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CHARACTERIZATIONS WITHOUT CHARACTERS

BY

RON SOLOMON AND S.K. WON(]

1. Introduction

The current program of revision of the classification of the finite simple
groups has led us to approach old characterization problems via new av-
enues. The direction of the new approaches has made it natural to look for
new ways to complete the characterizations, more consistent with the new
avenues of approach.
For example, the group A7 was characterized by Michio Suzuki in 1959 in

a paper [10] which made extensive and detailed use of character theory. This
characterization was invoked by Gorenstein and Walter to complete their
"Dihedral Paper" [9] and, again, by Bender in his revision of the
Gorenstein-Walter theorem [5]. However Bender invokes Suzuki at a point
where both the centralizer of an involution and the group order are known.
At this point a far more elementary and character-flee argument is available
and this is provided in Sections 3 and 5 of this paper. In thinking about this
we realized that combining some of Bender’s arguments with our own
affords an almost character-free proof of the following case of the Dihedral
Theorem.

THEOREM 1.1. Let G be a finite simple group with a dihedral Sylow
2-subgroup. Suppose that the centralizer H of an involution of G is properly
contained in a subgroup I5I of G with F*(I) F(I). Then G is isomorphic to
either A5, PSL(3, 2), PSL(2, 9) or A7.

The lion’s share of the proof of (1.1) is in Bender [5]. After some
preliminaries in Sections 2, 3, 4 and 5, we outline Bender’s reductions (with
some improvements) and the completion of the proof of (1.1) in Section 6.
The remainder of the paper is devoted to a character-free proof of

Brauer’s well-known result [7]:

THEOREM 1.2. Let G be a finite simple group with an involution G such
that H CG(t) ------ GL(2, 3). Then G is isomorphic either to Mix or to PSL(3, 3).
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This result is invoked in the classification of groups with a semi-dihedral or
wreathed Sylow 2-subgroup. It is interesting to note that, just as in the
dihedral case, if the centralizer of an involution is not maximal in such a
group G, then it may be proven without character theory that G is isomor-
phic to PSL(3, q) for some odd q. The proof is lengthy and will appear in
Part III of the revision work of Gorenstein, Lyons and Solomon. If the
centralizer is maximal, then character theory seems to be essential to pin
down the structure of the core of the centralizer H, even in the case
H/O(H) GL(2, 3).

2. Counting arguments

We shall frequently have occasion to count involutions in cosets of a
subgroup M. These methods probably go back to Burnside. They are well
presented by Bender in [4].

Notation. (1) For M a subgroup of G, let n ’n(M) denote the set of
all right cosets of M distinct from M and containing exactly n involutions.
Let

(2) bn=bn(M) In(M) I.
The philosophy is that frequently we can determine b, for all n _> 2. If G

has one class of involutions and if IMI > IHI where H is the centralizer of
an involution in G, then we might expect each coset of M to contain at
least two involutions. Comparing G MI with G HI tl often confirms
this and permits us to determine GI. The following remark is useful.

LEpta 2.1. Let M be a subgroup of G. Then M acts on /g,(M) by right
multiplication.

Proof The map x m-lxm defines a bijection between the involutions
of Mt and those of Mtm for any G and rn M.

3. A Construction for PSL(2, 9)

PROPOSITION 3.1. Let H be a group generated by subgroups B and (-)
satisfying"

(1) B NH(P) P(u) (c, cU)(u)
where

(2) P Z3 Z3, (u) Z4 and u2 inverts P;
(3) is an involution ofH- B such that

(,) U U -1,
(**) (zc)3=1,

(***) (u’)3= 1.
Then H PSL(2, 9).
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Proof.
Thus

Since uBNB and P:P, we must have BNB= (u).

Innl Inl In’n n’l 91Bl.

Set Ho B t2 BB. Then

In01 101nl 23. 32- 5 PaL(2, 9)I.

We wish to show that H0 is a subgroup of H (and hence equal to H). For
this it suffices to show that

zbBtBzB for allbB.

By (.), we may assume b P#. As each element of P is (u)-conjugate
either to c or to ccu, it remains to show:

(a) zcz BzB, and
(b) zccU BzB.

By(**),

rcz c- lzc- BzB.

