CHARACTERIZATIONS WITHOUT CHARACTERS

BY
Ron Solomon ${ }^{1}$ and S.K. Wong

1. Introduction

The current program of revision of the classification of the finite simple groups has led us to approach old characterization problems via new avenues. The direction of the new approaches has made it natural to look for new ways to complete the characterizations, more consistent with the new avenues of approach.

For example, the group A_{7} was characterized by Michio Suzuki in 1959 in a paper [10] which made extensive and detailed use of character theory. This characterization was invoked by Gorenstein and Walter to complete their "Dihedral Paper" [9] and, again, by Bender in his revision of the Gorenstein-Walter theorem [5]. However Bender invokes Suzuki at a point where both the centralizer of an involution and the group order are known. At this point a far more elementary and character-free argument is available and this is provided in Sections 3 and 5 of this paper. In thinking about this we realized that combining some of Bender's arguments with our own affords an almost character-free proof of the following case of the Dihedral Theorem.

Theorem 1.1. Let G be a finite simple group with a dihedral Sylow 2-subgroup. Suppose that the centralizer H of an involution of G is properly contained in a subgroup \tilde{H} of G with $F^{*}(\tilde{H})=F(\tilde{H})$. Then G is isomorphic to either $A_{5}, \operatorname{PSL}(3,2), \operatorname{PSL}(2,9)$ or A_{7}.

The lion's share of the proof of (1.1) is in Bender [5]. After some preliminaries in Sections 2, 3, 4 and 5, we outline Bender's reductions (with some improvements) and the completion of the proof of (1.1) in Section 6.

The remainder of the paper is devoted to a character-free proof of Brauer's well-known result [7]:

Theorem 1.2. Let G be a finite simple group with an involution $t \in G$ such that $H=C_{G}(t) \cong G L(2,3)$. Then G is isomorphic either to M_{11} or to $\operatorname{PSL}(3,3)$.

[^0]This result is invoked in the classification of groups with a semi-dihedral or wreathed Sylow 2 -subgroup. It is interesting to note that, just as in the dihedral case, if the centralizer of an involution is not maximal in such a group G, then it may be proven without character theory that G is isomorphic to $\operatorname{PSL}(3, q)$ for some odd q. The proof is lengthy and will appear in Part III of the revision work of Gorenstein, Lyons and Solomon. If the centralizer is maximal, then character theory seems to be essential to pin down the structure of the core of the centralizer H, even in the case $H / O(H) \cong G L(2,3)$.

2. Counting arguments

We shall frequently have occasion to count involutions in cosets of a subgroup M. These methods probably go back to Burnside. They are well presented by Bender in [4].

Notation. (1) For M a subgroup of G, let $\mathscr{M}_{n}=\mathscr{M}_{n}(M)$ denote the set of all right cosets of M distinct from M and containing exactly n involutions. Let

$$
\begin{equation*}
b_{n}=b_{n}(M)=\left|\mathscr{M}_{n}(M)\right| \tag{2}
\end{equation*}
$$

The philosophy is that frequently we can determine b_{n} for all $n \geq 2$. If G has one class of involutions and if $|M|>|H|$ where H is the centralizer of an involution t in G, then we might expect each coset of M to contain at least two involutions. Comparing $|G: M|$ with $|G: H|=\left|t^{G}\right|$ often confirms this and permits us to determine $|G|$. The following remark is useful.

Lemma 2.1. Let M be a subgroup of G. Then M acts on $\mathscr{M}_{n}(M)$ by right multiplication.

Proof. The map $x \mapsto m^{-1} x m$ defines a bijection between the involutions of $M t$ and those of $M t m$ for any $t \in G$ and $m \in M$.

3. A Construction for $\operatorname{PSL}(2,9)$

Proposition 3.1. Let H be a group generated by subgroups B and $\langle\tau\rangle$ satisfying:
(1) $B=N_{H}(P)=P\langle u\rangle=\left\langle c, c^{u}\right\rangle\langle u\rangle$
where
(2) $P \cong \mathbf{Z}_{3} \times \mathbf{Z}_{3},\langle u\rangle \cong \mathbf{Z}_{4}$ and u^{2} inverts P;
(3) τ is an involution of $H-B$ such that
(*) $u^{\tau}=u^{-1}$,
$(* *)(\tau c)^{3}=1$,
$(* * *) \quad\left(u \tau^{c}\right)^{3}=1$.
Then $H \cong \operatorname{PSL}(2,9)$.

Proof. Since $u \in B \cap B^{\tau}$ and $P \neq P^{\tau}$, we must have $B \cap B^{\tau}=\langle u\rangle$. Thus

$$
|B \tau B|=|B|\left|B: B \cap B^{\tau}\right|=9|B| .
$$

Set $H_{0}=B \cup B \tau B$. Then

$$
\left|H_{0}\right|=10|B|=2^{3} \cdot 3^{2} \cdot 5=|\operatorname{PSL}(2,9)| .
$$

We wish to show that H_{0} is a subgroup of H (and hence equal to H). For this it suffices to show that

$$
\tau b \tau \in B \cup B \tau B \quad \text { for all } b \in B
$$

By (*), we may assume $b \in P^{\#}$. As each element of $P^{\#}$ is $\langle u\rangle$-conjugate either to c or to $c c^{u}$, it remains to show:
(a) $\tau c \tau \in B \tau B$, and
(b) $\tau c c^{u} \tau \in B \tau B$.

By (**),

$$
\tau c \tau=c^{-1} \tau c^{-1} \in B \tau B
$$

So (a) holds. For (b), set $t=u^{2}$ and note that

$$
\tau c u^{-1} c u \tau=\tau c u t c u \tau=\tau c u c^{-1} t u \tau=\tau c u c^{-1} u^{-1} \tau=\tau c u c^{-1} \tau u .
$$

From ($* * *$),

$$
\left(u c^{-1} \tau c\right)\left(u c^{-1} \tau c\right)=c^{-1} \tau c u^{-1}
$$

So

$$
\left(u c^{-1}\right)\left(\tau c u c^{-1} \tau\right) c=c^{-1} \tau c u^{-1}
$$

and

$$
\tau c u c^{-1} \tau=\left(c u^{-1} c^{-1}\right) \tau\left(c u^{-1} c^{-1}\right) \in B \tau B .
$$

Thus $\tau c u c^{-1} \tau u \in B \tau B$, proving (b).
It follows that $H_{0}=H$ is a group of order 360 with a uniquely determined multiplication table. We conclude that $H \cong \operatorname{PSL}(2,9)$.

4. A characterization of $\operatorname{PSL}(3,2)$ and $\operatorname{PSL}(2,9)$

In [4], Bender provides an elementary counting argument which establishes the following result.

Lemma 4.1. Let G be a finite simple group with an involution t such that $H=C_{G}(t) \cong D_{8}$. Then $H \subseteq \tilde{H} \subseteq G$ with $\tilde{H} \cong S_{4}$ and either
(1) $|G|=2^{3} \cdot 3 \cdot 7$, or
(2) $|G|=2^{3} \cdot 3^{2} \cdot 5$ and $B=\left\langle c, c^{u}\right\rangle\langle u\rangle \subseteq G$ with $c \in \tilde{H},\left\langle c, c^{u}\right\rangle \cong \mathbf{Z}_{3}$ $\times \mathbf{Z}_{3},\langle u\rangle \cong \mathbf{Z}_{4}$ and $u^{2}=s \in H$ inverting $\left\langle c, c^{u}\right\rangle$.

