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O. Introduction

For foliated bundles in the sense of Kamber-Tondeur [K-T2] there are
well-known second order characteristic classes with real coefficients. For these
the domain of definition is the cohomology of the truncated Weil algebra
W(G, K)k where G is the structure group, K = G is maximal compact and k
is the codimension of the foliation. On the other hand there are also associated
Cheeger-Chern,Simons classes with R/L coefficients (L

____
R is a subring, e.g.,

L Z or L Q) defined for each invariant polynomial on the Lie algebra fi
of degree greater than k together with a lift to H*(BG, L) of the correspond-
ing primary characteristic class in H*(BG, R) (see [Cn-Si] or [Cr-Si]). In the
present paper we combine these two ideas and define (in Section 2) a
generalized Cheeger-Chern-Simons class corresponding to a class in the coho-
mology of the truncation ideal FW(G, K) c_ W(G, K) together with a lift to
H*(BK, L) of the image in H*(W(G, K)) H*(BK, R). Thus, for instance, a
real second order characteristic class corresponds to a Cheeger-Chern-Simons
class with L 0 via the coboundary map

H*(W(, :)) L H*(FW(, ))
except that the latter has an indeterminacy consisting of primary classes.
One might hope that this approach for L : 0 gives other interesting

invariants, but as we shall see in Section 3, at least for L Q every general-
ized Cheeger-Chern-Simons class can be expressed in terms of real second
order classes, "classical" Cheeger-Chern-Simons classes and primary classes.
For L Z the situation is not so clear.

In Section 4 we investigate the relation between generalized Cheeger-
Chern-Simons classes and the rational homotopy invariants for foliations
studied by Hurder [Hul], [Hu2] and Hurder-Kamber [Hu-K]. Finally in
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222 JOHAN L. DUPONT AND FRANZ W. KAMBER

Section 5 we give cochain formulas for Cheeger-Chern-Simons classes for fiat
bundles analogous to the formulas in Dupont [D1]; in particular we treat the
integral Steifel-Whitney classes in this context.

It will be apparent that much of the material of this paper (in particular
Sections 2 and 5) depends on ideas by J. Cheeger and J. Simons [Cr-Si]. We
have tried to develop these further which seems to be justified by the recent
growing interest in Cheeger-Chern-Simons classes both in Algebraic Geometry
and Number Theory (see e.g., Soul6 [So] or Karoubi [Ka] as well as in Gauge
Theory (see, e.g., Floer [F]).

1. Preliminaries on simplicial manifolds

Let us recall the basic facts of Chern-Weil theory in the category of
simplicial manifolds as developed in Dupont [D2].
A simplicial manifold is a simplicial set X { X,), where the set of

p-simplices X, constitute a Coo manifold such that all face and degeneracy
operators are Coo maps. Let A’

____
R’+1 be the standard p-simplex; then the

realization IlXll of x is the quotient of l,z0A’ X, with the identifications
(el(t), x) (t, eix ), A-1, x Xp, 0,... p, p > 0, where ei: Ap-1 --->

A’ is the inclusion on the th face and ei: X X,_ the corresponding face
operator.
The most well-known example of a simplicial manifold is NG, G a Lie

group, where NG(p)= G ... G (p copies) and where e is given by
multiplying the ith and (i + 1)st coordinates. Here IINGII- BG is the
classifying space for principal G-bundles.

For X a simplicial manifold and L any coefficient ring, the cohomology
H*(IIXII, L) can be computed as the cohomology of the total complex
C*(X, L) of the double complex c’q(x, L) cq(xp, L) of cochains based
on Coo singular simplices o" Aq X,.

Also as in [D2] let A*(X) denote the DeRham complex of simplicial forms.
Thus a simplicial k-form q0 on X is a collection of k-forms q0’) on A’ X,
such that (e id)*(’) (id e)*(-I) for all 0,..., p, and all p
0,..., i.e. 9 is just a k-form on lIAr’ X, compatible with the identifications
in the realization II XII. Recall from [D1, Corollary 2.8], that there is a natural
chain map or: A*(X) - C*(X, R) given by

J(tp)(o) fa (id O)*(p(p), O" lq "-) Xp, q AP+q( X),
PxAq

which induces an isomorphism of cohomology tings

Jr" H(A*(X)) --, H((C*(X,R)) -= H*(IIXII).

Now let G be a Lie group and r: E ---> B a simplicial principal bundle, i.e.,
a map of simplicial manifolds such that r: E(p) B(p) is a principal
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G-bundle for each p. A connection 0 in E is now just a simplicial 1-form on
E with coefficients in the Lie algebra g, such that the restriction of 0 to
A’ E(p) is a connection in the usual sense. Then as in [D1, [}3] we get a
Chern-Weil homomorphism h h(0): I(G) --, A*(B) and in turn on the
cohomological level

w =oCoh" I(G) H(A*(B)) H*(IIBII ).

Here, as usual, I(G) is the ring of G-invariant polynomials on .
Notice that the category of Coo manifolds is included in the simplicial

category by associating to a manifold X the simplicial manifold (also denoted
by X) given by X(p)= X and all face and degeneracy operators are the
identity. Similarly an ordinary Coo-principal G-bundle E M with connec-
tion 0 gives rise in a trivial way to a simplicial principal G-bundle E M
with connection (given on A, E by pulling 0 back under the projection on
E) and the Chern-Weil theories clearly corre._spond.

There is another simplicial manifold NX associated with a manifold X:
Here NX(p)= X X ((p + 1) copies) and the th face operator is
just the projection leaving out the th coordinate. The following is simple and
well-known:

LEMMA. 1.1. IINXII is contractible.

Now for or: E M an ordinary Coo-pri_ncipal G-bundle with connection 0
we get a simplicial principal G-bundle_ NE _NE/G with the connection 0
defined by: the restriction of 0 to A’ NE(p) is given by the convex
combination

p

i-O

t= (to,..., tp) AP

where 0 is the pullback of 0 under the projection A’ NE(p) - E onto the
th coordinate. We shall denote the corresponding Chern-Weil map by h
h(O). In particular for the trivial G-bundle G - pt with the obvious connec-
tion we get a canonical connection 0 in the simplicial bundle -: NG -, NG/G

NG. It is well-known that the realization of this bundle is just the universal
G-bundle EG BG. In the general case Lemma 1.1 implies"

PROPOSITION 1.2.
connections

There is a commutative diagram of simplicial bundles with

111
M N/O NG
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where is given by the diagonal and x is given by operating on the point x E.
Here [[x[[" BG [[NE/G[[ is a weak homotopy equivalence and the homotopy
class is independent of the choice of x E.

It follows in particular that the cohomology of [[NE/GI[ is canonically
identified with the cohomology of BG.
Models for BG of the form IINE/GI[ are particularly useful in the category

of algebraic varieties. This will be explored in Dupont-Hain-Zucker [D-Ha-Z].

