
ILLINOIS JOURNAL OF MATHEMATICS
Volume 34, Number 4, Winter 1990

MANIFOLDS WITH INFINITELY MANY ACTIONS OF
AN ARITHMETIC GROUP1

BY

RICHARD K. LASHOF AND ROBERT J. ZIMMER

It is well known that if F is a lattice in a simple Lie group of higher split
rank then in any finite dimension F has only finitely many inequivalent linear
representations. This is one manifestation of the strong linear rigidity proper-
ties that such groups satisfy. When one considers non-linear representations,
say smooth actions of F on compact manifolds, one still sees a large number
of rigidity phenomena [7]. This is particularly true for actions preserving a
connection. On the other hand, the point of this note is to establish the
following result.

THEOREM 1. Let G be the Lie group SL(n, R), n >_ 3, or SU(p, q), p, q _> 2.
Then there is a cocompact discrete subgroup F c G and a smooth compact

manifold M such that there are infinitely many actions of F on M with the
following properties:

i) The actions are mutually non-conjugate in Diff(M), Homeo(M), and
Meas(M), where the latter is the group of measure class preserving
automorphisms ofM as a measure space;

(ii) Each action leaves a smooth metric on M invariant, is minimal (i.e.,
every orbit is dense), and ergodic (with respect to the smooth measure
class.)

Theorem 1 is easily deduced from a certain non-rigidity phenomenon for
tori in compact semisimple groups. Namely, fix a compact semisimple Lie
group C and call closed subgroups H and H2 equivalent if there is an
automorphism a of C such that ot(H1) H2. We can then ask to what
extent the diffeomorphism class of C/H determines the equivalence class of
H. (The natural question is under what circumstance the map from equiva-
lence classes of (a class of) closed subgroups to diffeomorphism classes of
manifolds is finite-to-one.) Here we show:

THEOREM 2. Let C SU(n) SU(n), n >_ 2. Then there is a family of
mutually non-equivalent tori Tk, k Z +, such that C/Tk are all diffeomorphic.
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We have not determined whether or not a similar phenomenon can occur
if C is a simple Lie group of higher rank. It has been shown by A. Borel
(private communication) that this cannot happen for one dimensional tori in
SU(4).
To prove Theorem 1 from Theorem 2, we first claim that if G is SL(n, R)

or SU(p, q)where p + q n, there is a cocompact lattice F c G and a
dense embedding of F into SU(n) SU(n). This follows via the standard
arithmetic construction of cocompact lattices. (See, e.g., [2], [3], [5], [6].) For
completeness, we indicate the construction for SU(p, q). The case of SL(n, R)
is similar, but a bit more complicated. Let p Q[X] be a cubic with 3 real
irrational roots a, b, c with a < 0 < b, c. Let k be the splitting field. We
assume [k :Q] 3, and r, - the non-trivial elements of Gal(k/Q). Let B be
the Hermitian form on C given by

B( z w) a(fzii) -" ’ P+q’r
".p+l.,i,vi

Then SU(B) can be identified with the set of real points of an algebraic
group ’ defined over k, and as a Lie group it is ismorphic to SU(p, q). Let
c k be the .algebraic integers in k, and F e SU(B). The real points

of the twisted groups ’,’ will be identified with SU(B),SU(B)
respectively, which are both isomorphic as Lie groups to SU(n) since these
forms are now positive definite, due to the fact b, c > 0. It follows from [3]
(see also [6] for a discussion) that F is a lattice in SU(B) and that (o-, -):F
SU(B) SU(B) is a dense embedding.
Now choose T, as in Theorem 2, and let M be the manifold C/Tk (which

is independent of k.) For each k, let F act on M via the embedding in C,
and the action of C on C/Tk. Since F is dense in C, if two of these F actions
are conjugate in Homeo(M), then the C actions are conjugate in Homeo(M),
which implies conjugacy of the corresponding tori. In fact, the same is true
for a measurable conjugacy. Namely, the set of measurable maps (mod null
sets) C/T C/T2 is a standard Borel space with the topology of conver-
gence in measure. There is a natural Borel C action on this space (namely
(gf)(x) gf(g-lx)), and the stabilizers of points in such actions are closed
subgroups [6]. It follows that any F-map (which is a fixed point in this
function space) is also a C-map. This map must then be a.e. equal to a
continuous C-map. This establishes (i) of Theorem 1 and (ii) is obvious from
the construction.

