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ROOT NUMBERS OF JACOBI-SUM HECKE CHARACTERS

BY

DAVID E. ROHRLICH

Let p be an odd prime and n a positive integer, and let K be the
cyclotomic field of p-th roots of unity. Let a, b, and c be nonzero integers
satisfying a + b + c 0. We assume that none of the integers a, b, and c is
divisible by pn and that at most one of them is divisible by p. The unitary
Jacobi-sum Hecke character X associated to these data is defined as follows.
Given a prime ideal of K, relatively prime to p, and an element x of the
ring of integers of K, relatively prime to , let (),, denote the unique pn-th
root of unity such that

Put

x(NI-1)/p"(mod [).

x

where x runs over representatives for the distinct residue classes modulo
the classes of 0 and 1 being omitted. Now extend J by complete multiplicativ-
ity to the group I(p) of fractional ideals of K relatively prime to p, and
embed K into C, so that J becomes a homomorphism from I(p) to C
Then J is a Hecke character (Weil [8]). The associated unitary Hecke
character is

x(c )

where a denotes an arbitrary element of I(p).
In his original paper of 1952, Weil posed the problem of determining the

conductor (X) of X. While the case n-- 1 was settled by Hasse [4] soon
thereafter, the determination of (X) for arbitrary n was accomplished only
recently, by Coleman and McCallum [1]. The present note gives an applica-
tion of their result. At issue is the root number in the functional equation of
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the Hecke L-function L(s, X). Put

D p(np-n- 1)pn-l,
g (p 1)pn-1/2

and

A(s,X) (DN(x))’/z((2r)-’F(s + 1/2))gL(s,x),

so that the functional equation has the form

A(s, X) W(x)A(1 s, X)

with W(X)= + 1. The work of Coleman and McCallum will enable us to
determine W(X) precisely, just as the earlier result of Hasse made it possible
to determine W(X) precisely in the case n 1 [3].

Given a nonzero element , of Q, let v(v) denote the p-adic ordinal of ,
and let u’ denote the quotient of u by p(), so that v p,,()u’. It is
suggestive, although not especially efficient, to divide our result into a "first
case" and a "second case" according as abc is prime to p or divisible by p.

THEOREM. (1) Suppose that p + abc. Put

U Up((aabbcC)p-l- 1)
and

( aabbc)
t,-

1
pU

Then

ifu < n,

ifu>n.

(2) Suppose that plabc. Put

u Vl(abc)
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and

t)p(
aabbcc)

d= u (l-u), ifu l(modp),

--vp(aabbcC), ifu 1 (mod p).

Then d’ d/p’ and

n+u

I am indebted to the referee for an important comment regarding the
second case of the theorem: If p divides abc, then

a’b’c’d’ u 1 )
or

according as u 1 (mod p) or u 1 (mod p). This is an easy consequence
of the definitions: for example, if u 1 (mod p) and it is a which is divisible
by p, then d -au, so that d’ -a’ (mod p). Since we also have b -c
(mod p), we find that a’b’c’d’ is a square modulo p. The referee has also
pointed out that the proof of the theorem affords a more nearly uniform
definition of the number d’ than is evident from the final statement. This
remark will be clarified at the end of 8.
So far we have regarded n as fixed. In the following corollary, we let n

vary. As before, p is a fixed odd prime and a, b, and c are fixed nonzero
integers summing to 0, with at most one of a, b, and c divisible by p. If n is
sufficiently large, then none of a, b, and c is divisible by pn, so that the
hypotheses in force until now are still satisfied.

COROLLARY.
ofn.

If n is sufficiently large, then ( 1/p)nW(X) is independent

I would like to thank Robert Coleman for suggesting the problem treated
in this note. I am also grateful to him for help with the use of his explicit
reciprocity law.

Finally, I would like to take this opportunity to correct an error in [7].
Contrary to what is asserted in [7], the normalization of the Hilbert symbol
used by Iwasawa in his paper on explicit reciprocity laws is the same as that
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of Artin-Tate. Consequently, the Hilbert symbol as defined on p. 101 of [7] is
the inverse of the correct symbol, given our subsequent quotation of Iwasawa’s
reciprocity laws. In the present paper we follow the convention of [1] for the
Hilbert symbol, which is the inverse of the convention of Iwasawa and
Artin-Tate.