2. Cheeger-Chern-Simons classes

In the following,

denotes a smooth principal bundle over a paracompact smooth manifold M.
Let L c R be some subring (e.g., L 0, Z or Q) and let r: H*(-, L) ---,

H*(-, R) be the natural map in cohomology induced by the inclusion L c R.
Chern-Simons [Cn-Si, Theorem 3.16] showed the existence of some secondary
characteristic classes

S,,u ( 0) H2t-( M,R/L)

associated to

with connection 0 for which the curvature form f] satisfies ft= 0. Here the
subscript (P, u) is a pair consisting of an invariant polynomial P I(G) and
a cohomology class u H2t(BG, L) such that

w( P) oo ( P) r( u) H’( BG,R).

(We use the notation S,..(O) following Cheeger-Simons [Cr-Si], see also
Cheeger [Cr].)
We shall generalize the construction as follows: Let K __c G be a maximal

compact subgroup and let

w= w(e, r) e

be the relative Weil-algebra for (G, K) (see, e.g., [K-T2, Chapter 4]). Then
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there is a diagram of canonical isomorphisms:

/4,( g )) H*(

I(K ) 7 H*(BK, R).

Given a non-negative integer k consider the ideal

FW-- F2(k+I)W(G, K) W(G, K)

generated by St(g*), >_ k + 1 and let

j: FW .-) W(G, K)

be the inclusion. Also as in [K-T2] let us consider the quotient

Wk= W(G,K)k= W(G,K)/FW.

Notice that if p: W--, Wk is the natural projection then the exact sequence

OFWL WL Wk---)O

gives rise to an exact triangle

(2.1) H(FW) J* H(W) I(K)

i-i( )

where 15 has degree + 1.
Now for L c R a subring let us define

5f*( G, K; L) k { ( V, u) H*( FW) H*( BK, L)lwj,v ru },

that is, the pull-back of the diagram

H*( BKr L)

H*(FW) H*(W) H*(BK, R).

for E ---) M a G-bundle with connection 0 satisfying fk+ 0 we shall define
secondary characteristic classes

So, u( O) H*( M,R/L)
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associated to

(v,u) 6’*(G, K; L),.

However, in general they will have indeterminacy given by the primary
characteristic classes

Ch*(E) Im[ H*( BK, R)
q*

R/L)

where " M - BK is the classifying map. Thus we have:

THEOREM 2.2. (1) For

a G-bundle with connection 0 satisfying k+t 0 there is a natural homomor-
phism

Hi-1 1-1(S(O) zl(a K; t)k (M,R/L)/Ch E),

that is, to a pair ([P], u) 5al(G, K; L)k (i.e., P FW, u H*(BK, L))
there is associated a characteristic class

Sp, u( O) - ol-t( g,a/g)

with indeterminacy Cht-t(E).
(2) fl(Se, u(O)) =-u(E), where fl: Ht-(M,R/L) nt(M, L) is the

Bockstein homomorphism and u(E)= +*(u) is the characteristic class associ-
ated to E.

(3) Ch2t-t(E) O. Hence, Se,(O ) H21-X(M,R/L) has no indetermi-
nacy.

(4) If P It(G), > k then S,,u(O) is just the Chern-Simons class.
(5) ’*Se,(O) #[TP(O, )] Ht-t(E,R/L), where TP W(G) is a

transgressive cochain of P, i.e., dTP P.

Proof (1) Consider the diagram in Proposition 1.2 and again let 0 be the
connection constructed there for the simplicial bundle NE NE/G, so that
k*0 0. Let f be the curvature form for 0. Then as in [D1, 3] or [K-T2,
Chapter 4] there is an induced map of differential graded algebras

k()" W(G, K) A*(Nff./K),

giving rise to the isomorphism

w oo k()" H*(W) --) H(A*(Nff_,/K)) H*(IINff./KII,R).
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Let us write P(O, f) for the image by k(O) of P W(G, K). Also as in
Proposition 1.2 the map

N/ c N2N
induces a weak homotopy equivalence BK ---, IINE/KII. Now let

([P], u) ,9t(G,K; L)k,

i.e., P FW = W and u Ht(BK, L) satisfying

(2.3) wj,[P] ru.

Then we represent u by a cochain CI(Nff,/K, L), and by (2.3),

(2.4)

for some cochain Ct-I(Nff,/K, R). The reduction mod L of the cochain

/* Ct-I( E/K,R)

is a cocycle. In fact

8*,= *((P(O, f)) rt)
( P(O, 2)) r*t
-rk*=0 modL,

since P(O, )= 0 when P FW and 2k+l= 0. Therefore *mod L de-
fines a class in HI-I(E/K, R/L). However the projection ElK --, M induces
an isomorphism in cohomology, so that we have obtained a class Se, u(0)
Ht-I(M,R/L).
Next let us find the indeterminacy: suppose

(2.6) o(P(/, )) rl

is another choice as in (2.4). Then

fi fil 8t for some Ct-I(Nff,/K, L)

and hence by (2.4) and (2.6)

8( x + rt) 0

so that - + rt represents an element c Ht-X(Nff/K,R)=-
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Ht- X(BK, R). Therefore

k*- *sx *(- x + rt) modL

represents

e/r, R/Z,)
which clearly corresponds to an element in Cht-X(E) Ht- X(M, R/L).

Finally, let us show that Se, u(O) only depends on the class [P] Ht(FW).
Thus suppose P dQ in FW W; we want to show

s e,o( O ) o.

However, in this case we can take 0 and oa(Q(0, f)) in (2.4), which
yields

0

since Q FW and flk+ 0. This ends the proof of (1).
(2) This is rather immediate from the above equation (2.5) and the

definition of the Bockstein homomorphism. Notice by the way that the
indeterminacy Ch*(E) by definition is contained in the image of the map
H*(M, R) H*(M, R/L) and hence goes to zero under ft.

(3) Obvious from the fact that

Haa(BK, R) 0.

(4) Since It(G)c= FW for > k, the classes Se,,,(O ) H2t-(M,R/L)
are defined in particular for P It(G) and u H2t(GB, L) satisfying w(P)

r(u). In this case the original construction of Chern-Simons [Cn-Si] is very
similar to the above in (1). Only they used an "n-classifying bundle" instead of
the more canonical simplicial construction in Proposition 1.2. To see that the
resulting class is the same suppose that we have a map of principal G-bundles
and connections

E._.2..E,

1 1
M---M’

such that E’ is highly connected. Then we obtain a commutative diagram of
simplicial manifolds

(2.7) M -- M’

NE/G NE’/G
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covered by a similar diagram of bundles and connections as in Proposition 1.2.
Now if we make similar choices as in (2.4) for the cochains h and in NE’/G
it follows easily from (2.7) that our construction agrees with the original one.

(5) For the projection : NE NE/K, we have *(h)= 6,
cl-X(Nff, L) by (1.1) and hence from (2.4), /*()= 8(JeTP(O, )- r).
Using (1.1) again, we have

,() (0,) ) +

in C-(N, R). Therefore by definition of Se,(O ),

.s,.(0) p.(,())
p(TP(O, ) + 8*’)
p(r(o,)) (p*:’)

in C-(E, R/L).