We now show the following result.
Proposition 4.2. Let G be a finite simple group with an involution t such that $H=C_{G}(t) \cong D_{8}$. Then either $G \cong \operatorname{PSL}(3,2)$ or $G \cong \operatorname{PSL}(2,9)$.

Lemma 4.3. In case (1) of (4.1), $G \cong \operatorname{PSL}(3,2)$.
Proof. As G has two conjugacy classes of 4 -groups, we may define a geometry Γ with points $\mathscr{P}=U^{G}$ and lines $\mathscr{L}=V^{G}$ where U and V are representatives of these classes. A point U^{g} is incident with a line $V^{g_{1}}$ if $U^{8} V^{g_{1}}$ is a 2-group. Now $|\mathscr{P}|=7=|\mathscr{L}|$. Each point (line) is incident with exactly 3 lines (points).

As \tilde{H} acts on its 7 right cosets with orbits of length $\left|\tilde{H}: \tilde{H} \cap \tilde{H}^{g}\right|$ and as $O_{2}(\tilde{H}) \nsubseteq \tilde{H}^{g}$ for any $g \notin \tilde{H}$, we easily see that \tilde{H} has only one non-trivial orbit and so $\left|\tilde{H} \cap \tilde{H}^{g}\right|=4$ for all $g \in G-\tilde{H}$. If $\tilde{H} \cap \tilde{H}^{g}$ is cyclic, then $N_{G}\left(\tilde{H} \cap \tilde{H}^{g}\right) \subseteq \tilde{H} \cap \tilde{H}^{g}$, which is not the case. Hence $\tilde{H} \cap \tilde{H}^{g} \in V^{G}$. Geometrically this says that any two points lie on one and only one line.

Hence Γ is a projective plane of order 2 . It is easy to see that Γ is unique and

$$
G \subseteq \operatorname{Aut} \Gamma=P S L(3,2)
$$

(For example, see [1, 2.26].) Hence $G \cong \operatorname{PSL}(3,2)$.
Lemma 4.4. In case (2) of (4.1), $G \cong \operatorname{PSL}(2,9)$.
Proof. As $[s, t]=1, t$ inverts u and $(t c)^{3}=1$. As $t^{c} \in O_{2}(\tilde{H})$, we see that both u and t^{c} normalize $\langle s, t\rangle$ and so lie in $N_{G}(\langle s, t\rangle) \cong S_{4}$. It follows easily that $\left(u t^{c}\right)^{3}=1$. Thus by (3.1), $G \cong \operatorname{PSL}(2,9)$.

This completes the proof of Proposition 4.2.

5. A characterization of \boldsymbol{A}_{7}

Proposition 5.1. Let G be a finite simple group with a dihedral Sylow 2-subgroup. Let t be an involution in G and $H=C_{G}(t)$. Suppose H satisfies the following:
(a) $O(H) \simeq Z_{3}$ and $H / O(H) \simeq D_{8}$.
(b) $H \subseteq \tilde{H}$, a maximal subgroup of G with $O(\tilde{H})=O(H)$ and $\tilde{H} / O(\tilde{H})$ $\cong S_{4}$ and $C_{\tilde{H}}(O(\tilde{H}))=O^{2}(\tilde{H})$.
(c) $|G|=2^{3} \cdot 3^{2} \cdot 5 \cdot 7$.

Then $G \cong A_{7}$.

Notation. $W=O_{2}(\tilde{H}) . \quad V$ is a 4-subgroup of \tilde{H} with $W \neq V$ and $t \in V$.
We proceed via a series of lemmas.
Lemma 5.2. $\quad N_{G}(V)=\langle t, c, \tau\rangle \cong S_{4}$ with $V=\left\langle t, t^{c}\right\rangle,[t, \tau]=1$ and

$$
\left\langle c, \tau \mid c^{3}=\tau^{2}=(c \tau)^{2}=1\right\rangle \cong S_{3}
$$

Proof. As $C_{G}(V) \subseteq C_{G}(t)$, we have $C_{G}(V)=V$ and $V \notin W^{G}$. Let $V=$ $\left\langle t, t_{1}\right\rangle$. Then as $t_{1} \in t^{G}$, extremal conjugation implies that there exists $c \in G$ with $t_{1}^{c}=t$ and

$$
V^{c} \subseteq\langle W, V\rangle \in S y l_{2}(H)
$$

Thus $V^{c}=V$. As t_{1} was arbitrary, we conclude that $N_{G}(V)$ is transitive on $V^{\#}$ and so

$$
N_{G}(V)=\langle t, c, \tau\rangle \cong S_{4} .
$$

Lemma 5.3. Let $c \in P \in \operatorname{Syl}_{3}(G)$. Then $N_{G}(\langle c\rangle)=P\langle\tau\rangle$ and $N_{G}(P)=$ $P\langle u\rangle$ with $u^{2}=\tau, P \cong \mathbf{Z}_{3} \times \mathbf{Z}_{3}, C_{P}(\tau)=1$.

Proof. As \tilde{H} is maximal in G, we have $\tilde{H}=N_{G}(O(\tilde{H}))$ and $O^{2}(\tilde{H})=$ $C_{G}(O(\tilde{H}))$. If $P_{1} \in S y l_{3}(\tilde{H})$, it follows that $C_{G}\left(P_{1}\right)=P_{1}$ and $\left|N_{\tilde{H}}\left(P_{1}\right)\right|=18$. By Sylow we conclude that $\left|N_{G}(P)\right|=36$. As $C_{G}(P)=P$, it follows that $4|\mid$ Aut $P|$ and so $P \cong \mathbf{Z}_{3} \times \mathbf{Z}_{3}$.

Suppose $\left|C_{G}(c)\right|$ is even. Since τ inverts c, we see τ centralizes some involution u in $C_{G}(c)$. Now $u \in C_{G}(\tau) \subseteq \tilde{H}=N_{G}(W)$. But $\langle W, c\rangle=$ $\langle\tau, t, c\rangle=N_{G}(V)$ and so $u \in N_{G}\left(N_{G}(V)\right)=N_{G}(V)$, a contradiction. So $\left|C_{G}(c)\right|$ is odd. Now P is inverted by an involution s in $N_{G}(\langle c\rangle)$ and it follows that s inverts $C_{G}(c)$. Then $C_{G}(c) \subseteq C_{G}(P)=P$ and $N_{G}(\langle c\rangle)=P\langle\tau\rangle$.

If $x \in P^{\#}$ commutes with an involution, then $x^{G} \cap O(\tilde{H}) \neq \phi$. However for $x_{1} \in O(\tilde{H})^{\#}, x_{1}$ is not centralized by any involution in $N_{\tilde{H}}\left(P_{1}\right)=$ $N_{G}\left(\left\langle x_{1}\right\rangle\right) \cap N_{G}\left(P_{1}\right)$. It follows that $N_{G}(P)=P\langle u\rangle$ with $u^{2}=\tau, C_{P}(\tau)=1$.