1. Local root numbers

We shall recall a few formulas which are needed for the calculations that
follow. Let H be a local field of characteristic 0, let 0 be a unitary character
of H, and let q be a nontrivial unitary character of H. The local root
number W(O, q) associated to these data is defined by the equation

(1) w(o, q,) q,, dx)/l (0, q,, dx)I,

where dx is any Haar measure on H and the epsilon factor is as in [2], 19. 526,
formula (3.3.1). The dependence of W(O, q) on q can be read from formula
(3.3.3) of [2]: any other nontrivial unitary character of H has the form

for some y H, and we have

(2) w(o, o( y)w(o, q,).

Now suppose that H is nonarchimedean, let @ be the ring of integers of
H, and let zr be a uniformizer in @. We write m(q) for the largest integer/x
such that q is trivial on 7r-g@, and TRY()@ for the conductor of 0. Thus f(O)
is an integer > 0, and f(O) > 0 if and only if 0 is ramified. We call f(O) the
conductor-exponent of 0. If 0 is ramified, then the following integral formula
holds, where U ,x,/3 is an arbitrary element of H, dx is any Haar
measure on H, q is the order of @/zr@, and meas @ is the measure of @
with respect to dx"

(3) fUO-I(x)I(X) dx

[ q-’()/Z(meas Y)O()W(O, q),
0,

if B "o=-f()-m(*)U,
otherwise.

The validity of (3) follows from formulas (3.4.3.2) and (5.7.2) of [2].



ROOT NUMBERS OF JACOBI-SUM HECKE CHARACTERS 159

2. Relative local root numbers

Next we recall a computational device used in [6]. Let F be a local field of
characteristic 0 and let K be an F-algebra of one of the following three
types:

(i) K is a ramified quadratic extension of F.
(ii) K is an unramified quadratic extension of F.
(iii) K=FF.

Let K be the quadratic character of Fx associated to the extension K/F
by class field theory, and let X be any unitary character of K which
coincides with r on F"
(4) xlF= .
In case (iii) our conditions mean that K is trivial and that if we write
X X1 X2 on F F, then gl X-1. Now fix a nontrivial unitary charac-
ter qF: F C and put

(5) K F trI,;/F,

where trg/F denotes the trace function of the F-algebra K. In cases (i) and
(ii) the notation W(X, d/r) requires no explanation. In case (iii)we define

w(x. w(x ,

In all three cases we define a relative local root number W(x, X) by the
formula

(6) x) w(x,

It follows from (2), (4), and (5) that the right-hand side of (6) is independent
of the choice of OF.
To show how relative local root numbers can be used to compute global

root numbers, suppose now that F is a number field and that K is a
quadratic extension of F. Let r be the quadratic Hecke character of F
associated to the extension K/F, and let g be any unitary Hecke character
of K which coincides with r on the ideles of F. Given a place v of F, we
write Fv for the completion of F at v and Kv for K (R)FFo. Then Ko is an
Fo-algebra of type (i), (ii), or (iii) above according as v ramifies, remains
prime, or splits in K. (Strictly speaking, when v splits in K we must also fix
an ordering of the two primes of K above v in order to identify Ko with

Fv F.) The v-components of and X will be denoted K and g respec-
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tively. Then W(Kv, Xv) is defined, and we have

(7) W(X) 1-I W(K, X),

where v runs over the places of F (see [6], p. 530).
In order to apply (7), we need to know the local constants W(K, X). The

critical case for us is the case where v is a finite prime of odd residue
characteristic which ramifies in the extension K/F.