So (a) holds. For (b), set u2 and note that

Tcu-lcuT ’CUtCUT 7Cuc-ltu7 TCuc-lu-I ’CUC-I’gu.

From (, ),

( UC- I,gc ) ( uc-I,) C- I,gcu -1.

So

and

UC -1)(TCUC-IT) c C-ITcu -1

zcuc-lz (cu-lc-1)z(cu-lc-) BzB.

Thus "gCuc-l"gu - BzB, proving (b).
It follows that H0 H is a group of order 360 with a uniquely determined

multiplication table. We conclude that H PSL(2, 9).

4. A characterization of PSL(3, 2) and PSL(2, 9)

In [4], Bender provides an elementary counting argument which establishes
the following result.
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LEMMA 4.1. Let G be a fin.ite simple group with an involution t such that
H Co(t) D8. Then H

_
H

_
G with H =- S4 and either

(1) IGI 23. 3.7, or
(2) ]GI 23. 32. 5 and B (c, cU)(u)

_
G with c 151, (c, cu) = Z3

Z3, (u) Z4 and u2 S - H inverting (c, c).

We now show the following result.

PROPOSITION 4.2. Let G be a finite simple group with an involution such
that H Co(t) Ds. Then either G PSL(3, 2) or G PSL(2, 9).

LEMMA 4.3. In case (1) of (4.1), G PSL(3, 2).

Proof. As G has two conjugacy classes of 4-groups, we may define a
geometry F with points = Uc and lines ..= V where U and V are
representatives of these classes. A point Ug is incident with a line Vgl if
ugvgl is a 2-group. Now I1-- 7 I.1, Each point (line) is incident with
exactly 3 lines (points).
As acts on its 7 right cosets with orbits of length I" gl and as

O2() g; g for any g , we easily see that has on.ly one non-trivial
orbit and sol 3 Hgl 4 for all g G . If f3 Hg is cyclic, then
N( N g)

___
3 g, which is not the case. Hence g V. Geo-

metrically this says that any two points lie on one and only one line.
Hence F is a projective plane of order 2. It is easy to see that F is unique

and
G

___
Aut r PSL(3, 2).

(For example, see [1, 2.26].) Hence G PSL(3, 2).

LEMMA 4.4. In case (2) of (4.1), G PSL(2, 9).

Proof. As Is, t] 1, inverts u and (to)3= 1. As c O2(), we see
that both u and t c normalize (s, t) and so lie in N((s, t)) =- $4. It follows
easily that (utC)3 1. Thus by (3.1), G PSL(2, 9).

This completes the proof of Proposition 4.2.

5. A characterization of A7

PROPOSITION 5.1. Let G be a finite simple group with a dihedral Sylow
2-subgroup. Let t be an involution in G and H C( ). Suppose H satisfies the
following:

(a) O(H) Z3 and H/O(H) D8.
(b) H c_ I, a maximal subgroup of G with O(I) O(H) and I/O(IYI)

S4 and CI:I(O(I)) O2().
(c) IGI 23. 32. 5" 7.

Then G A7.
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Notation. W 02(/-). V is a 4-subgroup of with W V and V.

We proceed via a series of lemmas.

LEMMA 5.2. Na(V) (t,c, 7") S4 with V= (t,t), [t,’] 1 and

( c, "tic 3 "r z (c’r) z 1) --- S3

Proof As Ca(V)_ Ca(t), we have Ca(V)= V and V Wa. Let V=
(t, t 1). Then as ta a, extremal conjugation implies that there exists c G
with t t and

Vc co_ (W, V) Sylz(H ).

Thus Vc = V. As t was arbitrary, we conclude that Na(V) is transitive on
V and so

Na(V) (t, c, z) --S4.

LEMMA 5.3. Let c P SyI3(G). Then Na((c)) P(z) and Na(P)
P(u) with uz z, P-- Z3 z3,Ce(z)= 1.

Proof As is maximal in G, we have Na(O()) and O2()
Ca(O(tYI)). If P1 SY/3(/’), it follows that Ca(P1) P1 and IN(P1)I 18.
By Sylow we conclude that IN(P)I 36. As Ca(P)= P, it follows that
411Autel and soP---ZaZ3.
Suppose IC(c)l is even. Since - inverts c,.we see z centralizes some

involution u in C(c). Now u C(r)_H=N(W). But (W,c)=
(z, t, c) N(V) and so u N(N(V)) N(V), a contradiction. So
C(c)l is odd. Now P is inverted by an involution s in Na((c)) and it
follows that s inverts Ca(c). Then Ca(c) c_ Ca(P) P and Na((c)) P(z).