Lemma 5.4. The following relations hold:

$$
\begin{array}{r}
(*) u^{t}=u^{-1} \\
(* *)(t c)^{3}=1 \\
(* * *)\left(u t^{c}\right)^{3}=1
\end{array}
$$

Proof. We may assume $W=\langle t, \tau\rangle \leq \tilde{H}$. As $C_{G}(\tau) \subseteq \tilde{H}$, we have $u \in \tilde{H}$. As $[\tau, u]=1$, we have $t^{u}=\tau t$, whence $u^{t}=u \tau=u^{-1}$, proving (*).

As $C_{G}(t) \subseteq \tilde{H}$, we have $t^{c} \in \tilde{H}$. Since $\langle t, \tau, u\rangle$ and $\left\langle\tau, t, t^{c}\right\rangle$ are distinct Sylow 2-subgroups of \tilde{H}, we have $\left(u t^{c}\right)^{3} \in\langle t, \tau\rangle$.

Suppose $u t^{c}$ has order 6 . Then by the structure of \tilde{H}, we have $u t^{c} \in$ $C_{G}(W)$. In particular, $\left[\tau, u t^{c}\right]=1$. Then $\left[\tau, t^{c}\right]=1$, contrary to the structure of $N_{G}(V)$. Thus ($\left.u t^{c}\right)^{3}=1$, proving $(* * *)$.

Finally as $O^{2}\left(N_{G}(V)\right)=\langle t, c\rangle \cong A_{4}$, it is clear that $(t c)^{3}=1$, proving (**).

Definition. Let $B=N_{G}(P)$ and $G_{0}=B \cup B t B$.
Lemma $5.5 . \quad G_{0} \cong A_{6}$.
Proof. This is immediate from Proposition 3.1 and Lemmas 5.3 and 5.4.

Proof of Proposition 5.1. As G is simple and has a subgroup of index $7, G$ is isomorphic to a subgroup of S_{7} of order $2^{3} \cdot 3^{2} \cdot 5 \cdot 7$. Thus $G \cong A_{7}$.

6. Bender's reductions

In this section we complete the proof of Theorem 1.1.

Theorem 1.1. Let G be a finite simple group with a dihedral Sylow 2-subgroup. Suppose that the centralizer H of an involution t in G is properly contained in a subgroup \tilde{H} of G with $F^{*}(\tilde{H})=F(\tilde{H})$. Then G is isomorphic to either $A_{5}, \operatorname{PSL}(3,2), \operatorname{PSL}(2,9)$ or A_{7}.

We proceed by induction to reach the hypotheses of Proposition 4.2 or 5.1. Our reductions are a simplified version of Bender's arguments in [3] and [5]. We shall not repeat all of Bender's arguments but rather we shall indicate how to extract from Bender's work an almost character-free proof of Theorem 1.1.

Let G be a minimal counterexample to Theorem 1.1 and let \tilde{H} be maximal subject to $H \subseteq \tilde{H}$ and $F^{*}(\tilde{H})=F(\tilde{H})$. We proceed via a sequence of lemmas.

Lemma 6.1. Suppose $\tilde{H} \subseteq M$, a maximal subgroup of G, with either
(a) $M=N_{G}(S)$ where $S \in \operatorname{Syl}_{2}(G),|S|=4$, and $\left|M: C_{G}(S)\right|=3$, or
(b) $M=O(M) E(M)$ with $[O(M), E(M)]=1$ and $E(M) / Z(E(M)) \cong$ $A_{5}, \operatorname{PSL}(3,2), \operatorname{PSL}(2,9)$ or A_{7}.
Then $G \cong A_{5}$.

Proof. In either case, M is a strongly embedded subgroup of G and the character-free proof in Bender [3] shows that case (a) holds and
(i) $|G|=12 u(4 u+1)$, where $C_{G}(S)=U \times S$ and $|U|=u$;
(ii) G is 2-transitive on the cosets of M; and
(iii) $|G|_{3}=3$ and if $\langle w\rangle \in S y l_{3}(G)$, then $N_{G}(\langle w\rangle) \cong S_{3}$.

Now a bit of character theory completes the proof. Let χ be the nonprincipal irreducible constituent of 1_{M}^{G}. As $\left|C_{G}(w)\right|=3$, the orthogonality relations [8, (2.14)] yield an irreducible character, ψ, of G such that a portion of the character table of G is

	1	t^{G}	w^{G}
1_{G}	1	1	1
x	$4 u$	0	1
ψ	$4 u+1$	1	-1

Let

$$
\mathscr{A}=\left\{\left(t_{1}, w_{1}\right) \in t^{G} \times w^{G}: t_{1} w_{1}=w\right\}
$$

and let $a=|\mathscr{A}|$. Then by [8,(2.15)], we have

$$
a=\frac{12 u(4 u+1)}{4 u \cdot 3}\left(1+\frac{1 \cdot(-1)^{2}}{4 u+1}\right)=4 u+2
$$

On the other hand, if $\left(t_{1}, w_{1}\right) \in \mathscr{A}$, then $\left\langle t_{1}, w_{1}\right\rangle \cong A_{4}$ and $w \in\left\langle t_{1}, w_{1}\right\rangle$. By Sylow, $N_{G}(\langle w\rangle)$ transitively permutes the subgroups A of G with $w \in A$ and $A \cong A_{4}$. Hence there are only two such subgroups and an easy count yields $a=6$. Thus $u=1$ and $|G|=60$, whence $G \cong A_{5}$ as claimed.

Lemma 6.2. (a) \tilde{H} is a maximal subgroup of G.
(b) $O(H)=O(\tilde{H})$.
(c) $O_{2}(\tilde{H})=V \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$.
(d) $\tilde{H} / O(\tilde{H}) \cong S_{4}$.

Proof. Suppose that \tilde{H} is properly contained in M, a maximal subgroup of G. By the maximal choice of \tilde{H}, we have $E=E(M) \neq 1$. As E is a quasi-simple group with a dihedral Sylow 2-subgroup, E has one class of involutions, t^{E}. Thus $M_{\tilde{N}}=E H$ and so $H \cap E$ is properly contained in $\tilde{H} \cap E$. Moreover, as $\tilde{H} \cap E \unlhd \tilde{H}$, we have that $E(\tilde{H} \cap E)=1$. Thus by induction, $E / Z(E) \cong A_{5}, \operatorname{PSL}(3,2), \operatorname{PSL}(2,9)$ or A_{7}. Moreover $O_{2}(\tilde{H} \cap E) \neq 1$ and so $O_{2}(\tilde{H}) \neq 1$. Thus $|G|_{2} \leq 8$. If E contains a Sylow 2-subgroup of G, then $M=O(M) E(M)$ with [$O(M), E(M)$] = 1 and (6.1) yields a contradiction. Otherwise $E \cong A_{5}$ and $S \cong D_{8}$ with $S \in \operatorname{Syl}_{2}(H)$. In
this case the second paragraph of Bender's proof of Theorem 2.6 in [5] yields a contradiction, proving (a).

If $O_{2}(\tilde{H}) \neq 1$, then as $\tilde{H} \neq H$, we must have $O_{2}(\tilde{H}) \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ and $\tilde{H} / C_{\tilde{H}}\left(O_{2}(\tilde{H})\right) \cong A_{3}$ or S_{3}. In the former case, $G \cong A_{5}$ by (6.1). In the latter case, we are done.