3. An expression for the local constant: first form

In this section and the next, p denotes an odd prime, F a finite extension
of Qp, and K a ramified quadratic extension of F. We write F and ffK for
the corresponding rings of integers, UF and UK for the multiplicative groups
of units in these rings, and rF and -/( for generators of their maximal ideals,
chosen so that

(8)

Finally, we put

(9)

where the vertical bars denote cardinality.
Our goal is to compute W(r, X), where r is the quadratic character of F

associated to the extension K/F by class field theory and X is a unitary
character of Kx satisfying xIFx= r. We begin with some observations
concerning the conductors of these characters. First, since p is odd and K/F
is a ramified quadratic extension, we have f(r) 1. Second, either f(X) 1
or else f(X) is an even integer >_ 2. Indeed, since xIFx= K and r is ramified
we certainly have f(X) >- 1. Now if f(x) were an odd integer strictly greater
than 1, then we would have X(1 + XT"F(Ff(X)-l)/2) :: 1 for some x @e. This
would contradict the fact that f(r) 1, because xIFx= r.

The starting point for the calculation is a formula which expresses W(r, X)
as an integral over the quotient group V Ur/U. Let dtx and dry denote
fixed Haar measures on F and on K, and observe that the restrictions of
these measures to Uf and Ur respectively are Haar measures on the latter
groups. We write dz for the quotient measure dry/dFX on V, so that

(10) fv(fv(xZ)dFX)dz ftrg(y) d/cy

for continuous functions g: UK - C. Let measFS and measrS denote the
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measure of a measurable subset S of F or K respectively, and for y in K put

1, iftrr/Fy UF,h(y)
0, otherwise.

We observe that the function y h(y/rffx- 1) on Ur is constant on cosets
of UF and therefore may be regarded as a function on V. The same is true for
the function

y x-l(y/.trffx)-l)r(trg/v(Y/.trffx)-l))
(where we make the convention that r(0) 0) because X IFx= .

PROPOSITION 1. Put f f(x). Then

W(t X)=q(_)/2 measFUV fvX_( z ) ( ( z )) ( .z )measKUK ,ITfK_
t trK/F 7.FfK_ .trfK

dz.

Proof. The formula is only a slight extension of Prop. 7 of [6], but for the
sake of completeness we give a brief proof. Fix a nontrivial unitary character
qF" F Cx and let qr qF trr/v; put rn rn(qF). Then rn(qr)= 1 +
2rn, because rr generates the different ideal of K/F. Let us apply (3) with
0 r and 0 X, taking account of (9) and of the fact that r-= r. We
obtain the formulas

(11)

and

(12)

f (X)dgF(fiX) dFX
UF

{q-a/Z(measFF)K()W( K, qF),
O,

if/3 e ’W;1-mWF,
otherwise

fUK-1( Y)qg(Y/.Kf+ + 2m )dKY=q-f/2(meaSKK)X(f-l-2m)W(x, qtK)

Now the integral in (12) can be evaluated using (10), and we find

q-Y/Z(measg@g)X(Tr;f-l-2")W( x, qK)

f-l(z) f (X)OF trr/F dFX dz
ue -1

q-1/2(measFF)X(+m)w(, F)
X -(z) tr/

_
I

_
dz,



162 DAVID E. ROHRLICH

by virtue of (8) and (11). Recalling the definition (6), and making some
simplifications, we arrive at the stated formula.

4. An expression for the local constant: second form

We retain the notation and hypotheses of 3, but we make the additional
assumption that q p. As we have remarked in 3, f(= f(x)) is either 1 or a
positive even integer. In the latter case, the function x ,-, X(1 + xr-1) is a
nontrivial character of #’F with values in the poth roots of unity. Hence there
is an invertible residue class modulo p such that

(13)

Of course depends on the choice of uniformizer 7rr. Put

[0, (fp-= l(mod4),( 14)
1, ifp 3 (mod 4).

PROPOSITION 2.

x(rfr-1)i, iff > 1,

ff: I.