If x P’ commutes with an involution, then xa c30() 4: b. However
for Xl O()#, xl is not centralized by any involution in Na(P1)
Na((Xl)) n Na(P1). It follows that Na(e) e(u) with u2 z, Ce(z) 1.

LEMMA 5.4. The following relations hold:
(,) Ut-- U -1,

(**) (tc)3 1,
(* * *) (utC)3 1.

Proof We may assume W (t, -) < . As Ca(-) c_ , we have u .
As [z, u] 1, we have u zt, whence u u- u -1, proving (.).



CHARACTERIZATIONS WITHOUT CHARACTERS 73

As Co(t)c_ I5I, we have t c I. Since (t, -, u) and (z, t, ) are distinct
Sylow 2-subgroups of , we have (ut c)3 (t, -).
Suppose ut c has order 6. Then by the structure of , we have ut

Co(W). In particular, [z, ut c] 1. Then [-, c] 1, contrary to the structure
of No(V). Thus (utC)3 1, proving (. ).

Finally as 02(No(V))= (t,c)-=A4, it is clear that (tc)3= 1, proving

DEFINITION. Let B No(P) and GO B t2 BtB.

LEMMA 5.5. Go =- A 6.

Proof This is immediate from Proposition 3.1 and Lemmas 5.3 and 5.4.

Proof ofProposition 5.1. As G is simple and has a subgroup of index 7, G
is isomorphic to a subgroup of S7 of order 23 32 5 7. Thus G AT.

6. Bender’s reductions

In this section we complete the proof of Theorem 1.1.

THEOREM 1.1. Let G be a finite simple group with a dihedral Sylow
2-subgroup. Suppose that the centralizer H of an involution t in G is properly
contained in a subgroup IYI of G with F*(ISI) F(I). Then G is isomorphic to
either A5, PSL(3, 2), PSL(2, 9) or A7.

We proceed by induction to reach the hypotheses of Proposition 4.2 or 5.1.
Our reductions are a simplified version of Bender’s arguments in [3] and [5].
We shall not repeat all of Bender’s arguments but rather we shall indicate
how to extract from Bender’s work an almost character-free proof of Theo-
rem 1.1.

Let G be a minimal counterexample to Theorem 1.1 and let be
maximal subject to H and F*() F(). We proceed via a sequence
of lemmas.

LEMMA 6.1. Suppose H c_ M, a maximal subgroup of G, with either
(a) M No(S) where S SylE(G), IS[ 4, and [M Co(S)[ 3, or
(b) M= O(M)E(M) with [O(M),E(M)] 1 and E(M)/Z(E(M))

As, PSL(3, 2), PSL(2, 9) or A7.
Then G --A5.
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Proof. In either case, M is a strongly embedded subgroup of G and the
character-free proof in Bender [3] shows that case (a) holds and

(i) IGI 12u(4u + 1), where C(S) U S and IUI u;
(ii) G is 2-transitive on the cosets of M; and
(iii) IGI3 3 and if (w) Syl3(G), then N6((w)) =- $3.

Now a bit of character theory completes the proof. Let X be the non-
principal irreducible constituent of 1. As IC(w)l--3, the orthogonality
relations [8, (2.14)] yield an irreducible character, ,, of G such that a portion
of the character table of G is

1G
x

1 G wG

1 1 1
4u 0 1

4u+1 1 -1

Let

S= {(tl,Wl) t G WG" tlW W}

and let a I1. Then by [8, (2.15)], we have

12u(4u+ 1)
1 + =4u+2a= 3 +1

On the other hand, if (t 1’ W1) d then (t1, W A4 and w (t 1, W )" By
Sylow, N6((w)) transitively permutes the subgroups A of G with w A and
A --- A4. Hence there are only two such subgroups and an easy count yields
a 6. Thus u 1 and [G[ 60, whence G ---As as claimed.

LEMMA 6.2. (a) H is a maximal subgroup of G.
(b) o(n)= O(IY-I).
(C) 02(/r) W -- 2 X Z/2.
(d) //0() --- S4.