Thus we may assume that \tilde{H} is maximal in G and that $F^{*}(\tilde{H})=O(F(\tilde{H}))$. But then the remainder of the proof of (2.6) in [5] yields a final contradiction.

If $O(H)=1$, then Proposition 4.2 yields $G \simeq \operatorname{PSL}(3,2)$ or $\operatorname{PSL}(2,9)$ and henceforth we may assume that $O(H) \neq 1$.

Notation. (1) $U=O(H)$.
(2) For s an involution of $H, I_{U}(s)$ denotes the set of elements of U inverted by s.
(3) S is a Sylow 2-subgroup of H.

Lemma 6.3. Suppose that M is a maximal subgroup of G with $N_{G}(X) \subseteq M$ for some $X \subseteq F(U)$. Suppose that $S \subseteq M \neq \tilde{H}$. Then either
(1) $|[M, t]|$ is relatively prime to $|F(\tilde{H})|$ and $[S, U] \nsubseteq F(U)$ or
(2) $t \in E(M)$.

In particular, if $I_{U}(s)$ is a Hall subgroup of $F(U)$ for each involution $s \in S$, then $t \in E(M)$.

Proof. The first part is Bender's Lemma 2.7 in [5]. If $I_{U}(s)$ is a Hall subgroup of $F(U)$ for each involution s in S, then $[S, U] \subseteq F(U)$ and so (1) does not hold. Thus $t \in E(M)$ in this case.

Proposition 6.4. One of the following holds:
(1) For each involution $s \in H, I_{U}(s)$ is a Hall subgroup of $F(U)$; and for every subgroup $X \neq 1$ of $F(U), N_{G}(X) \subseteq \tilde{H}$.
(2) G has a maximal subgroup M with $t \in E(M)$ and with $N_{G}(X) \subseteq M$ for some $X \subseteq F(U)$.

Proof. This is Theorem 2.10 of [5] and follows from (6.3).
In Bender's Section 3 of [5], case (1) of (6.4) is treated. As we have $O_{2}(\tilde{H}) \cong Z_{2} \times Z_{2}$, we only require the elementary counting argument which begins with the sentence "Thus $V=O_{2}(\tilde{H})$ is of type $(2,2)$." The conclusion he reaches corresponds to the hypotheses of Proposition 5.1. Thus $G \simeq A_{7}$ in this case.

Thus it remains to derive a contradiction in case (2) of (6.4).
Lemma 6.5. Let M be a maximal subgroup of G with $O_{2}(H) \subseteq M$ and with $t \in E(M)$. Then $O_{2}(H) \subseteq E(M)$.

Proof. Suppose not. Let $V=\langle t, v\rangle=O_{2}(\tilde{H})$ and choose M with $V \nsubseteq$ $E(M)$. Then M has exactly 2 classes of involutions with representatives t and v. Let

$$
X=\left\{\left(x_{1}, x_{2}\right) \mid x_{1}, x_{2} \text { are } M \text {-conjugates of } t \text { and } v \text { respectively }\right\}
$$

If $\left(x_{1}, x_{2}\right) \in X$ then $\left(x_{1} x_{2}\right)^{i}=\rho$ for some positive integer i, where ρ is a conjugate of t or v. Let $a(\rho)$ be the number of elements (x_{1}, x_{2}) in X with $\left(x_{1} x_{2}\right)^{i}=\rho$. Then

$$
|X|=\left|M: C_{M}(t)\right| a(t)+\left|M: C_{M}(v)\right| a(v)
$$

Let $C_{M}(t)=(\langle t, v\rangle \times W)\langle s\rangle$, where $\langle t, v\rangle\langle s\rangle \cong D_{8}$ and $W \subseteq U$. Let $|W|=$ w and $k=\left|W: C_{W}(s)\right|$. Since v and $v t$ are the only conjugates of v in $C_{M}(t)$ and all involutions in $C_{M}(t)$ not in $\langle v, t\rangle$ are M-conjugates of t we have $a(t)=4 k$. As $[V, U]=1$ and as $v \in t^{G}$, we have that $U=O\left(C_{G}(v)\right)$. Hence $C_{M}(v)=\langle t, v\rangle \times W$ and so $a(v)=1$. Thus

$$
|X|=\frac{|M|^{2}}{\left|C_{M}(t) \| C_{M}(v)\right|}=\frac{|M|}{\left|C_{M}(t)\right|} 4 k+\frac{|M|}{\left|C_{M}(v)\right|} .
$$

We obtain $|M|=8 w(1+2 k)$.
Now let $Y=\left\{\left(y_{1}, y_{2}\right) \mid y_{1}, y_{2}\right.$ are M-conjugates of $\left.t\right\}$. If s_{1} is an involution in $C_{M}(t)$ with $s_{1} \notin\langle t, v\rangle$ then $\left(s_{1}, s_{1} t w\right) \in Y$ for all $w \in W$ with $s_{1} w s_{1}=w^{-1}$. The number of such pairs is $2 k^{2}$. Of course $(t, t) \in Y$. Hence

$$
|Y| \geq \frac{|M|}{\left|C_{M}(t)\right|}+\frac{|M|}{\left|C_{M}(t)\right|} 2 k^{2} .
$$

We obtain

$$
\frac{|M|^{2}}{\left|C_{M}(t)\right|^{2}} \geq \frac{|M|}{\left|C_{M}(t)\right|}\left(1+2 k^{2}\right)
$$

or

$$
|M| \geq\left|C_{M}(t)\right|\left(1+2 k^{2}\right)
$$

Since $|M|=8 w(1+2 k)$ and $\mid\left(C_{M}(t) \mid=8 w\right.$, we get $k \leq 1$, which contradicts the simplicity of $E / Z(E)$.

Lemma 6.6. Case (2) of (6.4) does not occur.
Proof. Choose a maximal subgroup M of G with $t \in E(M)$ and with $N_{G}(X) \subseteq M$ for some $X \subseteq F(U)$. Since $[U, V]=1$, we have that $V \subseteq M$ and
so, by (6.5), $V \subseteq E=E(M)$. Since $\bar{E}=E / Z(E)$ is a simple group with a dihedral Sylow 2-subgroup, \bar{E} has one class of involutions. Hence

$$
N_{\bar{E}}(\bar{V}) / C_{E}(\bar{V}) \cong S_{4}
$$

Since $\left[\bar{V}, O\left(C_{\bar{E}}(\bar{t})\right]=1, C_{\bar{E}}(\bar{t})\right.$ is not a maximal subgroup of \bar{E}. Since G is a minimal counterexample, we have $\bar{E} \cong A_{5}, \operatorname{PSL}(2,9), \operatorname{PSL}(3,2)$ or A_{7}. Also $M=N_{G}(E)$.

Let $F=F(U) \cap O(M)$. As E has one class of involutions, we have $M=E(H \cap M)$ and so $F \unlhd M$. Thus $F \neq F(U) \cap M$ and so $E / Z(E) \cong A_{7}$.

