[

(11.7) LEMMA. There exists a canonical, graded R-algebra homomorphism

p" Gr.C[,_(C)] - GrR[Rc/R’
with the properties:

(i) The image of p consists of the elements of Gr.R[Rc/R] invariant
under the left action of (R) on ’(C).

(ii) Modulo decornposables, p is the projection

QGr.C[(C)] QGrPR[(R)] (R) C

Im, QGr.R (R)] QGr.R[ Rc/RC
For example, when is as in (11.6), then xImx, y,Imy and

z Im z Re x Im y. The result is proved by induction on the length of ,
observing that (R) acts trivially on

QGr.C[W(C)]/QGr. R[ 4’(R)].

Applying (11.7) to (11.3), we obtain:

(11.8) COROLLARY. There is a canonical graded R-algebra homomorphism

p: Gr.W( X) Gr.W]//( X).

We are now ready to state our main theorem. Denote the canonical
projection G23 Y23 by zr.
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(11.9) THEOREM.
Gr6W(G ), satisfies

If L3 is a 3-logarithm function whose symbol L3

o-*L3 sgn(tr)L3 for all tr 6,

then there exists a unique function 93 ,./(Y23) whose symbol 3 "Gr7/(Y23) satisfies"
(i) T/’*3 P(3) GrY//(G);
(ii) tr*D3 sgn(D3) for all tr 6;
(iii) Y"=0(-1)A’D3 0, where Ai: Y Y j 0,..., 6 are the 7 face

maps.
Moreover, ifF W6;C/(Y23) satisfies (ii) and (iii), then there exist a R and
G W6C/(Y3) such that F aD3 + A*G.

As a warm up, we show that the symmetry property of the Bloch-Wigner
function and its symbol uniquely determine it and imply that it satisfies the 5
term functional equation.

(11.10) THEOREM.
symbol

There is a unique element D2 Of W4,/’(C {0, 1}) with

where ch denotes Rogers’ function, and which satisfies"
(i) The symmetry condition

tr*D sgn(tr)D for all tr 4"2 2

(ii) the functional equation

4

E (-1)iA?D2 0,
j=0

where Ai" Y22 Y12 C {0, 1}, j 0,..., 4, are the 5 face maps.

Proofi By (11.4),

(11.11) W4;/= R Ht S2H Q,

and by (10.6), H and Qt are the 4 modules [2,2] and [1, 1, 1, 1], so it
follows that

W4Y//(C {0, 1})
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is the E4-module
2[4] + 2[2,2] + [1, 1, 1, 11.

Consequently, up to a scalar multiple, there is exactly one element of
Wa’Y//(C {0, 1}) with the symmetry property, and this element is deter-
mined by its symbol. Since p(i- p(), since has the desired symmetry,
and since p commutes with the 4 action, p(i determines a unique
element D of W4;/(C {0, 1}) satisfying the symmetry property.
To see that Da necessarily satisfies the functional equation, note that, by

(10.6), (10.15), and (11.11),

W4,.,YC/(Y22) 2[5] + 2[3,2] + [4, 1] + [2,2, 1] + [2, 1, 1,1].

In particular, W4;C/(Y22) contains no copy of sgn5. That D2 satisfies the
functional equation follows from (9.5). m

To prove (11.9), we first construct a function /)3 W6Y’//(G23) which has
the desired symmetry property and which satisfies the natural functional
equation. The descent of D3 to Y23 then follows from the following result
and the injectivity of ’Y’//(Y33) Y//(G33). Recall that if M is a En-module,
then s(M) denotes the sgn,, isotypical component of M.

(11.12) LEMMA. The mapping

-,

induced by the projection G32 Y is an isomorphism.

The proof begins with the following result which is proved by direct
calculation using (10.6) and (10.23).

(11.13) PROPOSITION. s(W4/]/(Y23)) s(W4C/(G3)) O.

(11.14) COROLLARY. The natural surjections

W6Y’//(G23) Gr’Y//(G32), W6.Y//(Y23) GraY.Tel(Y23 )

induce isomorphisms on the sgn6 isotypical components. Consequently, them are
canonical splittings

s(Gr6WYp’(G32)) W6Y//(G), s(Gr6WY//(Y23)) W6Y//(Y23).