Proof. If j is a positive integer we write V for the image in V of the
subgroup 1 + 7r]<@r of Ur. If j is even, then we have

(15)

because the assignment x 1 + 7rrx (x @) induces a bijection of
@e/rr/2@e onto V/V.. Indeed, Ur Ue + rr@e, so that every element of
V has a unique representative of the form 1 + 7rrx with x @F.
According to Prop. 1, we have

(16) W(x,X) 3fvX-l(z)K trr/e q.i.-I
/

,/7.Kf_l
dz

with

(17) T P(f- 1)/2 measeUemeasrUX(’-)
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If f 1, then the integrand in (16) is identically equal to K(2), as one sees
by choosing a representative for z of the form 1 + 7rrx with x F (recall
(8)). Therefore

(2)W(K,X) =r(2)

in this case.
If f is a positive even integer, then the integrand is at least constant on

cosets of V, so that (15), (16), and (17) give

(18) W(,X)=X(rK-’)P-’/ _,X I(Z) trK/F 7TfK- 7TfK-z

where z runs over a set of representatives in Ur for the cosets of Vf in V.
Now if z 1 + zrrx with x F, then

(z)trK/F 7rK-I 2x,rr-/2,

and this number is a unit if and only if

Hence if we confine our attention to the nonzero terms in (18), then we see
that we can choose x jTrrf-2 (1 < j < p- 1), i.e.

z 1 + rrX 1 + j’trKf-1 (1 <j <p- 1).

Then in view of (13) we can rewrite (18) as follows:

p-1

W(x, X) x(TrfK-1)P -/2 , (2J) e-z’ill/p
j=l

p-1

(-2l)x(rI-Z)P-1/z E K(J) ez=i/.
j=l

The stated formula now follows from the standard evaluation of the
quadratic Gauss sum.

5. The global root number

For the remainder of this paper the setting is the same as in the introduc-
tion: K is the cyclotomic field of pn-th roots of unity, F is the maximal totally
real subfield of K, and X is the unitary Jacobi-sum Hecke character deter-



164 DAVID E. ROHRLICH

mined by the triple (a, b, c), where a + b + c 0, gcd(a, b, c, p) 1, and
p a, b, c. We write la for the prime ideal of K above p, and and X for
the local components of and X at p. The conductor (X) of X has the form

with f f(x), and if f > 1 then f is even.
When f > 1, we define an invertible residue class modulo p by the

condition

(19) X(1 + ’I’Kf-l) e2"n’il/p,

where zrr " ’-1 and e2’i/pn (recall that an embedding of K into C
was fixed in the introduction).

Given a residue class x modulo p", let (x)p, or simply (x) denote the
least nonnegative representative for x modulo p". Let H denote the set of
h (Z/p"Z)x which satisfy

(ah-1) + (bh-) + (ch-1)=pn.

Then H is a set of representatives for the distinct cosets of {+ 1} in
(Z/pZ), because ( x) p (x) provided x is nonzero (mod p). Let
k be the number of elements h of H satisfying 1 < (h) < (p" 1)/2.

PROPOSITION 3.

W(x)

(n+f/2)

iff>l,

ff= 1.

Proof. Formula (7) of {}2 is applicable in the case at hand, because the
condition that X agree with r on the ideles of F is satisfied. Indeed, this
condition is equivalent to the condition that X be equivariant with respect to
complex conjugation ([6], Prop. 1), and the latter condition can be verified
directly from the formula defining the Jacobi sum. Now according to Props.
11 and 12 of [6], we have W(rv, Xv) 1 if v is either an infinite place of F or
a finite place where X is unramified. Therefore (7) gives W(X) W(, X).

If f 1, then the stated formula follows at once from Prop. 2.
If f > 1, then Prop. 2 gives

(20) W(,)() ( 7/)XI(’/’/’- 1)//,
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with as in (14). Since X is a Hecke character unramified outside and
infinity, we have

(21) X(Trr)

where o denotes the set of infinite places of F. On the other hand,
Stickelberger’s theorem implies that for z K,

ztrh
(22) I-I ,,-I(z) H izlvo hH

([8], formula (9)), where trh is the automorphism of K sending " to -h.
Combining (21) and (22), we see that

(23) X(Tr/) I-I sign (sin27rh/pn) ig( 1) g-k
hH

where g (p- 1)pn-1/2 is the cardinality of H. Now substitute (23) in
(20). We obtain

W(X) (--2p.l)igf-1)+(--1)g-k
(71)(pl)f/2i-g(--1) g-k

Considering separately the four possibilities for the residue class of p
modulo 8, one checks that this last expression coincides with the stated
formula.