If $D \neq 1$ and $D \subseteq F$, then by (6.3), we have $E \subseteq E\left(N_{G}(D)\right)$ and so $E=E\left(N_{G}(D)\right.$). If $h \in \tilde{H}$ with $D=F \cap F^{h} \neq 1$, then $E=E^{h^{-1}}$ and so $h \in M$. But as $\tilde{H} \nsubseteq M$, we must have

$$
N_{\tilde{H}}(F(U) \cap M) \nsubseteq M
$$

Choose $h \in N_{\tilde{H}}(F(U) \cap M)$ with $h \notin M$. Then $F \cap F^{h}=1$ and so $F \cong$ $F(U) \cap M / F \cong Z_{3}$. As $F_{3^{\prime}}(U) \subseteq C_{G}(F) \subseteq M$, we have $F(U)$ is a 3-group.

Let $K=[S, U \cap M]$. Then $K \cong \mathrm{Z}_{3}$ and $F \times K=F(U) \cap M$. Let $s \in S$ of order 2 with $[K, s]=K$. Then $F=C_{F(U)}(s) \cap M$. As $N_{G}(F) \subseteq M$, this forces $F=C_{F(U)}(s)$.

If $F(U) \subseteq M$, then $F(U)=F \times K=U$ and so $\tilde{H} \subseteq M$, which is not the case. As $Z(F(U)) \subseteq F \times K$ and as K is $\langle s\rangle$-invariant; this forces $E \cong A_{7}$. Now $K=O(\tilde{H} \cap E)$ and there exists $e \in N_{E}\left(K K^{e}\right)$ with $K^{e} \subseteq \tilde{H}$ but $K^{e} \nsubseteq$ $O(\tilde{H})$.

We turn to the structure of the 3-group $P=F(U)$. Since $F(U) \cap M=F$ $\times K$, we have $N_{P}(F)=C_{P}(F)=F \times K$. Let R be a normal subgroup of P with $|P / R| \geq 9$. If $F \subseteq R$, then $\left|F^{P}\right|<|R|$ and so $\left|N_{P}(F)\right|>|P: R| \geq 9$, contrary to $\left|N_{P}(F)\right|=9$. So it follows that $F \nsubseteq R$. In particular $F \nsubseteq \Phi(P)$. Let $\bar{P}=P / \Phi(P)$. Then $\bar{P}=C_{\bar{P}}(s) \times[\bar{P}, s]$ and so s inverts a normal abelian complement W to F in P. Moreover either W is characteristic in F or P is extraspecial of order 3^{3}, since $|A| \leq 9$ for any abelian subgroup of P not contained in W.

If $W \unlhd \tilde{H}$, then as $K^{e} \subseteq \tilde{H}$ and s inverts K^{e}, we see that $\left[W, K^{e}\right]=1=$ [F, K^{e}] and so $P \subseteq \tilde{H}^{e}=N_{G}\left(K^{e}\right)$. As $\left[K, V^{e}\right] \neq 1$, we have $K \nsubseteq O\left(\tilde{H}^{e}\right)$. But $K \subseteq P^{\prime} \subseteq O\left(\tilde{H}^{e}\right)$, a contradiction. Thus $W \nsubseteq \tilde{H}$ and $|P|=3^{3}$.

As $P=\underset{\tilde{H}}{F}(U)$, it follows that $P=U$. As $P K^{e} \in S y l_{3}(\tilde{H})$ and as $K=$ $Z\left(P K^{e}\right) \unlhd \tilde{H}$, we have $P K^{e} \in S y l_{3}(G)$. Let $V_{0}=F \times K \times K^{e}$ and consider $N=N_{G}\left(V_{0}\right)$. Then $V_{0}=C_{G}\left(V_{0}\right)$ and as F is not G-conjugate to K, we infer from $|G L(3,3)|$ that $\left|N / V_{0}\right|$ divides 24. Now $N_{M}\left(V_{0}\right) / V_{0} \cong S_{3}$ and, as $e \in N$, we have $K \nsubseteq N$ and so $P K^{e} \nsubseteq N$. Thus $N / V_{0} \cong S_{4}$. Now e^{2} inverts $K K^{e}$. Thus $e^{2} \in N_{G}(K)=\tilde{H}$ and so $e^{2} \in N_{G}\left(P K^{e}\right)$. But $e^{2} \in O^{2}(N)$ and $N_{O^{2}(N)}\left(P K^{e}\right)=P K^{e}$, a final contradiction.

7. A characterization of M_{11} and $\operatorname{PSL}(3,3)$

In this section, we begin the proof of Theorem 1.2. For the remainder of the paper, G is a finite simple group, t is an involution in G and $H=C_{G}(t)$ is isomorphic to $G L(2,3)$.

We proceed via a sequence of lemmas.
Lemma 7.1. G has one class of involutions. If E is a 4-subgroup of G, then $N_{G}(E) \cong S_{4}$.

Proof. H has one class of 4-groups and one class of non-central involutions. The result follows from the Thompson transfer lemma (See [2, 37.4]) and extremal conjugation (See [2, p. 207, exercise 1]).

Lemma 7.2. Suppose that $c \in H$ of order 3 and $c \in B \subseteq G$ with $B \cong S_{4}$ and with $N_{B}(\langle c\rangle) \subseteq H$. Then $\langle B, t\rangle \cong S_{5}$.

Proof. We wish to show that $\langle B, t\rangle=B \cup B t B$. Let $N_{B}(\langle c\rangle)=\left\langle c, t_{1}\right\rangle$ and let $\langle\tau\rangle=C_{O_{2}(B)}\left(t_{1}\right)$. Then $\left\langle\tau, t_{1}, t\right\rangle \subseteq C_{G}\left(t_{1}\right)$ and so either $(\tau t)^{2} \in\left\langle t_{1}\right\rangle$ or $(\tau t)^{3} \in\left\langle t_{1}\right\rangle$. In the former case $t \tau t \in \tau\left\langle t_{1}\right\rangle \subseteq B$. In the latter case $t \tau t \in \tau\left\langle t_{1}\right\rangle t \tau \subseteq B t B$. In any case, this and $\left[\left\langle c, t_{1}\right\rangle, t\right]=1$ shows that $B \cup B t B$ is a group. As $t \notin N_{G}(B)$, we have $B \cap B^{t}=\left\langle c, t_{1}\right\rangle$ and so

$$
|B \cup B t B|=|B|+|B|\left|B: B \cap B^{t}\right|=5|B|=120 .
$$

It follows trivially that $\langle B, t\rangle \cong S_{5}$.
For the next two lemmas we assume that $|G|_{3}=3$. Let $c \in H$ of order 3 with

$$
N_{H}(\langle c\rangle)=\left\langle c, t, t_{1}\right\rangle, \quad t_{1}^{2}=1
$$

Lemma 7.3. (a) $N_{G}(\langle c\rangle)=N_{H}(\langle c\rangle) \cong D_{12}$.
(b) There exists $S \subseteq G$ with $S \cong S_{5}$.

Proof. As $N_{H}(\langle c\rangle) \cong D_{12}$, we have $N_{G}(\langle c\rangle)=O\left(N_{G}(\langle c\rangle)\right)\left\langle t, t_{1}\right\rangle$. As $|G|_{3}=3$, we have $O\left(N_{G}(\langle c\rangle)\right)=\langle c\rangle$, proving (a). Now (b) follows from Lemmas 7.1 and 7.2.