Lemma (11.12) now follows directly from (10.21) and (11.14).
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To prove (11.9), suppose that L3 is a 3-10garithm function whose symbol
spans a copy of sgn6 in Gr6W(Ga2). From the naturality of

it follows that p(T-,3) spans a copy of sgn6 in GrY//(Ga2). Let 3
s(W6//(G)) be the lift of p(T_,3) to W6Y//(G3) given by (11.14). This
function clearly possesses the symmetry property. To prove that it satisfies
the functional equation, we need the following result.

(11.15) PROPOSITION. The module W4Y//(G3) contains no copy of sgn 7.

Proof. This follows from a machine calculation using (10.6) and (11.11). It
is not necessary to compute H (R) Q4 as this is a submodule of H (R) A2H
which contains no copy of sgn 7. m

(11.16) COROLLARY.
symbol

is zero.

If F s(W6Y’(G)), then F 0 if and only if its

Thus, by (9.5), to show that b3 satisfies the functional equation, we need
only show that

6

’ (- 1)JA’p(Z3) O.
j--O

But this follows from the fact that L3 satisfies the functional equation and
the naturality of p. As previously explained, /3 descends to a function
D3 W6,]c(Y23)with the desired symmetry property and which satisfies the
desired functional equation. This proves the first assertion of (11.9). The
second follows from (10.24)using a similar argument.

(11.17) Remark. It is interesting to note that Gr6W(;/(C {0, 1}) con-
tains no copy of sgn 4. So there is no classical Bloch-Wigner trilogarithm with
the symmetry property.

12. Epilogue

As mentioned in the introduction, the definition of p-logarithms given in
Section 6 is only part of a more complicated definition of p-logarithms as
Deligne cohomology classes of the simplicial variety G.. We now describe
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this in more detail. An exposition of the role of these higher logarithms in
algebraic K-theory is given in [BMS].

Multivalued Deligne cohomology. Suppose that X is a complex algebraic
manifold. The most refined version of the Deligne cohomology H_(X, Q(p))
of x is Beilinson’s absolute Hodge cohomology [Be2] which is defined to be
the cohomology of the complex

D(X, Q(p)) cone[ WavA’o( X) WavA’c(X)/FvWavA’c(X)][- 1],

where (A’o(X), W.) (A’c(X),F’, W.) is a natural mixed Hodge complex6

whose cohomology is Deligne’s natural mixed Hodge structure on H’(X)
[DI].
We now introduce the multivalued Deligne complex of X: Let g(X) be the

Malcev Lie algebra associated to 7rl(X), topologized by its weight filtration
(or equivalently, by its lower central series). The complex of multivalued
forms f’(X)on X is a continuous g(X)module. Let

fi’(x))
be the double complex of continuous ’(X)valued cochains on g(X). That
is,

d(g, fi’) lim (g/W_l_ 1, W/( "),

where, for a module V over the Lie algebra b, ’(b, V) denotes the Cheval-
ley-Eilenberg complex A(b*) (R) V with the usual differential.

Define a Hodge filtration on (g, 1’) by

FP(g (-l’) ( (( g fiq ).
q>p

The weight filtrations on g and fi" induce a weight filtration on (g, l’).
The assignment of

( <( X), h’( x) ), F’)
to X defines a functor from ’ into the category of bifiltered differential
graded algebras.

Let X be an object of . Denote the Q-form of the Malcev Lie algebra
associated to 7rl(X) by gQ(X) and the continuous Q valued cochains on it by
(gQ(X), Q).

6Note that the weight filtration on A’(X) is the filtration ddcalde of the commonly used
weight filtration (see [D1]).
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Consider the complex

M(X,C/Q(p)) cone[WzpvZ(o(X),Q) Wzp-d’((X),(l’(X))][-1].
This may be viewed as a double complex (q 0 case):

0

p AVH(fio)

r W2pAr

Wzpg

0 Q

0

0

April(g)

WzpAr(,) (R)

o

W2p{ (R) tip- 0

W2pfi p- ’ P O.

p p+l

The multivalued Deligne complex of X is defined to be the quotient
complex

MD( X, Q(p)) M( X, C/Q(p))/FP(I’(X).

This can be viewed as a double complex (q 0 case):

0
T

P APHI(Q)

r W2pArg

W2pg

(2,n-i)o Q

0

o

April(6)

WpAr(*) (R) fis-

W2p-0 W2p-s-1
s

0

Wp* (R) (tp- 0

W2 -p-1 O.