It remains to make the quantities (-1)k, f, and (l/p) more explicit. First
we consider (- 1)k.

6. Gauss’s lemma

We begin with a convenient formulation.

LEMMA. Let N be an integer >_ 3, let tr be a permutation of (Z/NZ)
satisfying the identity tr(-x) -tr(x), and let I be a set of representatives for
the distinct cosets of {:!: 1} in (Z/NZ). Write J for the complement of I in
(Z/NZ). Then

sign(tr) ( 1
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Proof. For each j r(I)n J, let . be the transposition which inter-
changes j and -j, and let z be the product of the z.. Then z r(I) I and

r(-x) -r r(x). It follows that z r is an even permutation, whence
sign(r) sign(z).

We apply the lemma as follows: Let (x) (X)N denote the least nonneg-
ative residue of x modulo N. Since

(i) (o-(i))- (j) + (-j),
I I jo’(1)(J jo’(1)J

and ( j) N (j), we have

(o’(i)) (i) + NIo’(I) n JI (mod 2).
iI iI

Hence if N is odd, then

(24) ( 1) il(’(i)) sign(o-) ( 1)

Now take N pW with w > 1, let u be an integer prime to p, and suppose
that r is the permutation r(x) ux-. Let I be the set of (Z/pwz)
satisfying 1 < (i) < (pw 1)/2. Then

E (i)=
(p2W-1 _[_ 1)(p- 1)

8
i.I

so that

(25) (--1)E’’(i>-- (2)
On the other hand, tr is the composition of two permutations of (Z/pwZ)X:
the inversion map x x-x and the translation x vx. The former, being
the product of (pw-X(p_ 1)/2)- 1 transpositions, has sign -(-l/p),
while the latter has sign equal to the determinant of the regular representa-
tion of (Z/pwZ)x at v, namely (v/p). (Write the regular representation as a
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direct sum of Dirichlet characters.) It follows that

(26)

Together, (24), (25), and (26) give

(27) (_ l)Eil(vi-a) _( --2Vp
More generally, suppose that v pOv’, where v vp(v) < w. Write (x)’
(x)w-o for the least nonnegative residue of x modulo p-o and I’ for the

subset of (Z/pW-OZ) consisting of all such that 1 _< (i)’ < (pw-o 1)/2.
Then

(28) ., (vi-> =pO E (v’i-ly.
iel iI

Since

pW_ 1 p’- 1 pW-,,_ 1pW-V +2 2 2

the right-hand side of (28) is

<XY + pv E <p,i-ly,
I’

or in other words

pVpv- 1 p2(W-v)-l(p_ 1)
2 2 + pv E (l"’i-ly

il’

Therefore (28) gives

(_l)Z:,<=i-l> (_l)Y’-il’<v’i-1)’.

Applying (27)with I replaced by I’, we conclude that

(29) ( 1)E,,(vi-1) _(2v’
v+l
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Now take w n, so that I is the set of (Z/pnZ)x such that 1 < (i) <
(pn 1)/2. The integer k defined in 5 is the cardinality of H n I, with H
as in 5. Equivalently, k is the number of elements I such that

(30) (ai-1) + (bi-1) + (ci-1)=pn.

PROPOSITION 4.

(_l)k= ( 2a’b’c’ ) (_ ) v’(abc)+

Proof. We have

k= it(2-(ai-1)+(bi-1)+(ci-1))pn

the summand being 1 or 0 according as does or does not satisfy (30). Hence
the proposition follows from (29).

7. The conductor

Next we come to the formula for f:

PROPOSITION 5 (Coleman and McCallum). (1) Suppose that p abc. Put

Then

U Up((aabbcC)p-l- 1).

n-u, if u < n,
f= 1, ifu>n.

(2) Suppose that plabc. Put

Then

u vp(abc).

f= (p + 1)p,,-,-1
ifu 1 (mod p),

if u 1 (mod p).