Lemma 7.4. Let $y \in S$ of order 5. Then $C_{G}(y)=\langle y\rangle$.
Proof. Let A be a $\{2,3\}^{\prime}$-subgroup of G containing y and maximal subject to being inverted by an involution τ. If X is a non-identity subgroup of A, then $X \leq A\langle\tau\rangle$ and so by maximality, $A=C_{G}(X)$. Let $M=N_{G}(A)$.

As $A=C_{G}(A)$ and τ inverts A, we have $M=A N_{C_{G}(\tau)}(A)$. As $A=C_{G}(y)$ and $N_{S}(\langle y\rangle)$ contains a Z_{4}, we conclude that $N_{C_{G}(\tau)}(A)$ is isomorphic to one of $\boldsymbol{Z}_{4}, \boldsymbol{Q}_{8}, \boldsymbol{Z}_{8}$ or $\operatorname{SL}(2,3)$.

Let $|A|=k$. As M contains $C_{G}^{*}(x)$ for all $x \in O(M)^{\#}$, no involution outside M inverts any $x \in O(M)^{\#}$. Thus if σ is an involution of $G-M$ and if $M \sigma$ contains more than one involution, then σ centralizes exactly one M-conjugate of τ, of which there are k. Thus

$$
|G: H|=13 k+b_{1} \quad \text { in all cases. }
$$

We easily compute
Case \mathbf{Z}_{4} or $\mathbf{Z}_{8} . \quad b_{4}=k, \quad b_{2}=4 k, \quad b_{n}=0$, for $n=3$ or $n \geq 5$.

$$
\text { Case } \mathbf{Q}_{8} . \quad b_{4}=3 k, \quad b_{n}=0, \text { for } n \geq 2, n \neq 4
$$

Case $S L(2,3) . \quad b_{12}=k, \quad b_{n}=0$, for $n \geq 2, n \neq 12$.
Now we use the equations

$$
\begin{aligned}
& |G: H|=13 k+b_{1}, \\
& |G: M|=1+\sum_{n \geq 0} b_{n}, \\
& |G: H|=\frac{k}{r}|G: M|
\end{aligned}
$$

where $r=\left|C_{G}(\tau): N_{C_{G}(\tau)}(A)\right|$ to get

$$
13 k+b_{1}=\frac{k}{r}\left[1+b_{0}+b_{1}+s k\right]
$$

with $s=5,3$ or 1 depending on the case. Thus

$$
13 k-\frac{k}{r}-\frac{s}{r} k^{2}=\frac{k}{r} b_{0}+\left(\frac{k}{r}-1\right) b_{1}
$$

If $k \geq 12$, then the right hand side is non-negative and as $s / r \geq \frac{5}{12}$, we get $13 k-\frac{5}{12} k^{2}>0$ or $k \leq 31$.

As $k \equiv 0(\bmod 5)$ and $k \equiv 1(\bmod 4)$, we get $k=5$ or 25 . If $k=5$, we are done; so assume $k=25$. The only cases are:

$$
\begin{aligned}
& \mathbf{Z}_{4} \text { Case. } \quad 30 \cdot 25=25 b_{0}+13 b_{1}, \\
& \mathbf{Q}_{8} \text { Case. } \quad 2 \cdot 25=25 b_{0}+19 b_{1} .
\end{aligned}
$$

By Lemma 2.1, M acts on \mathscr{M}_{i} of cardinality b_{i} and if $M g \in \mathscr{M}_{i}$, the M-orbit of $M g$ has length

$$
\left|M: M \cap M^{g}\right|
$$

Now if $a \in A^{\#} \cap M^{g}$, then $A^{g} \subseteq C_{G}(a)=A$ and so $g \in M$. Thus

$$
\left|M: M \cap M^{g}\right| \equiv 0(\bmod 25) \quad \text { for all } g \in G-M
$$

Thus $b_{0} \equiv b_{1} \equiv 0(\bmod 25)$. This easily rules out both cases.
Lemma 7.5. $|G|_{3}>3$.
Proof. If not, then by Lemmas 7.3 and 7.4, there exists $S \subseteq G$ with $S \cong S_{5}$ and with $C_{G}^{*}(x) \subseteq S$ for all $x \in S$ of order 3,5 or 6 . It follows easily that if $g \in G-S$ and g inverts some elements of $S^{\#}$, then g centralizes one and only one involution of S. Also we see that if g inverts $w \in S$ of order 4, then $g \in S$. So $b_{n}=0$ for $n \geq 3$. Also $b_{2}=4 \times 25=100$. Thus

$$
\begin{aligned}
|G: S| & =1+b_{0}+b_{1}+100 \\
|G: H| & =25+b_{1}+200
\end{aligned}
$$

As $|G: H|=\frac{120}{48}|G: S|$ we obtain

$$
b_{1}+225=\frac{5}{2}\left(b_{0}+b_{1}+101\right)
$$

an obvious contradiction.
Lemma 7.6. Let $c \in H$ of order 3 , with normalizer $\left\langle c, t, t_{1}\right\rangle$. A Sylow 3-subgroup of $C_{G}(c)$ is either elementary of order 9 or extraspecial of order 27 and exponent 3.

Proof. Let $K=C_{G}(c)$. As $\left\langle t, t_{1}\right\rangle$ normalizes $O(K)$, we see that $O(K)$ is a 3-group of order 9 or 27 and $K=O(K)\langle t\rangle$. Moreover $O(K)$ has exponent 3 , as it is so generated and has class at most 2.

Suppose $O(K)$ is elementary of order 27. Let $N=N_{G}(O(K)), \bar{N}=$ $N / O(K)$. As $C_{\bar{N}}(\bar{\tau})=\left\langle\bar{t}, \bar{t}_{1}\right\rangle$ for all $\bar{\tau} \in\left\langle\bar{t}, \bar{t}_{1}\right\rangle^{\#}$, we see that \bar{N} is isomorphic to a subgroup of A_{5}. As $5\left||G L(3,3)|\right.$, either $\bar{N}=\left\langle\bar{t}, \bar{t}_{1}\right\rangle$ or $\bar{N} \cong A_{4}$. The former possibility violates Burnside's Lemma. Thus $\bar{N} \cong A_{4}$ and, as $O(K)$ is characteristic in a Sylow 3-subgroup of N, we have that N contains a Sylow 3-subgroup of G. Moreover N controls fusion in $O(N)$.