Remarks. (1) If 1/p L whenever BK has p-torsion, then

is injective by the Universal Coefficient theorem. Therefore

5’*(G, K; L) k = H*( FW)

is the lattice of classes [P] with wj.[P] H*(BK, L) and u is uniquely
determined by P, so we shall sometimes write S,,u(O ) S,(O).

(2) Now if L=Z and [P]H*(FW) has w(P) represented by an
integral class u then Se, u(O ) depend on the integral lift u in the following
way: If u’ is another integral lift of w(P) then u u’ is in the image of

fl" Ht-X( BK, Q/Z) Ht( BK, Z),
and

s,.(o) s,.,(o) So,._.,(o) --X(u u,)(e)

is a primary characteristic class.

(mod Ch*( E ) )

We have now the following properties of S,, u(O):

THEOREM 2.8. (1) (Rigidity) Let 0t, [0,1], be a family of connections
in E with curvature forms fit satisfying fitk+l 0. Then if

p
_
Im[H(F2’k+2)W-o H(F2’k+)W)],
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we have

s,( Oo) s,( ox).

(2)(multiplicativity) If
([e], u) se.(, K; L)_ I-I*(,K,L)

and

([Q], v) 6a*(G, K; L)k,

then for a bundle E with connection 0 satisfying fk+ 0 we have

() so, o(o).
Although the proof is similar to the proof of the corresponding statements

in Cheeger-Simons [Cr-Si], we include it for completeness.

Proof of Theorem 2.8(1) Let 0t, [0,1], be the given family of connec-
tions. Then as in Section 1 this gives a family of connections 0 in the
simplicial bundle NE --, NE/G. In other words, we h.ave a connection 0 in
E [0,1] which is the pull-back of a connection 0 in NE [0,1]. Let
(P, u) 6at(G, K; L)k. Then in A*(Nff,/K) we have the equation

(2.9) e( 0,

ftl_oid/dt(dP(,)) + dftl=oid/dt(P(, )),
where__ d/dt is the usual interior prod_uct_in the _t’variable and where fo, 21
and f denote the curvature forms of O0, 01 and 0 respectively. Since dP O,
the first term on the right hand side of (2.9) vanishes. Therefore if

.,(e(
then we can choose

in order to obtain

l O+d;(ft:oid/dt(P($,)))

In that case Sp, u(01) Sp, u(OO) is represented in C*(E/K, R/L) by

ia/at(P(,))
=0
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Now let f, be the curvature form for 0 in E. Then the curvature form for/
in E [0, 1] is given by

so that lth powers of f involve (l- 1)th powers of t- From this it clearly
follows that the right hand side of (2.10) vanishes if P F2(k+2)W, which
proves (1).

For the proof of (2) it is necessary first to compare the exterior product of
differential forms with the Alexander-Whitney cup-product of singular cochains
in a precise way. Thus for M any manifold let ’*(M) be the usual DeRham
complex ad C*(M) the singular cochain complex with coefficients in R (and
with only smooth singular simplices). Let u: C*(M) (R) C*(M) C*(M) be
the usual Alexander-Whitney cup-product, and o: *(M) C*(M) the
usual integration map. Then we have:

LEMMA 2.11. There is a functorial map z: /* (R) ’* C* of degree -1
such that for all closed forms o1, tO2 d*(M),

Proof More generally for S any simplicial set let A*(S) be the simplicial
DeRham complex as in Dupont [D1] or [D2] and we shall find a functorial
map r: A*(S) (R) A*(S) C*(S) which is a chain homotopy between u
( (R) o) and A. Then the lemma follows by taking S to be the singular
simplicial set for M. Now as in [D2, Theorem 2.16], o: A* ---> C* is a natural
chain equivalence with natural inverse d: C* A*, and by the proof of [D2,
Theorem 2.33] the Alexander-Whitney map is naturally chain homotopic with
the map o o( A ): C* (R) C* - C*. Therefore by composing with o and
using the natural chain homotopy between o J and the identity we obtain
the natural chain homotopy $. This proves the lemma.

Proof of Theorem 2.8 (2) Now let E ---> M be a principal G-bundle with
connection 0 satisfying fk+l 0 and let ([P], u) and ([Q], v) be given as in
the theorem. Let 0 be induced from 0’ a connection in some other bundle
E’ --> M’ with E’ highly connected; i.e., we have a map of bundles and
connections
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Since E’/K approximates BK we can represent u and v by cochains h and 6
and choose and /’ in C*(E’/K, R) such that

or( Q( o’,

Then using lemma 2.11 we obtain

dr( P( O’, ’) A Q( O’, f’)) r( u )
dr(p( 0’, f’)) U dr(Q(O’, f’)) r( u ) + i$,(P( 0’, f’), Q( 0’, ’))
=

where

g= (-1)ar u/’+ udr(Q(0’, ’)) + (P(0’, f’), Q(0’, f’)).

Therefore Sp.O. uu o(19) is represented in C*(E/K, R) by

a*5= (-1)aeSUr(a*h) u a*/’+ a*Udr(Q(O,f)) + z(P(O,),Q(O,))

( u

which clearly represents (-1)deSu(E) U St2,o(0 ), and thus we have finished
the proof, m

Remark. In view of the multiplicative property it would be interesting to
know the generators of H*(FW) as a module over H*(W(G,K))=
H*(BK, R). This question is dealt with in the next section.

We end this section by investigating the relation between the classes Se,
and the usual secondary characteristic classes defined for foliated bundles as in
Kamber-Tondeur [K-T2, Chapter 4].
Thus let r: E - M be a foliated G-bundle, that is, there are given foliations, on E and - on M, such that
(i) the action by G on E permutes the leaves of -, and
(ii) for each x E the differential r." TxE TxM maps the tangent

space for the leaf of " isomorphically onto the tangent space for the
leaf of ’.

The codimension k of the foliation " is called the codimension of the
foliated bundle. In this situation we can choose an adapted connection in the
bundle E M, that is a connection /9 which annihilates the vector fields
tangent to the foliation - (see [K-T2, Chapter 1]). The curvature form f
satisfies ’k+l 0, SO that the classes Se,,(O ) are defined for (P,u)
*(G, K; L)k. On the other hand, as explained in [K-T2, Chapter 4], the
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adapted connection 0 gives rise to a map k(O) of the truncated Weil algebra
W(G, K)k into the DeRham complex of ElK, thus defining

A,. H(W(G, K)k) .-) Ha(E/K,R) =- H(M,R)
where Hog denotes the DeRham cohomology.
We then have"

THEOREM 2.12. Let E M be a foliated principal G-bundle of codimension
k, and let 0 be an adapted connection. Then:

(1) The classes Sv, u(O) H*(M,R/L) are independent of the choice of
adapted connection O.