Proof. Suppose that H is properly contained in M, a maximal subgroup
of G. By the maximal choice of H, we have E--E(M) = 1. As E is a
quasi-simple group with a dihedral Sylow 2-subgroup, E has one class of
involutions, e. Thus M EH and so H (3 E is properly contained in

(3E. Moreover, as (3E <1 , we have that E( (3E)--1. Thus
by induction, E/Z(E) =- As,, PSL(3,2), PSL(2,9) or A7. Moreover
O2( f3 E) 1 and so O2() = 1. Thus 1612 < 8. If E contains a Sylow
2-subgroup of G, then M O(M)E(M) with [O(M), E(M)] 1 and (6.1)
yields a contradiction. Otherwise E -= As and S -= D8 with S Syl2(H). In
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this case the second paragraph of Bender’s proof of Theorem 2.6 in [5] yields
a contradiction, proving (a).

If O2()1, then as 4=H, we must have O2() -= 7/2 7/2 and
I/CFI(02(t)) A3 or S3. In the former case, G A5 by (6.1). In the latter
case, we are done.
Thus we may assume that is maximal in G and that F*() O(F(tYI)).

But then the remainder of the proof of (2.6) in [5] yields a final contradiction.

If O(H) 1, then Proposition 4.2 yields G PSL(3, 2) or PSL(2, 9) and
henceforth we may assume that O(H) 4: 1.

Notation. (1) U O(H).
(2) For s an involution of H, Iv(s) denotes the set of elements of U

inverted by s.
(3) S is a Sylow 2-subgroup of H.

LEMMA 6.3. Suppose that M is a maximal subgroup of G with No(X) c_ M
for some X c_C_ F(U). Suppose that S c_ M IYI. Then either

(1) I[M, t]l is relatively prime to IF()I and [S, U] F(U) or
(2) tE(M).

In particular, if Iv(s) is a Hall subgroup of F(U) for each involution s S,
then t E(M).

Proof The first part is Bender’s Lemma 2.7 in [5]. If Iv(s) is a Hall
subgroup of F(U) for each involution s in S, then [S, U] c_ F(U) and so (1)
does not hold. Thus E(M) in this case.

PROPOSITION 6.4. One of the following holds:
(1) For each involution s H, Iv(s) is a Hall subgroup of F(U); and for

every subgroup X 1 of F(U), No(X) c_ 171.
(2) G has a maximal subgroup M with E(M) and with N(X) c_ Mfor

some X
_
F(U).

Proof. This is Theorem 2.10 of [5] and follows from (6.3).

In Bender’s Section 3 of [5], case (1) of (6.4) is treated. As we have
O2() --- Z2 Z2, we only require the elementary counting argument which
begins with the sentence "Thus V O2() is of type (2, 2)." The conclusion
he reaches corresponds to the hypotheses of Proposition 5.1. Thus G A7 in
this case.
Thus it remains to derive a contradiction in case (2) of (6.4).

LEMMA 6.5. Let M be a maximal subgroup of G with O2(H) c_ M and with
E(M). Then O2(H)

_
E(M).
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Proof. Suppose not. Let V--(t,v)= O2(/) and choose M with V g
E(M). Then M has exactly 2 classes of involutions with representatives and
v. Let

X---- {(Xl, x2)lXl, x 2 are M-conjugates of t and v respectively}.

)iIf (X1, X2) X then (XIX2 =/9 for some positive integer i, where p is a
conjugate of or v. Let a(p) be the number of elements (Xl, x2) in X with

)i(XIX2 p. Then

IX! M" CM(t) ta(t) +IM" CM( v)la(v).

Let CM(t) ((t,v) W)(s), where (t,v)(s) D8 and W
_

U. Let IWI
w and k W’fw(s)l. Since v and vt are the only conjugates of v in CM(t)
and all involutions in CM(t) not in (v, t) are M-conjugates of we have
a(t) 4k. As V, U] 1 and as v o, we have that U O(Co(v)). Hence
CM(U ) ( v ) W and so a( v ) 1. Thus

IMI 2 IMI IMIIXI-- 4k +Ic,(t)llc,(v)l Ic,(t) Ic,(v)l

We obtain IMI 8w(1 + 2k).
Now let Y {(Yl, Y2)IYl, Y2 are M-conjugates of t}. If s is an involution

in CM(t)with s (t, v) then (s 1, SltW) Y for all w W with SlWS w-1.
The number of such pairs is 2k 2. Of course (t, t) Y. Hence

IM! IMI 2k 2Igl >-lea(t)[ / [C(t)
We obtain

IMI 2 IMI 2

[CM(t)l2 >
CM(t)[ (1 +2k ),

or

IMI >_ICM(t)I(1 + 2k2).