The basic reference for these assertions is Cor. 6.1.1 of [1], but we add the
following remarks:
--Under our hypotheses, the parameter t of [1] is simply vp(abc). Hence

the condition v,((a, b, c, m)) in [1] is equivalent to our condition p abc.
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--In the statement of Cor. 6.1.1, the definition of u in the case t >
vp((a, b, c, m)) is incorrect. The correct definition is that u t Vp(S) + 1
(notation as in [1]).
--Under our hypotheses, if p labc then u < n 1.
Finally, if p 3 and 31abc then Cor. 6.1.1 is not immediately applicable

because of a restriction in the hypothesis of Theorem 5.3. Nevertheless, the
proof of Cor. 6.1.1 goes through if we appeal to Theorem 7.2 in place of
Theorem 5.3. In applying Theorem 7.2 we need only observe that if v3(abc)
n- 1, then the conductor of the Hilbert symbol (aabbcC(1 + x3n), *

(where x Zx) coincides with that of (aabbcc, * )3n. Indeed, the conductor-
exponent of (1 + 3n, ,)3n is 2 by Theorem 6.1, while 2p-u > 2 and (p +
1)p-u-1 > 2 even for p 3 and u n 1.

8. Coleman’s explicit reciprocity law

Recall that for f > 1 we have defined an invertible residue class modulo
p by the requirement

X,, (1 + "n’rf- 1) e2"rril/p,

where rr "- -1 and " e2ri/pn.

PROPOSITION 6.
(1) Ifp ;f abc put

Assume that f > 1.

u Vp((aabbcC)p-l- 1) and d ( abbbcC)p- 1
U

Then

l=2d (modp).

(2) Ifplabc put u vp(abc) and

t;p(aabbcc)

id= (-u),

t;p( aabbcC)
ifu 1 (mod p),

if u -= 1 (mod p).

Then d’ =d/p and

[ 2d’ (mod p),
2d’ (mod p),

ifu 1 (mod p),
ifu 1 (mod p).
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Proof. Forl<m <nput

pn-m
and

,rrm= 1--m.

In particular, ’ g" and zr 1 sr. Hence 7rK -(1 + st-1)Tl’n, SO that

7r-1 (--2)f-l’r/’/-1 (mod la/’).
Equivalently,

7rKf-1 --2’rr/-1 (mod

because f 2 (mod p 1) in all cases where f > 1 (see Prop. 5). Therefore

(31) X,(1 "b ’/7"/-1) -2 e2i’/p.

By Theorems 5.3 and 7.2 of [1], the left-hand side of (31) is (aabbcc, 1 +
zrf-)-. Hence if we write

(32) abb6cC e.pr(1 p)S

with r Z, e, s Zp, and ep-1 1, then (31) becomes

(33) (p’(1 p)S, 1 + 7r/-1)p-n2 e 2wil/p.

By assumption, f > 1. Hence either f 2 or f > 2. We consider these two
cases separately. If f 2 then by Prop. 5, p abc and u n, whence r 0
and sp =- dp" (mod pn+l). Thus (33) becomes

(( )-2 2"n’il/p(34) 1--p) dpn-, 1 + "rr,, p. e

On the other hand,

(35) ((1 p)’"-, 1 + "#"))t," (1 p,2p"-’ ’l)p e-Zi/P

by one of the explicit reciprocity laws of Artin-Hasse. Comparing (34) and
(35) we find 2d (mod p), as claimed.

Henceforth we suppose that f > 2. To prepare for the use of Coleman’s
explicit reciprocity law, let gl, gz Zp[[ x ]] be the power series defined on p.
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90 of [1], so that

g1("If’n) =/9,

and

gE(Tr,,) 1 p.

Put

(36) go
glg2, if vv(s) + 1 vp(r),

if vp(s) + 1 < v(r).