(2) The diagram

(2.13) Sat(G, K; L)k s(o___) Ht_X(M,R/L)/Cht_(E )

Ht_X(W(G K)k) A__._. HI_X(M,R)

commutes, where ’ associates the pair ([dP ], O) 6a*(G, K; L)k to any P
W(G, K) with dP F2(k+X)W.

The proof of (1) is very similar to the proof of the "rigidity property" in (1)
of Theorem 2.8 above. Part (2) follows directly by checking through the
definitions (compare Theorem 2.2(5)).

Remark. If we take L 0 in Theorem 2.12 then

5*(G, K;O)k Im[" H(Wk) --) H(FW)] =- H(Wk)/p,H(W )

by the exact sequence (2.1), so that in this case S(O) is the same map as A,
modulo primary characteristic classes.

3. The structure of Se*(G, K; L)

In this section we study the structure of the graded algebra (without unit)
6*(G, K; L)k introduced in Section 2. In view of the module property of the
Cheeger-Chern-Simons classes Sv,, with respect to 6a*(G, K; L)_I
H*(BK, L) in part (2) of Theorem 2.8, it is of interest to find a minimal
system of generators of H*(FW(G,K)k) over the algebra I(K). Such a
system of generators is described in Theorem 3.14 under some mild
conditions on G. In order to simplify exposition we formulate Theorem 3.14
for L Q, but we note that it remains valid if L satisfies the condition in
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Remark (1) following (2.7). In particular, the mapping S is completely
determined by its values on a L-lattice L of .
Throughout this section we assume that GF = GL(n, F) is a reductive

linear algebraic group defined over Q with maximal compact subgroup

KG=GR"

In order to carry out our program it is necessary to recall some earlier results
on the cohomology-structure of the relative truncated Weil algebra W(G, K)k
[K-T, -3].

Let P c (A*)a be the space of primitive elements of and consider a
Samelson decomposition P P /3, i.e. P P tq (A(/)*)r. The symmet-
ric pair (G, K) satisfies the condition (CS) in [K-T2, 5.101], [K-T3, 2.4]; i.e.,
there exists a transgression : P -, I(G) su.ch that the corresponding space of
indecomposable dements V -P V V c I(G) satisfies the condition

(3.1) ker( i*" I(G) - I(K)) Ideal(1).

Thus we have a commutative diagram

(3.2) I(G) ,I(K)

s(v) s(P) s(V)

We observe that (3.2) has a rational form given by the commutative diagram

(3.3) I(a) I(K)

Bi’)*
H*(BU, R) -----. H*(BK, R),

where U Gc is the (unique) compact rational form of the complex group Gc
and

K=GNUU

is he canonical inclusion. We denote by I(G)Q etc. the corresponding algebra
of invariant polynomials over Q and by VQ etc. the corresponding vector
spaces over Q spanned by rational (resp. integral) generators of V. Thus we
have, for example,

I(o)o s(v)o so(vo).
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We now use the results in [K-T1], [K-T2, Chapter 5], [K-T3] to show that
diagram (2.1) is obtained by the tensor product (R)s(f,)I(K) from the exact
cohomology triangle of the exact sequence

(3.4)

Here p(2k) and P(2k) denote the vector spaces spanned by elements of degree
> 2k and _< 2k respectively in a graded vector space P. The algebras, k, F are Koszul complexes given by. A[’ (R) I(G), F A (R) FI(G),

& Aeo (R) I(),

with the differentials determined as usual by the transgression

r’PV.

We have isomorphisms

(3.5) H*(Wk) = (A/3(2k) (R) H*(dk)) (R)s(f,)I(K)

H*(FW) =- H*(F2) (R)s(f,)I( K),

while the cohomology of F is determined by the exact cohomology-triangle
of (3.4):

(3.6) 0 A/3(2k) (R) H(.k)/S(17") k L H(F.)
j*

FS(17") 0

(observe that S(I,7) -= H*() and that (3.6) is split over S(I?) in a natural
way). From (3.2) and [K-T3, 3] we further obtain

FS(17") (R)s(p)I( K ) i*FI(G) I( K ).

It follows now that (2.1) is determined by the exact tensor product (R)sf,)l(K)
applied to (3.6) and that 6a*(G, K; Q)k is determined by a suitable pull-back
operation. This is summarized in the following diagram:

(3.7) 0 ---,SH(Wk) --->6’*(a, K; Q)k i*FI(G)Q .I(K)Q ,0

J,
0 ---->H(Wk) H*(FW) i*FI(G) .I(K) O.
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Using the multiplicativity of S over I(K) (Theorem 2.8(2)), it follows that S is
completely determined by the restriction S to the algebra 6*(G, K; Q)k
defined by the pull-back diagram

(3.8)
0 -----, A/3(2k) (R) H(.k)/S(17")k ---+ S*(G, K; Q)k

0 A/3(2k) (R) H(Ak)/S(17")k H*(F2) FS(V) ---,0

or in fact by its values on a minimal system of generators over S(V) of the
algebra H*(F). It remains therefore to describe such a minimal system of
generators in H(FA), resp. in H(Ak)/S(V.)k and FS(V).
The structure of these algebras as S(V)-modules h.as been described in

[K-T1], [K-T2, 5.110], [K-T3] as follows. Let Zk c Ak be the subalgebra
spanned over R by the admissible cocycles

(llJ) YI (R) CJ dk’ Yl 1 /k /k )is, Cj C?I... CJr"r,

where VQ Q(q,..., Cr) [’Q Q(d,), #Q Q(?t) denote rational bases (the
Cl’S consist of the di’s and the ?t’s) and Y1 (ci) is the suspension. Explic-
itly, the (iij)’s satisfy

(3.9) deg cj _< 2k, i.e., c S(V(2k) ),
(3.10) deg t?,c > 2k (cocycle condition),

(3.11) j, 0 for a < (for all a if s 0) with c, d, Q.
Then the inclusion induces an isomorphism

(3.12) a H(,’,)

and the subalgebra consisting of the (ilJ)’S with s > 0 describes an
R-basis of H(k)/S(l?) k, while 0 {z(,j)} --- S(#)k. Furthermore, the
cocycles (IIJ) satisfying the additional property

(3.13) deg ixcj deg ?a < 2k for ?alc, s > 0,

form a minimal system of generators of - (indecomposable classes). In the
absolute case, the corresponding algebra generated by admissible cocycles is
denoted by

Zk c Ak AP(2k)(R) I(G)k-
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It is then clear that a minimal system of generators of FS(IY)Q over S.(I7)Q
S(l?o)__ is given by the generators j lY(2k) and the class (j?: S(V)Q such
that

i.e., (yl:) is an admissible cocycle in Ak.
Summarizing, we have shown:

THEOREM 3.14. (1) A minimal system of generators of H(FA) over S(V)
(resp. ofH(FW(G, If.)) over I(K )) is given by the classes of the following types:

(I) ./. FS(V(2kL)Q with UIs)=j (R) Z; i.e., j is indecom-
posable in FS(V);

(II) ej
(III) (z(l))’ (l) ’ with( indecomposable;
(IV) () withA -(Zl) "oin (III) or= 1.
(2) The Cheeger-Chern-Simonsap S(0) in Section 2 is completely deter-

mined by its restriction to Q c (G, K; Q), where Q is the pullback to
(G, K; Q) in (3.8) of the real vector space c H(FA) spanned by the
classes of type I and II.