Since IMI 8w(1 / 2k) and I(CM(t)I 8W, we get k < 1, which contra-
dicts the simplicity of E/Z(E).

LEMMA 6.6. Case, (2) of (6.4) does not occur.

Proof. Choose a maximal subgroup M of G with E(M) and with
NG(X) c_ M for some X

_
F(U). Since [U, V] 1, we have that V

__
M and
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so, by (6.5), V
_
E E(M). Since E E/Z(E) is a simple group with a

dihedral Sylow 2-subgroup, E has one class of involutions. Hence

V) V) S..

Since [V, O(C()] 1, C() is not a maximal subgroup of E. Since G is a
minimal counterexample, we have E --A5, PSL(2, 9), PSL(3, 2) or A7. Also
M No(E).

Let F F(U) O(M). As E has one class of involutions, we have
M E(H M) and so F 61 M. Thus F 4 F(U) M and so E/Z(E) =- Av.

If D4 1 and D_F, then by (6.3), we have E_E(Na(D)) and so
E=E(Na(D)). If h with D=FFh 1, then E=Eh- and so
h M. But as H : M, we .must have

NFI(F(U ) 6 M) M.

Choose h NFI(F(U) M)with h M. Then F f3 Fh-- 1 and so F---
F(U) c3 M/F Z3. As F3,(U)

___
Co(F) c_ M, we have F(U) is a 3-group.

Let K [S,U M]. Then K--- Z3 and F K F(U) ( M. Let s S of
order 2 with [K, s] K. Then F Cv(to(s) C3 M. As No(F)

_
M, this forces

F CF(u)(S).
If F(U)

_
M, then F(U) F K U and so __C_ M, which is not the

case. As Z(F(U))c_ F K and as K is (s)-invariant; this forces E ---A 7.
Now K O( E) and there exists e Ne(KKe) with Ke co. 151 but Ke

O(H).
We turn to the structure of the 3-group P F(U). Since F(U) M F
K, we have Nv(F) Cv(F) F K. Let R be a normal subgroup of P

with IP/RI > 9. If F _R, then [FVl < IRI and so INv(F)l > IP’RI > 9,
contrary to IN,(F)l 9. So it follows that F : R. In particular F (P).
Let P= P/p(P). Then P C,(s) [P,s] and so s inverts a normal
abelian complement W to F in P. Moreover either W is characteristic in F
or P is extraspeeial of order 3, since IA[ < 9 for any abelian subgroup of P
not contained in W.

If W_.< , then as Ke

_
I5I and s inverts Ke, we see that [W, Ke] 1

[F, K] and so P
_
I No(K). As [K, V] 4 1, we have K O(). But

K
_
P’

_
O(), a contradiction. Thus W [ and IPI 3.

As P F(U), it follows that P U. As pKe Syla() and as K
Z(PK)<I , we have PK Syl(G). Let Vo F K K and consider
N No(Vo). Then Vo Co(Vo) and as F is not G-conjugate to K, we infer
from [GL(3,3)I that IN/Vol divides 24. Now Nt(Vo)/Vo S and, as
e N, we have K N and so PK [ N. Thus N/Vo -- S4. Now e2 inverts
KK. Thus e2 No(K)= I and so e2 No(PK). But e OZ(N) and
NO<N)(PK) PK, a final contradiction.
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7. A characterizatiOn of Mll and PSL(3, 3)

In this section, we begin the proof of Theorem 1.2. For the remainder of
the paper, G is a finite simple group, is an involution in G and H Co(t)
is isomorphic to GL(2, 3).
We proceed via a sequence of lemmas.

LEMMA 7.1.
No(E) =- S4.

G has one class of involutions. IfE is a 4-subgroup of G, then

Proof H has one class of 4-groups and one class of non-central involu-
tions. The result follows from the Thompson transfer lemma (See [2, 37.4])
and extremal conjugation (See [2, p. 207, exercise 1]).