Let $w \in N-N^{\prime}$ of order 3. We shall argue that $w \in G-G^{\prime}$, giving a contradiction. Let

$$
P \in S y l_{3}(N), Z=Z(P)
$$

First note that $C_{G}(Z)$ has odd order and so, easily, $C_{G}(Z)=O_{3^{\prime}, 3}\left(C_{G}(Z)\right)$ and

$$
N_{G}(Z)=O_{3^{\prime}}\left(C_{G}(Z)\right) N_{G}(P)=O_{3^{\prime}}\left(C_{G}(Z)\right) P .
$$

In particular, Z is neither inverted nor centralized by an involution. If $w \in N-N^{\prime}$ with $w^{G} \cap O(N) \neq \phi$, then by Alperin's Theorem [2, Section 38], $w^{N_{1}} \cap O(N) \neq \phi$ where N_{1} is the normalizer either of $\langle w, Z\rangle$ or of an extraspecial subgroup of P. In the latter case, $N_{1} \subseteq N_{G}(Z)$, which is impossible. In the former case, $N_{1} / C_{G}(\langle w\rangle$,$) is isomorphic to a subgroup of$ $G L(2,3)$ of order divisible by 3 but without a normal 3 -subgroup. But then N_{1} contains an involution inverting $\langle w, Z\rangle$, a contradiction.
Thus $w^{G} \cap O(N)=\phi$ for all $w \in N-N^{\prime}$. Every element of $N-N^{\prime}$ of order 3 is N-conjugate to w or w^{-1}. As $C_{P}(w)=\langle w, Z\rangle$, we see that $N_{G}(\langle w\rangle)$ has odd order and so w is not G-conjugate to w^{-1}. Now by the Thompson transfer lemma [2,37.4)], w $\notin G^{\prime}$, a contradiction.

Lemma 7.7. Let $c \in P \in \operatorname{Syl}_{3}(G)$. Either
(1) $P \cong \mathbf{Z}_{3} \times \mathbf{Z}_{3}$ and $B=N_{G}(P)=P Q, Q$ quasi-dihedral of order 16 , or
(2) $|P|=3^{3}$ and there are two elementary subgroups, E_{1} and E_{2}, of P with $N_{G}\left(E_{i}\right) / E_{i} \cong G L(2,3)$. Also $E_{2} \notin E_{1}^{G}$.

Proof. Let $P \in \operatorname{Syl}_{3}\left(C_{G}(c)\right)$ and let $B=N_{G}(P)$. Suppose $|P|=9$. As $\left|C_{B}(c)\right|=18$, we have $|B / P| \leq 16$. If $|B / P|=12$, then $O(B)$ is extraspecial and we may assume $Z(O(B))=C_{O(B)}\left(t t_{1}\right)$. But then $\langle c\rangle$ and $Z(O(B))$ are G-conjugate, contrary to assumption. Thus $P \in \operatorname{Syl}_{3}(G)$ and B is transitive on its involutions which do not invert P. Hence $B=P Q$ with Q quasidihedral.
Suppose $|P|=27$. Clearly $P \in \operatorname{Syl}_{3}(G)$. Let $E_{1}=\left\langle c, c_{1}\right\rangle$ where $\left\langle c_{1}\right\rangle=$ $C_{P}\left(t_{1}\right)$. Then $N_{G}\left(E_{1}\right)$ is transitive on the subgroups of E_{1} of order 4 and so $N_{G}\left(E_{1}\right) / E_{1} \cong G L(2,3)$. Ditto for $\left\langle c, c_{2}\right\rangle=E_{2}$, where $\left\langle c_{2}\right\rangle=C_{P}\left(t t_{1}\right)$. Where $E_{2}^{G}=E_{1}^{G}$, we would have $E_{2} \in E_{1}^{N_{G}(P)}$. But $N_{G}(P)=N_{G}(Z(P))=P\left\langle t, t_{1}\right\rangle$.

8. The identification of M_{11}

Assume that $|P|=9$.
Lemma 8.1. $|G|=2^{4} \cdot 3^{2} \cdot 5 \cdot 11=11 \cdot 10 \cdot 9 \cdot 8$.
Proof. As $B \supseteq C_{G}^{*}(x)$ for all $x \in P^{\#}$, if σ is an involution of $G-B$ and $B \sigma$ contains more than one involution, then σ centralizes a unique involution j of B. If j is 2 -central in B, then $B \sigma$ contains 4 involutions and there are two such cosets for each 2 -central j. If j is not 2 -central in B, then $B \sigma$
contains 2 involutions and there are 3 such cosets for each non-2-central j. Hence $b_{2}=3 \times 12=36, b_{4}=2 \times 9=18$ and $b_{n}=0$ for $n=3$ or $n \geq 5$.

Thus

$$
|G: B|=1+b_{0}+b_{1}+36+18=b_{0}+b_{1}+55
$$

Also

$$
|G: H|=\left|z^{G}\right|=21+b_{1}+2 b_{2}+4 b_{4}=b_{1}+165
$$

As $|G: H|=3|G: M|$, we conclude that $b_{0}=b_{1}=0$ and $|G: M|=55$.
Notation. $\left\langle c, t, t_{1}\right\rangle=N_{H}(\langle c\rangle)$ with $C_{P}\left(t t_{1}\right)=1$.
Lemma 8.2. There exists a 4-subgroup $U=\left\langle\tau, \tau^{c}\right\rangle$ in G with $N_{G}(U)=$ $U\left\langle c, t_{0}\right\rangle$ where $t_{0}=t t_{1}$.

Proof. By (7.1), the normalizer of any 4-subgroup of G is S_{4}. By inspection in $N_{G}\left(\left\langle c, c_{1}\right\rangle\right), G$ has two classes of S_{3} subgroups: $\left\langle c, t_{1}\right\rangle^{G}$ and $\left\langle c, t t_{1}\right\rangle^{G}$. Thus we need to prove that there is no S_{4}-subgroup $B=\left\langle\tau, \tau^{c}\right\rangle\left\langle c, t_{1}\right\rangle$. Suppose there is. By (7.2), $S=\langle B, t\rangle \cong S_{5}$ and clearly $t \notin S^{\prime}$ and $t_{1} \notin S^{\prime}$. Hence $t t_{1} \in S^{\prime}$. Let $u \in C_{G}\left(t t_{1}\right)$ with $u^{2}=t t_{1}$ and $u^{t_{1}}=u^{-1}$. Then $D=$ $\left\langle u, t_{1}\right\rangle$ is the unique D_{8} subgroup of G with $Z(D)=\left\langle t t_{1}\right\rangle$ and $t_{1} \in D$. Hence $D=C_{S}\left(t t_{1}\right)$. Also as $t t_{1}$ is central in a Sylow 2-subgroup of $N_{G}\left(\left\langle c, c_{1}\right\rangle\right)$ containing t_{1}, we have $u \in N_{G}\left(\left\langle c, c_{1}\right\rangle\right)$. But then $\left\langle c, c^{u}\right\rangle=\left\langle c, c_{1}\right\rangle \subseteq S$, which is absurd.

Notation. (1) $\left\langle c, c_{1}\right\rangle \in \operatorname{Syl}_{3}(G) . t_{0}$ inverts $\left\langle c, c_{1}\right\rangle$.
(2) $N_{G}(U)=U\left\langle c, t_{0}\right\rangle, U \cong \mathbf{Z}_{2} \times \mathbf{Z}_{2}$.
(3) $\langle\tau\rangle=C_{U}\left(t_{0}\right) ; u \in C_{G}\left(t_{0}\right)$ with $u^{2}=t_{0}, u^{\tau}=u^{-1}$.
(4) $u_{1} \in C_{G}\left(t_{0}\right)$ with $\left\langle u, u_{1}\right\rangle=O_{2}\left(C_{G}\left(t_{0}\right)\right)$.
(5) $B_{1}=\left\langle c, c_{1}\right\rangle\langle u\rangle=\left\langle c, c^{u}\right\rangle\langle u\rangle$.
(6) $G_{1}=B_{1} \cup B_{1} \tau B_{1}$.
(7) $G_{0}=\left\langle G_{1}, u_{1}\right\rangle$.