We now prove Theorem 2. Suppose more generally that C K L where
K and L are simple. Let T be a torus in K and p:T L a homomorphism.
Then

T, {(t,p(t) K Lit T)

is a subgroup of C. Since T is abelian p*(t)= p(t) -1 is also a homomor-
phism and Eo G/To K TL, T acting on L via p*, is an associated
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principal bundle to q:K K/T. The idea of the proof is to choose homo-
morphisms such that these bundles are equivalent. Also observe that auto-
morphisms of C are of the form a (/3, 6), where /3 and 6 are automor-
phisms of K and L respectively if K 4= L, and such an automorphism
composed with a permutation of the factors if K L. This makes it easy to
tell when two such groups are not equivalent. As an illustration, consider
K=SU(2),L=SU(n),T a maximal torus of K. Since K/T=S2 and
7r2(BL) 0, where BL is the classifying space for L-bundles, every L-bundle
over K/T is trivial. But if p:SU(2) SU(n) is a non-trivial representation,
then To is not equivalent to T (which corresponds to the trivial representa-
tion.)
We now take K L SU(n) as in the statement of the theorem. Let T

be a maximal torus in K, e.g., the set of diagonal matrices with entries
dj exp(iOj) satisfying EOj 0. The Weyl group W of SU(n) is the group of
permutations of the factors dj. Let pk:T --. L be the homomorphism of T
onto the maximal torus T’= T of L, pk(t)= k, k 1,2, Note that if
w W and p Pk for some k, then pw wp. Let A:K/T BT be the
classifying map for q’K K/T, let i:BT’ --. BL be the map induced by the
inclusion of T’ in L, and let Bp:BT BT’ be the map induced by t9. Then
the classifying map for Ep is f iBph.
Now in [1] it is shown that H*(SU(n)) and H*(SU(n)/T) have no torsion

and that this implies that i*:H*(BSU(n)) - H*(BT) is an isomorphism onto
H*(BT)w, the fixed set under the action of the Weyl group. In particular,
this implies A*:H*(BT)W H*(K/T) is trivial. But pw wp implies
(Bp)*’H*(BT’)w - H*(BT)w. Hence fo* h* (Bp)* i* is trivial. We
claim this implies there are only finitely many equivalence classes of bundles
Eo forp=p,,k= 1,2,...

First note that SU(n)/T is a finite CW complex whose cohomology has no
torsion. We will use the following theorem of F. Peterson [4].

THEOREM. Let X be a CW complex of dimension <_ 2n such that H*(X)
has no torsion. Then a complex vector bundle over X is trivial iff all its Chern
classes are trivial.

To apply this result to SU(n)/T we first note the next result.

LEMMA. Let X be a CW complex and X(n) its n-skeleton. IfH*(X) has no
torsion, then n*(s(n)) has no torsion.

Our claim is an immediate consequence of the following:

PROPOSITION. Let X be a 1-connected finite CW complex such that H*(X)
has no torsion. Then there are only a finite number of equivalence classes of
SU(n) bundles X with all Chern classes zero.
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Proof By Peterson’s theorem and the above lemma, if f:X BU(n) is
such that f*H*(BU(n)) H*(X) is zero, then fiX2) is homotopically
trivial. Let

d:BU(n) - BU(1)

be induced by

det:U(n) --, U(1),

so that the fibre of d is BSU(n). If f j.g, g:X BSU and j:BSU(n) -BU(n) induced by the inclusion, so that df is trivial, then the homotopy of
fiX(2n) to the trivial map gives a map of E(X(2n)) to BU(1). Since E(X2n)) is
2-connected, this last is homotopically trivial rel endpoints. Hence glS2n) is
homotopically trivial. Since the homotopy of glS2n) extends to a homotopy
of g, we can assume glX2n) is trivial. Since rr(BSU(n)) is finite for
> 2n,[X/X2), BSU(n)] is finite. Thus up to equivalence there are only

finitely many SU(n) bundles over X with all Chern classes zero.
Thus an infinite number of the Eo for p Pk, k 1, 2,..., are equivalent.

On the other hand, if Tk Tp for p Pk, no automorphism of C sends T. to
Tk if j : k. This completes the proof of Theorem 2.
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