LEMMA 7.2. Suppose that c H of order 3 and c B c_ G with B S4

and with NB(( c )) c_ H. Then ( B, t ) S5.

Proof We wish to show that (B, t) B u BtB. Let NB((c)) (c, tl)
and let (-) C02()(tl). Then (-, tl, t)

_
Co(t1) and so either (zt)2 (t1)

or (7"t)3 (tl). In the former case tzt -(t1) _B. In the latter case
tzt Z(tl)tZ

_
BtB. In any case, this and [(c, tl), t] 1 shows that B BtB

is a group. As No(B), we have B n n (C, 1) and so

In BtBI In + In In B (3 Btl 51BI 120.

It follows trivially that < B, t) =- S5.
For the next two lemmas we assume that GI3 3. Let c H of order 3

with

NH((C)) (c,t, tl), t 1.

LEMMA 7.3. (a) No((c)) NH(<C>) D12.
(b) There exists S c_ G with S S5.

Proof As NH(( C )) D12, we have NG(( C )) O(NG(( C )))( t )" As
IGI3--3, we have O(No((c)))= (c), proving (a). Now (b) follows from
Lemmas 7.1 and 7.2.

LEMMA 7.4. Let y S of order 5. Then Co(y) (y).

Proof Let A be a {2,3}’-subgroup of G containing y and maximal
subject to being inverted by an involution z. If X is a non-identity subgroup
of A, then X < A(z) and so by maximality, A Co(X). Let M No(A).
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As A Ca(A) and r inverts A, we have M ANcG()(A). As A C6(y)
and Ns((y)) contains a Z4, we conclude that NcG()(A) is isomorphic to one
of Z4, Qs, Z8 or SL(2, 3).

Let IAI k. As M contains C(x) for all x O(M)#, no involution
outside M inverts any x O(M). Thus if tr is an involution of G M and
if Mtr contains more than one involution, then tr centralizes exactly one
M-conjugate of -, of which there are k. Thus

G:HI 13k + b in all cases.

We easily compute

Case 24 or Z8. b4 k,

Case Qs’ b4 3k,

Case SL(2, 3). b12 k,

b2 4k, bn 0, for n 3 or n > 5.

b,,=0, forn>2, n4.

b=0, forn>2, n 12.

Now we use the equations

G:HI 13k+bx,

IG:MI 1 / E bn,
n>0

kIG" HI -IG" MI

where r ICa(z)" Nca(,(A)I to get

k[l+b +bl+sk13k + b 7 o

with s 5, 3 or 1 depending on the case. Thus

13k
k s k2 k

b
k

=-0 + (- 1)b
If k > 12, then the right hand side is non-negative and as s/r > , we get
13k- k2>0ork<31.
As k -= 0(mod 5) and k -= l(mod 4), we get k 5 or 25. If k 5, we are

done; so assume k 25. The only cases are:

24 Case.

Q8 Case.

30" 25 25bo + 13b 1,

2" 25=25bo+ 19b 1.
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By Lemma 2.1, M acts on
M-orbit of Mg has length

of cardinality b and if Mg /di, the

[M" M N

Now if a A# t Mg, then Ag C_ CG(a) A and so g M. Thus

IM" M Mgl 0(mod 25) for all g G M.

Thus b0 b =_ 0(mod 25). This easily rules out both cases.

LEMMA 7.5. GI3 > 3.

Proof If not, then by Lemmas 7.3 and 7.4, there exists S __. G with
S -= $5 and with C3(x) c_ S for all x S of order 3, 5 or 6. It follows easily
that if g G S and g inverts some elements of S, then g centralizes one
and only one involution of S. Also we see that if g inverts w S of order 4,
then g S. So bn 0 for n >_ 3. Also b2 4 25 100. Thus

IG’SI 1 + bo + b + 100,

G" HI 25 + bl + 200.

As [G" HI 8[G S[ we obtain

b + 225 -(b0 + b + 101),

an obvious contradiction.

LEMMA 7.6. Let c H of order 3, with normalizer (c, t, 1). A Sylow
3-subgroup of C(c) is either elementary of order 9 or extraspecial of order 27
and exponent 3.