Lemma 8.3. $\quad G_{1} \cong P S L(2,9)$ and $G_{0} \cong M_{10}$.
Proof. Suppose $G_{1} \cong \operatorname{PSL}(2,9)$. As $u_{1} \in O_{2}\left(C_{G}\left(t_{0}\right)\right)$ and as $N_{G}\left(\left\langle c, c_{1}\right\rangle\right)$ contains a Sylow 2-subgroup of $C_{G}\left(t_{0}\right)$, we see that $u_{1} \in N_{G}\left(B_{1}\right)$. As [$\left.u_{1}, \tau\right]$ $\in\langle u\rangle \subseteq B$, we have $u_{1} \in N_{G}\left(G_{1}\right)$. Thus $\left|G_{0}: G_{1}\right|=2$ and so $G_{0} \cong M_{10}$.

By (3.1), to show $G_{1} \cong \operatorname{PSL}(2,9)$, it suffices to verify ($*$), ($\left.* *\right)$ and ($* * *$). Now ($*$) holds by choice of u and $(* *)$ holds since $\langle\tau, c\rangle \cong A_{4}$ and $\tau c \notin O_{2}(\langle\tau, c\rangle)$. Finally $u \in N_{G}\left(\left\langle t_{0}, \tau\right\rangle\right)$ by choice of u. Also $\tau^{c} \in$ $N_{G}\left(\left\langle t_{0}, \tau\right\rangle\right)$ by the structure of $N_{G}(U)$. As $N_{G}\left(\left\langle t_{0}, \tau\right\rangle\right) \cong S_{4}$ and as u and τ^{c}
centralize different involutions of $\left\langle t_{0}, \tau\right\rangle$, we have $\left(u \tau^{c}\right)^{3}=1$, i.e., $(* * *)$ holds.

Corollary 8.4. $\quad G \cong M_{11}$.
Proof. Lemma XII (3.2) of Blackburn-Huppert [4]. Note that they denote by $M(9)$ the group we call M_{10}.

9. The identification of $\operatorname{PSL}(3,3)$

Assume that $|P|=27$.
Lemma 9.1. Let $M=N_{G}\left(E_{i}\right)$ for $i=1$ or 2 . Then for all $g \in G-M$,
(a) $\left|M \cap M^{g}\right|=36$,
(b) $O_{3}\left(M \cap M^{g}\right) \in E_{3-i}^{G}$,
(c) $|G: M|=13$.

Proof. By the structure of $N_{G}(P), E_{1}$ and E_{2} are the only E_{9} subgroups of P inverted by an involution. Hence each Sylow 3-subgroup of G lies in a unique conjugate of M. In particular, if $g \in G-M$, then $3\left|\left|M: \cap M^{g}\right|\right.$. Suppose $4\left|\left|M: M \cap M^{g}\right|\right.$. Then we may assume

$$
t \in Z^{*}(M) \cap Z^{*}\left(M^{g}\right)
$$

and so there exists $m \in M$ with $t^{g^{-1} m}=t$. But then $g^{-1} m \in H \subseteq M$ and so $g \in M$ contrary to assumption. Thus $12\left|\left|M: M \cap M^{g}\right|\right.$ for all $g \in G-M$.

As M contains $C_{G}^{*}(x)$ for all $x \in O_{3,2}(M)$, we have $b_{n}=0$ for $n>6$. Now

$$
|G: H|=9|G: M|=9\left(1+b_{0}+b_{1}+\cdots+b_{6}\right)
$$

and

$$
|G: H|=45+b_{1}+2 b_{2}+\cdots+6 b_{6}
$$

Thus

$$
9 b_{0}+8 b_{1}+\cdot+3 b_{6}=36
$$

By the above, $b_{n} \equiv 0(\bmod 12)$. Hence $b_{6}=12$ and $b_{n}=0$ for $n \neq 6$. We infer that $|G: M|=13$ and that $\left|M: M \cap M^{g}\right|=12$ for all $g \in G-M$, proving (a) and (c).

As $\left|M \cap M^{g}\right|=36$, we see that $O_{3}\left(M \cap M^{g}\right)$ is a 9 -group inverted by an involution, hence is in E_{1}^{G} or E_{2}^{G}. Were $O_{3}\left(M \cap M^{g}\right) \in E_{i}^{G}$, we would have $O_{3}(M)=O_{3}\left(M \cap M^{g}\right)=O_{3}\left(M^{g}\right)$ and $g \in M$, contrary to assumption.

Definition. We define a geometry Γ with points $\mathscr{P}=E_{1}^{G}$, lines $\mathscr{L}=E_{2}^{G}$ and incident pairs ($E_{1}^{g}, E_{2}^{g^{\prime}}$) if and only if $E_{1}^{g} E_{2}^{g^{\prime}} \in S y l_{3}(G)$.

Lemma 9.2. $\quad \Gamma$ is a projective plane of order 3.
Proof. By 9.1 (b), any two "points" are normalized by (i.e. incident with) a unique line and any two "lines" are incident with a unique point. Clearly each line has 4 points and each point lies on 4 lines. There are 13 points in all.

Corollary 9.3. $\quad G \cong \operatorname{PSL}(3,3)$.
Proof. It is an easy game to check that there is a unique affine plane of order 3 and hence a unique projective plane Γ of order $3 . G$ is isomorphic to a subgroup of Aut $\Gamma=\operatorname{PGL}(3,3)$ (see e.g. [1, 2.26]). Hence $G \cong \operatorname{PSL}(3,3)$.

This completes the proof of Theorem 1.2.

References

1. E. Artin, Geometric algebra, Interscience Publishers, New York, 1957.
2. M. Aschbacher, Finite group theory, Cambridge University Press, Cambridge, 1986.
3. H. Bender, Transitive Gruppen gerader Ordnung in denen jede Involution genau einen Punkt festlasst, J. Algebra, vol. 17 (1971), pp. 527-554.
4. , Finite groups with large subgroups, Illinois J. Math., vol. 18 (1974), pp. 223-228.
5. _, Finite groups with dihedral Sylow 2-subgroups, J. Algebra, vol. 70 (1981), pp. 216-228.
6. N. Blackburn and B. Huppert, Finite groups III, Springer-Verlag, Berlin, 1982.
7. R. Brauer, "On the structure of groups of finite order" in Proc. Internat. Congr. Math., Vol. 1, 1954, Noordhoff, Groningen, North-Holland, Amsterdam, pp. 209-217.
8. W. Fert, Characters of finite groups, W.A. Benjamin, New York, 1967.
9. D. Gorenstein and J.H. Walter, The characterization of finite groups with dihedral Sylow 2-subgroups, J. Algebra, vol. 2 (1965), I, II, III, pp. 85-151, 218-270, 354-393.
10. M. Suzuki, On finite groups containing an element of order 4 which commutes only with its powers, Illinois J. Math., vol. 3 (1959), pp. 255-271.

The Ohio State University
Columbus, Ohio

[^0]: Received October 19, 1988.
 ${ }^{1}$ Partially supported by a grant from the National Science Foundation.