The two cases indicated are the only possible ones, because vp(s) + 1 < vp(r)
always. (See the proof of Cor. 6.1.1 of [1]. If p # abc then we follow the
convention that vp(O) oo.) In both cases,

(go(’n’n), 1 + "lrfn-1)pn (pr(1 p)S, 1 +

and the conductor-exponent of (g0(Trn), *)pn is f ([1], Theorem 6.1).
Now let us apply Coleman’s reciprocity law as stated on p. 89 of [1]: we

have

(37) (pr( 1 p)S, 1 + "ll’nf-1)pn (go(Trn), 1 + 7"l’nf-1)pn -w
with

(38) w fnxf-1 Dg---P- ( x) dxgo

where the integral and the operator D are as in [1]. In the preceding formula
we have written xf-1 where a literal quotation of [1] would require

1 log(1log( 1 + xf- 1) + (1 (1 x)P)f-1).
To justify the replacement, recall that for m > 2 the map

l
log h(1 (1A(h) =logh-

defines an isomorphism

A" 1 + xmZp[[ x 1] -"+ xmZp[[ X 1]
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([1], p. 89). Therefore

A(1 + xf-l) =-- (1 -pr-2)xr-1 mod A(1 + xfZ,[[x]]).
Since (g0(Trn), *)pn has conductor-exponent f, a literal application of Cole-
man’s reciprocity law gives

(go(rrn), 1 + 7"Ffn-1)pn--" -(1-pf-2)w

with w as in (38). But since the left-hand side is a priori a p-th root of unity,
the factor 1 -pf-2 on the right is extraneous, and (37) follows.
Given nonzero elements a and/3 of a p-adic field, write a ~/3 if a -/3

has a strictly larger valuation than either a or /3. We denote by [a] an
arbitrary member of the equivalence class of a under ~. Let T,, denote the
trace from Qp(ff,,) to Qv, and let us henceforth take

(39) m =n-u + 1,

so that under our assumptions m >_ 2. We claim that for h(x)

((40) fnh -0 =- p-nTm h("O’m)
Dgo

To justify this claim, we consider three cases. First suppose that vp(s) + 1
< vt,(r). Then go g, and Cor. 6.7.1 of [1] shows that the hypotheses of
Cor. 6.3.1 of [1] are satisfied with g go, J m, and k. f. Therefore (40)
follows from the last displayed formula in the proof of Cor. 6.3.1, because the
term Dg/g(rj) appearing in that formula can be replaced by any element of
its equivalence class.
Next suppose that vp(s)+ 1 Vp(r) and that u 1 (mod p). Then

(pr, ,)pn and ((1 -p)S, ,)p, have the same conductor-exponent as (pro
p)S, ,)p, namely f. Appealing to Cors. 6.5.1 and 6.7.1 and to the displayed
formula mentioned above, we deduce that (40) holds with go replaced by
either g[ or g. Hence (40) holds for go itself by linearity.

Finally, suppose that vp(s)+ 1--v(r) but that u-= 1 (mod p). The
analogue of Cors. 6.5.1 and 6.7.1 in this case, while not stated explicitly in [1],
is that

(41)

Ut-2n-i,W ( Dg )"rri\/3 1) V’rri --O(’l’l’i) =pi-(p(1 + (p- 1)(m- i)) + 1)

and that the right-hand side attains its maximum solely when n u + 1.
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(Here vi denotes order at T/-i, and the verification of (41) requires Lemmas
6.5 and 6.7 of [1].) Granting these facts, we deduce (40) as before.
Now let us combine (38) and (40). We obtain the congruence

w=p
Dg0

(mod p").

On the other hand, a comparison of (33) and (37) shows that

2w =- lpn-1 (mod p").

Together, the preceding two congruences give

TO ("B"m) lp"-1 (mod p ),

so that the following lemma will complete the proof:

LEMMA. (1) Ifp + abc, then

p -nTm "fl" fm- W( Trm ) =- dPn -1 (mod p").

(2) Ifplabc, then

dpn-u-1 (mod pn),
-dpn-u-1 (mod p"),

/fu 1 (mod p),

ifu --- 1 (mod p).

Proof. We prove the lemma in three steps.

pm-1 pm-2Step 1. 7r /Tr --- 7r /Tr2 1 (mod 7rm)

Proof We have

71"1 1-I (1 ,),

where u runs over integers mod p
Therefore

m which are congruent to 1 mod p.

1-I (1 + ’m + +’n-l)"



174 DAVID E. ROHRLICH

It follows that

7r,/rm-’-= I-I v -= 1 (mod T/m)

which is one of the desired congruences. The other follows by a similar
argument.