Proof. Let K Ca(c). As (t, 1) normalizes O(K), we see that O(K) is
a 3-group of order 9 or 27 and K O(K)(t). Moreover O(K) has exponent
3, as it is so generated and has class at most 2.
Suppose O(K) is elementary of order 27. Let N Na(O(K)), N

N/O(K). As CV()= (, a) for all (, 1)#, we see that / is isomor-
phic to a subgroup of A5. As 51 IGL(3,3)I, either N (1) or N---A4.

The former possibility violates Burnside’s Lemma. Thus N-= A4 and, as
O(K) is characteristic in a Sylow 3-subgroup of N, we have that N contains a
Sylow 3-subgroup of G. Moreover N controls fusion in O(N).

Let w N- N’ of order 3. We shall argue that w G G’, giving a
contradiction. Let

P SyI3(N ), Z Z(P).
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First note that Ca(Z) has odd order and so, easily, Ca(Z) O3,, 3(CG(Z))
and

No(Z) O ,(Co(Z))No(e)

In particular, Z is neither inverted nor centralized by an involution. If
w N- N’ with w N O(N) # b, then by Alperin’s Theorem [2, Section
38], wN1 O(N) # where N is the normalizer either of (w, Z) or of an
extraspecial subgroup of P. In the latter case, N c_ No(Z) which is impossi-
ble. In the former case, N1/Co((w,)) is isomorphic to a subgroup of
GL(2, 3) of order divisible by 3 but without a normal 3-subgroup. But then N
contains an involution inverting (w, Z), a contradiction.
Thus w O(N)= b for all w N- N’. Every element of N- N’ of

order 3 is N-conjugate to w or w -1. As Ce(w)= (w,Z), we see that
No((w)) has odd order and so w is not G-conjugate to w -1. Now by the
Thompson transfer lemma [2, 37.4)], w G’, a contradiction.

LEMMA 7.7. Let c P SyI3(G). Either
(1) P Z3 Z3 and B No(P) PQ, Q quasi-dihedral of order 16, or
(2) Iel 33 and there are two elementary subgroups, E and E2, ofP with

No(Ei)/Ei GL(2, 3). Also E2
q E1.

Proof Let P Syl3(Co(c)) and let B No(P). Suppose IPI- 9. As
IC(c)l 18, we have IB/PI <_ 16. If In/el 12, then O(B) is extraspecial
and we may assume Z(O(B))= Co(s)(ttl). But then (c) and Z(O(B))are
G-conjugate, contrary to assumption. Thus P Syl3(G) and B is transitive
on its involutions which do not invert P. Hence B PQ with Q quasi-
dihedral.
Suppose Iel 27. Clearly P Syls(G). Let E (c, Cl) where (1)

Ce(tl). Then No(E1) is transitive on the subgroups of E of order 4 and so
No(E1)/E GL(2, 3). Ditto for (c,c2) E2, where (c2) Ce(ttl). Where
E2a E1, we would have E2 EG(e). But No(P) No(Z(P)) e(t, tl).

8. The identification of Mll

Assume that Iel 9.

LEMMA 8.1. IGI 24. 32. 5" 11 11 10" 9" 8.

Proof. As B
_
C3(x) for all x P#, if tr is an involution of G B and

Btr contains more than one involution, then tr centralizes a unique involution
j of B. If j is 2-central in B, then Btr contains 4 involutions and there are
two such cosets for each 2-central j. If j is not 2-central in B, then Btr
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contains 2 involutions and there are 3 such cosets for each non-2-central j.
Hence b2 3 12 36, b4 2 9 18 and b,, 0 for n 3 or n > 5.
Thus

IG’BI 1 + bo + b + 36 + 18 b0 + b + 55.

Also

IG’HI Izl 21 + b + 2b2 + 4b4 b + 165.

As IG’HI 31G" MI, we conclude that b0 b 0 and IG’MI 55.

Notation. (c, t, ) NH((C)) with Ce(tt1) 1.

LEMMA 8.2. There exists a 4-subgroup U (z, zc) in G with No(U)=
U(c, o) where to tt 1.