Remarks. (1) From (3.8) or Theorem 3.14 we see that S/’*(G, K; Q)k,
resp. 6*(G, K; Q)k consists of the usual Chern-Simons classes (type I and II)
and the secondary characteristic classes (type III and IV) of the foliated
G-bundle E --, M. They are all of degree > 2k + 1.

(2) The generators of type I and II in "Q C 6*(G, K; Q)k are of even
degree 1 > 2k + 1. Thus S has no indeterminacy of these classes (Theorem 2.2
(3)). For the generators of type III and IV the indeterminacy of S is explained
by the diagrams (2.1), (2.13) and (3.8).

Example 3.15. The normal bundle Q of a foliation. In this case, we have

(G, K) (GL(k,R), O(k))

and V R(cx,..., Ck) is spanned by the Chern-polynomials c given by

k

det(Id+ tA)= Ec,(A)t’, A i(k,R).
’/r

i=1

Thus V(2k) ---0. Further i*(c2y+l) 0, whereas i*(c2j ) =pj are the Pontrja-
gin-polynomials which correspond to integral classes in H*(BO(k), R). Thus

l?=R(c22+), l?=a(czj) and H*( FW) H*(/k) ) FS( I7")
(see (3.8)),
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where k A(Yt, Y3,.-.) (R) R[ct,--., Ck]k is the usual Koszul-algebra, also
denoted by WOq. It follows from Theorem 3.14 that there are only classes of
type I and III. In the oriented case for k 2m there is in addition the
Euler-class e,,, I(SO(2m)) which is not in the image of i* but satisfies
e,,,2 Pm i’c2,,, and the formula for H*(FW) has to be modified according
to (3.8). As O(k) has only 2-torsion, we might in this case replace Q by
L Z[1/2]. Finally S has no indeterminacy since all primary classes are of
degree < 2k.

Example 3.16. Flat bundles. For a flat G-bundle

we have k 0. Therefore P p(2k), P(2k)- 0 and k R. From (3.8) it
follows that

5*( G, K; Q)o --- gA/3 F2S( I)Q.
From Theorem 3.14 we see that there are only classes of type II and IV,
namely ?j #o and i()3z), )3I A+/3, the latter corresponding via (2.13) to
the usual characteristic classes A,: H*(, K) H*(M, R) of E.

4. Cheeger-Chem-Simons classes and dual homotopy invariants of
foliated bundles

In the spirit of Hurder’s work on dual homotopy invariants of foliations
[Hull, [Hu2], [Hu-K], we proceed now to study the homotopy version of the
map

S: 6’t(G, K; Q) k Ht-( M, R/Q).

As 5a*(G, K; Q)k is an algebra without unit and S is not an algebra
homomorphism, it is not feasible to try to construct dual homotopy groups
associated to 5ak* directly. It turns out however, that a suitable carrier for
such invariants already exists, namely the dual homotopy groups of the
truncated Weil algebra W(G)k.

Let us recall the basic notions of the theory of minimal models and rational
homotopy following Sullivan [Su] (see also Griftith-Morgan [G-M] or Halperin
[Hall). We shall always use real coefficients unless otherwise specified. Thus to
any graded commutative differential graded algebra (DGA) A over R there is
associated a unique minimal model, i.e., a minimal DGA ’(A) with a
DGA-map

(4.1) ./g’ (A) --,A
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which is a quasi-isomorphism (that is, induces an isomorphism in cohomology);
compare e.g. Griffith-Morgan [G-M, Theorems 9.5 and 12.1], Halperin [Hal,
Ch. XV] or Sullivan [Su]. The algebraic (dual) homotopy groups of A are
defined for > 1 by

(4.2) # ( A ) ( dg/t[ )

where rig(A) consists of the elements of positive,degree in dg= rig(A).
In this context the algebraic (dual) Hurewicz map o,’*: H*(A) --, #*(A) is
defined as the composite

(4.3) #,. H’(a) --_ H ( ) -, H ( ) ( )

where the last equality follows from the minimality of
For X any topological space we now put

(4.4) rig(X) =dg(A*(X)) and ff’(X) =ff’(A*(X)), i> 1,

where A*(X) A*(6(X)) is the simplicial DeRham complex as in Section 1
for the singular complex 6a(X) of X. If X is assumed to have the weak
homotopy type of a C.W.-complex of finite type and it X is simply connected
(or more if generally of X is nilpotent in the sense that rl(X) is nilpotent and
acts nilpotently on %(X), > 1), then there is a natural isomorphism

(4.5) #i(X) ’i( X) Hom(%( X) R), i> 1.

When X is not of finite type at least there is a natural homomorphism
generalizing (4.5):

(4.6) X: i(X) --, i(X), > 1

given as follows: For g: S X representing [g] %(X) we consider the
induced map

and identifying ,i(Si) --- Hom(ri(Si), R) via (4.5) we put

x(a)([gl) (g#(a), ti), a ’(X),

where ti %(S) is the canonical generator. With these definitions it easily
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follows that the diagram

(4.7) H*(X) *(X)

r*(X)

commutes, where 9* is the dual of the usual Hurewicz homomorphism.
Let us remark that this theory combines nicely with the Quillen +-construc-

tion. Thus (see Berrick [Be1, Ch. 5]) to any C.W.-complex X there is associ-
ated a cofibration f: X X+ precisely annihilating the maximal perfect
subgroup

(=(x)) ,(x)

and inducing an isomorphism in homology (with any local coefficients induced
from X+). In particular the corresponding map of simplicial DeRham com-
plexes

f,: .4,( x+) - A*(x)

is a quasi-isomorphism and hence

(4.8) .t’(X+) =.A"(X).

Combining with (4.6) above we obtain a natural homomorphism

(4.9) +: ’(x) ’(x+), > a,

which is an isomorphism if X+ is a simply connected (or more generally a
nilpotent) C.W.-complex of finite type. Using (4.7) for X/ we obtain a
commutative diagram

a* i(H’(X) # X)

e,
i( X+H(X+) ,r ).