Step 2. Tm(Trl/Trm) . _pro-1 (mod pro)

Proof. We have

)/ -’
7]’1/"l]"m (1 ’mpro-1 (1 Srm) 1 + r,n + +Srmp’ -1

and each term in the sum but the first is a root of unity of order divisible by
p2. Hence all terms but the first have trace 0, and

Tm(r,/m) (P )pm-.

Step 3. Proof of the lemma. (1) Suppose first that p abc. In this case
f--2pm-1 (Prop. 5, formula (39)), and we may take [Dgo/go(Trm)]
-spn/Trl by Lemma 6.7 of [1]. (Note that there is a sign error in the
statement of Lemma 6.7, which arises in the course of the calculation at the
bottom of p. 93 of [1]: D([pn]) is -p(1 x)p", not p(1 x)P".) Thus

(42)

--spmrm((,.O-lp-m)(,iT-nl)(,.o-Pmm-’/,17.1)2).
But 7rlp

-m generates the inverse of the different ideal of Qp(srm). Hence
Step 1 gives

(43) p-nTm( crfm- /)go 7"/’m)])-’---STm(’ff’l/Ti’m) (mod spm).

Then Step 2 gives

"-0 ( 7"I’m ) " spm- (mod sp ).

This is the desired congruence, because s dpu-1 (mod pU) (immediate
from (32)) and m n u + 1 (formula (39)).

(2) Now suppose that p labc, and assume to begin with that u 1 (mod p).
Then f 2pm- 1, and Lemmas 6.5 and 6.7 of [1] show that we may take

Ogo/go(’Wm) ( S r/p) pnl’lT"l
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(We again note a sign error: in the fourth line on p. 91, D[a] should be
-a(1- x)a, not a(1- x)a.) This choice of [Dgo/go(Zrm)] is valid even if
go g, for then Vp(r/p) > vp(s). Thus formulas (42), (43), and (44) still hold
with s replaced by s- r/p (note that r/p is an integer). Now the last
paragraph in the proof of Cor. 6.1.1 of [1] shows that vp(s r/p) u 1
and that s- r/p =-d/p (mod pU). From these assertions we obtain the
desired congruence, because n rn u -1.
Next we assume that u 1 (mod p). Then f (p + 1)pm-2, and Lem-

mas 6.5 and 6.7 (corrected as above) permit us to take [Dgo/go(rm)]
--spn/’tr2 The analogue of (42) is therefore

pm-1 pm-2=-spmrm((Trlp-m)(l)(Tr /7’/" ) ( "ff’r /"if’2)),

and (43) and (44) hold without change. Now the last paragraph in the proof
of Cor. 6.1.1 shows that v(s) u 1 and also that s =- r/p (mod pU). Since
r vp(aabbcc) -d, the desired congruence follows as before.

The proof of the lemma yields the "more nearly uniform" definition of d’
mentioned in the introduction. In all cases treated by the lemma, we see that
d’ is uniquely determined modulo p by the condition

Dgo/go(,.17.m) ( 1) d,p*/,n.,

where, is an integer(=n+u-1) and=lifpkabcorul(modp)
and : 2 otherwise.

9. Proof of the theorem

This is just a matter of substituting the formulas for (-1)k, f, and (l/p)
given by Props. 4, 5, and 6 respectively into the expression for W(X) given by
Prop. 3. We draw the reader’s attention to the following points:

--The condition "f 1" is equivalent to "p abc and u > n".
--If p k abc and u < n, or if p labc and u 1 (mod p), then f/2 is odd.
--If p labc and u 1 (mod p), then f/2 is even or odd according as

p -= 3 (mod 4) or p 1 (mod 4). Thus in both cases,
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We conclude with a remark pertaining to the formula for W(X) obtained in
[3] in the case n 1. While the earlier formula may appear to be different
from ours, the reader can verify that the two formulas are consistent by
applying Gauss’s Lemma and an identity of Lerch (see [4], p. 64, or [5], p.
474). In the special case of the triple (a, b, c) (1, 1, -2), the verification is
in effect already carried out in [3] (p. 218).
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