P

Define the multivalued Deligne cohomology of the object X of ’ by

H.(X,Q(p)) H’(MD(X,Q(p))).
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This defines a functor form s’ into the category of graded rings. (Actually,
one should sheafify this construction and define Hje(X,Q(p)) to be the
ech hypercohomology of the sheaf ’-x(Q(P)). This complication will not
concern us here.)
One can construct a natural homomorphism

(12.1) H,( X, Q(p) ) --) H_( X, Q(p)).

(12.2) THEOREM.
in dimensions < n.

IfX is a rational n-K(r, 1), then (12.1) is an isomorphism

If X. is a simplicial object of , one can define a triple complex
MD(X., Q(p)) in the obvious way. The multivalued Deligne cohomology of
X. is defined to be the cohomology of this complex. The next result is the
analogue of (12.2) for simplicial varieties.

(12.3) THEOREM. Suppose that X. is a simplicial object of s’. If each Xm is
a rational (n m)-K(-, 1), then the natural map

HS.(X. Q( p)) --> H(X. Q( p))

is an isomorphism when k < n.

Higher logarithms as Deligne cohomology classes. Applying the multivalued
Deligne complex functor MD( Q(p)) to G., we obtain a triple complex in
which the double complex (5.1) is imbedded in the ground floor.
We also have the triple complex M(G.,C/Q(p)). The short exact se-

quence of complexes

o - O,(G.)[-p i] --) M(Gr, C/Q(p)) --> MD(Gr, Q(p)) --) 0

group cohomology

deRham

FIG, 12
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gives rise to a long exact sequence of cohomology groups. Consider the
connecting homomorphism

(12.4) DEFINITION. A generalized p-logarithm
2pH(G.p, Q(p)) satisfying (Cp) volp.

is an element Cp of

Equivalently, Cp is represented by a 2p- 1 cochain Zp
complex M(G.P, C/Q(p)) which satisfies

in the triple

( 12.5) DZp volp.

If Zp represents a generalized p-logarithm, then the components of Zp
which lie in the ground floor of the complex M(Gf, C/Q(p)) is a p-loga-
rithm as defined in (6.1). Observe also that the conditions imposed on the
component

of Zp by (12.5) correspond to the three essential properties of the p-loga-
rithm function discussed in the introduction; the analytic property corre-
sponds to the de Rham differential

the topological property to the group cohomology differential

O: W2p(a;_l) --* -((a;_l) );
and the algebraic property to the combinatorial differential

A*" W2p(a;_l) --->

The next result is the generalization of (8.8) to the current setting.

(12.6) THEOREM. When p 1, 2, 3,

3" ,,,,,_,.u2P(p, Q(p))__)

is an isomorphism. In particular, there is a canonical generalized p-logarithm.

The first step in the proof is to replace multivalued Deligne-Beilinson
cohomology by ordinary Deligne-Beilinson cohomology by applying (12.3).
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(12.7) LEMMA. Fix p. If each Gp is a rational (p- q)-K(zr, 1), then the
natural homomorphism

He(Gp, Gp,

is an isomorphism.

By (8.6), the hypotheses of (12.7) are satisfied when p 1, 2, 3, so we need
only calculate the Deligne cohomology of G:. This we do with the help of
the standard short exact sequence [Be2]

0 - Extr(Q, H2p-I(G.P, Q(p))) - HV(G.v, Q(p))
Hom(Q, H2’(G.v, Q(p))) 0,

where is the category of mixed Hodge structures. The Ext term is
isomorphic to

W2pH2V-I(G.P, C)/FPW2pH2p-I(G.P, C) + WpH2p-I(G., Q)).

Theorem (12.6) follows from (12.3) once one has shown that

W2pH2*’-’(G.p) 0 and W2pH2P(G.p)

These assertions can be checked by direct calculation using the observation
that the spectral sequence with

(12.8) E’t=Ht(Gf_p) and dl=A*,

which converges to H’(G:), degenerates at E2 in degrees < 2p. This follows
by a weight argument using the fact that (12.8) is a spectral sequence of
mixed Hodge structures and the fact that Ht(GsP_p) is pure of weight 2t in
low degrees by (8.2).

[All

[A2]

[A3]

[Bel]

[Be2]
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