Let us note in passing that for X a differentiable manifold A*(X) in (4.4)
can be replaced by the usual DeRham complex *(X), since these two
complexes are quasi-isomorphic. Similarly, if X is a simplicial manifold, then
’(llSll) is the minimal model for the simplicial DeRham complex A*(X) as
in Section 1.
For the study of the homotopy invariants for foliated bundles we need the

following result.
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LEMMA 4.10. Let G be a connected Lie group and ,r: E X a principal
G-bundle over a topological space X with : X BG the classifying map. Then
there is an exact sequence for > 1:

Proof Since G is a simple space (i.e., q(G) is abelian and acts trivially on
,ri(G ), > 1) we clearly have r*(G) ,7*(G) P, the finite dimensional
vector space of primitive elements in H*(G, R) =- A(P). (In the notation of
Section 3, P c (Ate*)K is the space of primitive dements for the maximal
compact subgroup K.) Now elements in P are transgressive in the fibration
E --, X since this is the case in the universal fibration EG --, BG. It follows
that the extension of DGA’s

a,(x) -+ a*(e)

is equivalent to a Koszul-Sullivan extension in the sense of Halperin [Hal,
Ch. I1

A*(X) + A*(X) (R) A(P)

and furthermore this can be chosen such that for each x
for some y A*(BG) with dy 0. It follows from Halperin [Hal, Ch. X] that
there is an exact sequence

(4.11)

Furthermore by naturality we have a commutative diagram

d#-----, P-X ----, (X)

d#
0 Pi-I #i(BG) 0

which together with (4.11) dearly proves the lemma, m

Remarks. (1) Note that P only has odd-dimensional elements, so that
,ri(BG) pi-1 0 for odd, and ffi(X) ---, i(E) is surjective for even.

(2) If X/ is a nilpotent space of finite type then by Berrick [Bel, Ch. 4] or
[Be2] also E/ is nilpotent and X+ BG is a fibration with fibre E/. In this
case the exact sequence in Lemma 4.10 reduces to the dual of the usual
homotopy sequence for this fibration.

(3) All we have said so far obviously works just as well with Q coefficients
instead of R. Thus if the algebra A is quasi-isomorphic to AQ (R) R for a
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rational DGA AQ, then /t’(AQ) is a rational DGA-lattice in ’(A); i.e.,
’(A) ./#’(AQ) (R)QR and

is clearly a rational lattice. Hence we can define

*(A, R/Q) *(A)/,*(AQ).

In particular for a topological space X we also have the rational simplicial
DeRham complex A*(X, Q) (see e.g. Dupont [D2, p. 37]) and we can define

?*( X, R/Q) *( A(X))/,*( A( X, Q)).

With this notation Lemma 4.10 is valid also with Q- or R/Q-coefficients.
We now return to the situation of a foliated bundle

with adapted connection 0. The algebraic homotopy class of the characteristic
homomorphisms

(4.12) W(G),, ---, /*(e)

h(O)
*((), ---, M)

is independent of . This follows from the homotopy formulas in [K-T4, 3].
Thus the maps in (4.12) determine lifts to the corresponding minimal models
(unique up to algebraic homotopy) and in particular unique homomorphisms

(4.13) k#
*(w(a)) --, *(F)

*(I(a)) --. *().

If fact, for the normal bundle Q of ’, Hurder [Hul, 2] shows that h#

depends only on the concordance class of -. We are going to exploit the
remarkable fact that k# is substantially determined by h# (cf. (4.24), (4.26)).

In order to define a mapping

h" 5at(G, K; Q) k
--) t-l(W(G) k),
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we consider the commutative diagram with exact rows

(4.14) 0 -----FW(O, K) W(G, K) W(G, K) 0

o FW() W(G) W()k 0

where the vertical maps are inclusions. As H(W(G)) 0, we obtain a diagram
of connecting homorphisms

(4.15) H’-(W(G)k)

_
H’(FW(G))

with 80 an isomorphism for > 1. Thus we may define h as the composition

(4.16) X" H’(FW(G,K)) -1o,,, H’-I(W(G)k)
:,

’-I(W(G)k)"

Similarly, we define the mapping # as the composition

(4.17) #" 6a’(G, K; Q) : _)s H,_( M, R/Q) --) t-( M, R/Q).

The relation between and ;# is as follows.

PROPOSITION 4.18. The diagram below is commutative:

(4.19)

t# o,# po k#oh.

In addition, we have

(4.20) ,#o’ poA#o

on H(W(G, K)k).
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Proof. The commutativity of (4.19) is essentially a consequence of Theo-
rem 2.2 (5). In fact, let ([P], u) 6at and let TP W(G) be a transgressive
cochain of P; i.e., dTP P. Then

where we used 80[TP] t.[P]. The second formula follows from (2.13) and

(4.21) n,(w(a -, w( a)tk*

Note that the induced map r# in (4.19) is injective. This follows from Lemma
4.10 (and Remark (3) following it) applied to the fibration E ElK M.

The maps # and X are far from being injective. In fact, the multiplicative
property of S in part (2) of Theorem 2.8 and the vanishing of ’* on products
imply that # is zero on I(K)Q-decomposable elements. Similarly is zero
on I(K )-decomposable elements and thus factors as follows (cf. Theorem
3.14.(1)):

(4.22) H*(FW(G, K)) x, ,_X(W(G)k)

H*(FW(G, K)) (R) I(K) R H*(F.,) (R) s(’) R =- .
Even on /’, , is not injective if p(2k) :: 0. In fact, the generators of type IV in
Theorem 3.14 are products unless I (i) and 2 1. Let /" c " be the
subspace spanned by the classes of type i-III and IV’:

(IV’) ()3i) di, )3i /3(2k).

The following theorem shows that there are no further identifications under
In the course of the proof, we will also explicitly identify the range of X.

THEOREM 4.23. : //" --) *-I(W(G)k) is injective.



CHEEGER-CHERN-SIMONS CLASSES 245

Proof. Recall from Section 3 (and references given there) that there is a
quasi-isomorphism AP(2k) (R) hk

-’) l(G)k, inducing an isomorphism

AP() (R) H*(A) -) H*(W(G) a).

Thus there is a canonical isomorphism

(4.24) p(2k) ,(Ak) ._) ,( W( G) k)

Further "*(Ak) and #*(Ak) have been explicitly determined [Hae], [Hull
[Hu-K]. Recall then that the subalgebra Zk c ak of admissible cocycles is
quasi-isomorphic to Ak and has trivial products (Z2= 0). Hence Ak is
biformal and #*(.4k) is essentially the dual of the free graded Lie algebra
generated by the dual of Z:

+*) R),*( Ak) -- Hom(sL(s- Zk

where s denotes homotopy suspension. In particular, the dual Hurewicz
homomorphism

(4.25)

is injective in positive degrees and we denote the image under ,* of an
admissible cocycle z(ii, by ^u(Ii *(Ak). Further, the dual homotopy
groups of I(G)k Ak and Ak are related by split-exact sequences in the
diagram

(4.26)
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(observe that all generators in *(Ak) are of degree
through the definitions, we find now that

> 2k + 1). By checking

for classes of type I,

for classes of type II and

for classes of type IV’. These classes are clearly linearly independent in

e,(w(e)

and so it remains to determine the images of the classes of type III, i.e., the
proper foliation classes. Now by (4.21) we have
and so we have to understand the mappings in the commutative diagram

(4.27)

Note that the indicated maps are injective (in degrees > 2k) by (4.25) and
(4.26). The preceding arguments together with the following lemma complete
then the proof of Theorem 4.23. m

LEMMA 4.28. (1) ker(tk,) ker(t*) c is given by the linear span of
decomposable cocycles.