Proof. By (7.1), the normalizer of any 4-subgroup of G is S4. By inspec-
tion in Nc((c, Cl)), G has two classes of S3 subgroups: (c, tl)G and (c, ttl).
Thus we need to prove that there is no S4-subgroup B
Suppose there is. By (7.2), S (B, t) =- S5 and clearly S’ and S’.
Hence tt S’. Let u CG(tt1) with u2 tt and utl u -1. Then D
(u, t1) is the unique D8 subgroup of G with Z(D)= (tt1) and t D.
Hence D Cs(ttl). Also as tt is central in a Sylow 2-subgroup of N((c, Cl))
containing t 1, we have u N6((C, Cl)). But then (c,cu) --(c,c1) _S,
which is absurd.

Notation.
(2)
(3)
(4)
(5)
(6)
(7)

(1) (c, Cl) SyI3(G). to inverts (c,
NG(U) U(c, to), U Z2 Z2.

() Cv(to); u Ca(to) with u2
o, u u

u Ca(to) with (u, ui) 02(Ca(to)).
B (c, Cl)(U) (c, cU)(u).
G B t3 Bd’B1.

GO (G1, Ul).

-1

LEMMA 8.3. G PSL(2, 9) and Go Mlo.

Proof. Suppose G --PSL(2,9). As U 02(CG(tO)) and as NG((C,I))
contains a Sylow 2-subgroup of C(t0), we see that u No(B1). As [Ul, "r]

(u) c_ B, we have Ux NG(GI). Thus [G0" GI[ 2 and so Go --- M10.By (3.1), to show G - PSL(2, 9), it suffices to verify (,), ( ) and ( ).
Now (,) holds by choice of u and (**) holds since (z,c)=-A4 and
’I’C O2((’F,C)). Finally u Na((to, z)) by choice of u. Also .c
N((to, z)) by the structure of N(U). As N((to, z)) =- $4 and as u and .c
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centralize different involutions of (t0, z), we have (u’C)3-’- 1, i.e., (,..)
holds,,

COROLLARY 8.4. G Mll.

Proof. Lemma XII (3.2) of Blackburn-Huppert [4]. Note that they denote
by M(9) the group we call M10.

9. The identification of PSL(3, 3)

Assume that Ie[ 27.

LEMMA 9.1. Let M NG(Ei) for 1 or 2. Then for all g G M,
(a) IM nMgl 36,
(b) 03(M Mg) E3 -i
(c) G:MI 13.

Proof By the structure of No(P), E and E2 are the only E9 subgroups
of P inverted by an involution. Hence each Sylow 3-subgroup of G lies in a
unique conjugate of M. In particular, if g G- M, then 31 IM’O
Suppose 41 IM: M Mg[. Then we may assume

Z*(M) O Z*(Mg)

and so there exists rn M with tg-lm t. But then g lm H
_
M and so

g M contrary to assumption. Thus 121 IM" M (3 Mgl for all g G M.
As M contains C(x) for all x O3, 2(M), we have bn 0 for n > 6. Now

IG:HI 91G:MI 9(1 + b0 + b + +b6)

and

IG:HI 45 + b + 2b2 / /6b6.

Thus

9b0 + 8b + + 3b6 36.

By the above, bn 0(mod 12). Hence b6 12 and b,, 0 for n 6. We
infer that IG" MI 13 and that IM" M Mgl- 12 for all g G- M,
proving (a) and (c).
As IM Mgl 36, we see that 03(M 0 Mg) is a 9-group inverted by an

involution, hence is in E1 or E2. Were 03(M 0 Mg) E we would have
O3(M) 03(M Mg) 03(Mg) and g M, contrary to assumption.
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DEFINITION. We define a geometry F with points Ea, lines .= E2a
and incident pairs (E, E’) if and. only if E1E2gg’ Syla(G).

LEMMA 9.2. F is a projective plane of order 3.

Proof. By 9.1 (b), any two "points" are normalized by (i.e. incident with)
a unique line and any two "lines" are incident with a unique point. Clearly
each line has 4 points and each point lies on 4 lines. There are 13 points in
all.

COROLLARY 9.3. G PSL(3, 3).

Proof It is an easy game to check that there is a unique affine plane of
order 3 and hence a unique projective plane F of order 3. G is isomorphic to
a subgroup of Aut F PGL(3, 3) (see e.g. [1, 2.26]). Hence G = PSL(3, 3).

This completes the proof of Theorem 1.2.
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