(2) The images under of the classes of type I and III are linearly
independent.

Proof. Clearly the decomposable cocycles . F2S(I?) are in ker(tk,)
ker(*). Suppose then that (zl is an indecomposable cocycle (3.13)
of the form ’(tlJ) )3il A A is (R) cj and let j denote the smallest number
so that cjlcr, i.e., c cj. cr (the c’s are supposed to be order by increasing
degree). If 1 < j, then z tk((m) Z-, i.e., z is an admissible~ cocycle in
Ak, and we set z1 z, z 0, a > 1. If j < il, then c ? V(2k by (3.11)
and we set
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Then z Zf and z : 0 by (3.13). We observe that the mapping f Z
defined by (IIJ) zl is 1-1 on indecomposable generators and therefore
injective modulo decomposables. Setting w )72 A )t (R) cc, one verifies that

dW----- Z

s

E (

and therefore

s

,,.(2(,,)) zx + E (-1)-1z Z H+(A:).

With respect to lexicographic ordering of the admissible cocycles in Z-, the
mapping

is in triangular form with eigenvalues + 1, therefore injective and (1) follows.
For (2) we simply observe that

or

((/I,)) (-1) a-lf*(za)
a----1

where the z are of the form Y1 (R) diCc Thus these classes are linearly
independent from the images of the classes of type I determined earlier, m

Remark. All generators in ’ are of degree > 2k + 1; they have even
degree, except those of type III. Thus # has an indeterminacy at most for
generators of type III. If rt(BK, R)= rt-l(K,R)= 0 for > 2k, then #
has no indeterminacy at all.

Using (4.24) we define now a Q-subspace in *(W(G)k) by

(4.29) *(W(G) a)( -=/3(za) /3(za) ,(A)
_
*(W(G) a).

THEOREM 4.30. There is a unique mapping S#" "*(W(G)k)Q--)
*(M,R/Q) such that r#o S#= p k# in diagram (4.19) and such that
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diagram (4.31) below is commutatioe.

(4.31) *(W(G))Q -----, *(M, R/Q)

h#

,*(I(all ---, ,*(,RI.

If M+ is nilpotent of finite type, the homomorphism X+

isomorphism and S# takes oalues in ,r*(M+, R/Q).
in (4.9) is an

Proof. Using the unique splitting in (4.26), we define S# on #*(Ak) by
h# so that the lower part of (4.31) is commutative and ,r # S# # k#

on *(Ak) by (4.13). We further define

and

for )3 /(2k)

S#(fi:) S#(X:) #(E:) for )Tj /3Q2k).

The equation r# S# k# on these latter classes, as well as the commu-
tativity of the upper part of (4.31) follow now by direct calculation from
(4.19), (4.20) and the previous explicit description of . Finally, the unique-
ness of S# is a direct consequence of Theorem 4.23, (4.26) and the commuta-
tivity of (4.31). m

Note that S# on /32k) is only defined modulo Q. In fact, the restriction to
the fibre of k# /2k) _.> *(E, R) is given by the canonical map

/3Qf2k) ___, ,( K, Q)

and it vanishes only after reduction modulo Q. This gives an alternative
definition of

S# /3Q2) __, *(M,R/Q)

via the exact homotopy sequence

0 - ’(M, R/Q) - t(E, R/Q) - ’(K, R/Q)

of E --. ElK M, for > 1 odd.
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Example 4.32. The normal bundle Q (compare 3.15) ’( is in this case
spanned by the indecomposable dements gigs S(V)( (type I) and the
boundaries of the indecomposable classes

z(tlr --- n+(Ak) (type III),

which are mapped isomorphically under , onto a subspace of

#*(W(GL(k))k) =- #*(Ak)
(observe that p(2k) 0 and use (4.24)). Thus from (4.13), (4.26) and (4.31) we
conclude that S# p h#; i.e., the homotopy C-S-S invariants are completely
determined by the Chern-homomorphism h: I(G)k---) A*(M). In view of
Hurder’s results on independent variation [Hul], [Hu2], one sees that h# is
not rational in many cases and thus S# . 0. Observe that in this case there is
no indeterminacy at all, since

*(O(k)) -=R(pl,...,p,,,) fork=2m+ 1

and

q*(O(k)) R( Pl,---, P,-I, e,) for k 2m,

and so all the primary invariants are of degree < 2k.

Example 4.33. Flat bundles (compare 3.16). The subspace /’( is given by

and ,: /’( -) *(W(G)0)( =/3 /3 is an isomorphism (suspension). Hence
the homotopy invariants given by S# in diagram (4.31) are expressed by the
homologically defined map #. For the universal flat G-bundle /
EGd G --) BGd (where Gd is the underlying discrete group of G) and any
flat G-bundle E --) X with classifying map (p" X --) BGd, we obtain therefore a
commutative diagram, using (4.9)"

(4.34) *(W(G)0)o *r*((BGa)+,R/Q)

X
*(x, l/Q) r*(X+, n/Q).

Here the homorphism Sff X+ S# is associated to the group G. Notice that
(BGd)+ is quite a different space than GBd. Thus if G is a semi-simple
connected Lie group for example, then by Chevalley [Cv, Ch. IV, XlI], Gd is
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a perfect group and hence (BGd) + is simply connected and so must have
non-zero higher homotopy groups (since the homology is non-zero). In partic-
ular for G SL(N, F), F R, Q or H,

ri(( BSL( N, F) a) +) K,( F) ( << N)

is Quillen’s algebraic K-theory of F so that (4.34) gives invariants for these
groups. In this context, the invariants (of type IV’) corresponding to elements
in

were introduced in Borel [Bor], and are widely known as the "Borel regulators".
For the invariants (of type II) corresponding to/3Q c 7*(W(G)0)Q it is not
known whether they have non-trivial realizations (mod Q).

The results of this section may be summarized as follows: The Cheeger-
Chern-Simons classes determine dual homotopy-invariants of type I--III and
IV’ which are independently realized by ’(’t)c *(W(G)k)Q. For any
foliated bundle the characteristic homomorphism k# determines a natural
homomorphism

--, *(M R/Q)s#

which may properly be viewed as the homotopy version of the C-S-S classes.

5. Fiat bundles and Eilenberg-MacLane cochains

As mentioned in Examples 3.16 and 4.33, Theorem 2.2 gives characteristic
classes for flat G-bundles (k 0). In the universal case we obtain classes in
H*(BGd, R/L) (modulo the image of the map H*(BG, R) H*(BGd, R/L),
where Gd is the discrete group underlying G. These classes generalize the
classes considered by Cheeger [Cr]:

St,,u H2/-I(BGd,R/L )

defined for P II(G) and u H2t(BG, L) with w(P) ru H2t(BG, R).
Since H*(BGd, R/L) is naturally isomorphic with the Eilenberg-MacLane
group cohomology of Gd it is natural to ask for a more concrete description of
representing cochains for these classes, analogous to the description of the
primary real classes given in [D1] (see also [D2, Chapter 9] and Shulman-
Tischler [Sh-Ti]).

There is a more direct way of constructing such cochains" Suppose G acts
on a manifold V (on the left); for q >_ 0 define a q-filling of V to be a family
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of C-singular simplices,

o(gx,-.., g,)" A 1/’, gx,..., g G,p=O,1,...,q,

such that

gl" o(g2,...,gp),
o( gl,..., g,) o ei= o( gl,..., gigi+,..., g,),

o(gx,- gt,-x),

i-’0,

0<i<p,

i=p.

This is simply the formal definition of a section of the associated bundle with
fibre V corresponding to the universal G-bundle pulled back to BGd IINadll.
An example for V G/K and q o is provided by the set of geodesic
simplices A(gx,..., g,) defined inductively as the geodesic cone on
glA(g2 gt,) with top-point (9= {K} (considering A, as the cone on
e(A’-l)). (See e.g. [D1] for details).

LEMMA 5.1. q-fillings exist if V is (q 1)-connected and two q-fillings are
homotopic if V is q-connected.

Now suppose V is (q- 1)-connected and let o be a closed G-invariant
q-form on V. Further let L =c R be the lattice generated by

(fztOlz a singular cycle in V}.
Then for any choice of q-fillings the cochain ,(0) H Cq(NGd, R/L) given by

,ff(to)(gl,..., gq) fAatl(gl,’’’, gq)*
gives a well-defined cohomology class in the Eilenberg-MacLane group coho-
mology Hq(BGd, R/L), ’independent of the choice of q-filling.

Let us recall the results of [D1] and relate them to the framework of
Cheeger-Chern-Simons classes. Thus let g t be a Cartan decomposi-
tion, and let O: g be the inclusion considered as a g-valued linear form

0on . Then f i[ ,/9] is a f-valued linear 2-form on We identify the
G-invariant differential forms on G/K with the corresponding K-invariant
forms A((g/t)*)r on . We have then, using the o-filling of G/K by
geodesic simplices.

THEOREM 5.2. (1) For P H It(K) the corresponding primary characteristic
class w(P ) H H2t(BGd, R) is given by

=(v(u,))
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(2) For P H ker(II(G) It(K)) the corresponding secondary characteristic
class Se, o H HEI-I(BGd, R) is given by

where

22(t-1)
21- 1

is the suspension of P.
(3) Any class of the form (to) is a sum of products of the classes in (1)

and (2).

Proof. Part (1) is just [D1, Corollary 1.3] and (2) is a reformulation of [D1,
Theorem 1.1] in view of the remark following Theorem 2.12 above. Part (3)
follows from Theorems 2.8(2), 2.12(2), and 3.14. m

From now on assume for simplicity G compact and take L Z. In that
case, P H I(G) -- H*(BG, R) is clearly determined by u with ru w(P), so
we shall write

Notice that for u odd-dimensional Su is simply the primary characteristic class
corresponding to -fl-l(u) H H*(BG, R/Z) (the indeterminacy goes to zero).
We get a cochain description of Su in the following case (which covers, for

example, u a Chern class for G U(n))" Suppose H ____. G is a subgroup with
G/H (q- 2)-connected and suppose that o H Hq-I(G/H, Z) transgresses to
u H Hq(BG, Z) in the fibration G/H --, BH BG. Then we have:

THEOREM 5.3. Let t be the G-inoariant (q 1)-form on G/H representing
rv and choose any (q 1)-filling on G/H. Then S

Proof. The G-invariant form to corresponds to an element to0 H

Aq-l((/b)*)n which transgresses in the relative Weil algebra W(G, H) to
P H I*(G); i.e., there is a TP H W(G, H) restricting to to0 and with dTP P.
Using the canonical connection 0 in the simplicial bundle NG NG we
obtain the associated forms TP(, ) and p(q/2) in A*(N/H) and A*(NG)
respectively (for q odd, P 0).
Now similar to the construction of a q-filling we construct a "section" p of

NG/H --, NG over the (q 1)-skeleton; i.e., for each l, k with + k < q 1
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and p: Ak --, NG(I) a singular simplex we obtain a commutative diagram

A X (N/H)(l)

A X Ak
idX’r,, d x N6(t)

such that the family { p, } satisfies certain obvious compatibility relations. For
+ k q we then have a similar diagram with p defined on (A Ak). In

that case the evaluation of the cohomology class -u on [-] Cq(llNall,Z) is
the obstruction to deforming # to the trivial section of the bundle pulled
back by (id x ) to A Ak. That is

(axak) a(atxak)

g*dre(O,

f (id "/’)*P(q/2)

and hence in cq(I[NGII,R),

(5.4) :-(p(/2)) ru 8(.:(#*TP( O,

Now taking 1 0, TP(O, ) reduces to to ddq-l(G/H) and the family
(p,} corresponds to a (q- 1)-filling; so for this filling the theorem follows
directly from (5.4). But since ,,’(to) is independent of the choice of filling, the
proof is finished. I

Remark. If q 21, then ru w(P) for P ker(It(G)) It(H)) and to

can be described explicitly in a way similar to oP(0) in Theorem 5.2 (for G/H
a symmetric space it is exactly the form of oP(0)).

COROLLARY 5.5. Let G SO(n) and n,n-k--’- SO(n)/SO(k) the Stiefel
manifold with k even. Let to be the inoariant k-form representing the real image

of the generator of Hk(n,n_k,Z) - Z. Then for any choice of k-filling we have
that at(to) represents the image of the Stiefel-Whitney class wk

Hk(BSO(n)d,Z/2) under the map induced by the inclusion Z/2- R/Z
sending the generator to 1/2.
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Proof It follows immediately from Theorem 5.3 that a() in this case is
B-(w+x) w.

Remarks. (1) On Sn-x= SO(n)/SO(n- 1) it is possible to choose an
(n- 1)-filling consisting of geodesic simplices. In particular for n odd this
gives a cochain for wn_ expressed in terms of the volume of such simplices.
This is exactly dual to the description of the Euler class for flat SO(n, 1)-bun-
dies, n even, using the volume of geodesic simplices in hyperbolic space.
However, in general for G/H there seems not to be any canonical way of
constructing q-fillings as in the dual situation of a non-compact symmetric
space.

(2) The principle of Theorem 5.2 can be generalized to give cochain
formulas for second order real characteristic classes associated to fiat
Diff(M)-bundles, M any compact manifold (see e.g. Bott [Bot] or Brooks [Br]
for the case of the Godbillon-Vey invariant). We shall elsewhere deal with this
and similar formulas for Cheeger-Chern-Simons classes using the principle of
Theorem 5.3.

[Be1]

[Be2]

[Bor]

[Bot]

[Br]
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