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CYCLIC VECTORS FOR INVARIANT SUBSPACES IN
SOME CLASSES OF ANALYTIC FUNCTIONS

BY

A. MATHESON

1. Let , be a positive increasing function on (0, oo) such that

lim@(t) O, $(t) (1) for > 1
t$O

and fo bt)’ at <

Define

M, (f HlM(f’,r) =o(q(1-r)l_r ))
and

f01M(f’_,, r)
dr < o)$(1 r)

where H is the space of bounded analytic functions on the unit disk, and

M(g,r) sup Ig(z)l sup
Izl=r Izl<r

Each of the spaces Mq, and Lq, becomes a Banach algebra under the norms

(1 r)Moo(f’,r)
IlfllM,= llfll / sup

O<r<l q(1 -r)

IMp(f’’r)
drIlfll, Ilfll + (1 r)

respectively. Since M(f’, r) is increasing and q(1- r) is decreasing, it is
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easy to see that L, c M,. Indeed,

(f ,r)
(1 r) -( Z r)

<
o)

and, for f L,, the latter quantity tends to 0 as r - 1. It follows immedi-
ately from the closed graph theorem that the inclusion is continuous.

In case the function is sufficiently regular, it is possible to characterize
the classes L, and M, in terms of moduli of continuity. The regularity
condition is as follows: there are positive constants a, and/3 such that

t2
dt < a(t)

and

d/( ) dt </35(t)

for all i > 0. If to(f, t) denotes the modulus of continuity of f on aD and
the regularity condition holds, then it is shown in [3] that to(f, t) O((t))
if and only if

,r) =O( o(1-r))l_r
The proof is easily modified to show that f e Me if and only if to(f, t)=
o(ff(t)). Also, using the techniques of [3], it can be shown that f L, if and
only if

Ilto(f’t) dt < oo,o tb( )

In [3], this is proved for (t) ’, 0 < a < 1, but essentially the same proof
works for an arbitrary regular . In the following, will always be regular
and continuous.
A final consequence of the regularity conditions is the existence of a

number s, 0 < s < 1 such that t < $(t) for all small t. This can be proved as
follows. Define the function (t) by the equation

tl ds(t) t S2
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Note that O(t) < dp(t) < aO(t), and a > 1, since otherwise, differentiating

O(t) ft O(S)
s ds

leads to O’(t) 0. Differentiating the equation defining b gives

’(t) b(t) @(t)

which leads to

Since < aO, it follows that

If s (1 1/a) and y b(1), then integrating from t to 1 gives

Y < -s loglog
(t)

or

yt < dp( t) < aO( t).

By choosing a slightly larger s the assertion follows.

2. A closed subspace I of L, or M, is invariant if zI c I. Since the
polynomials are dense in L, and Mq,, the closed invariant subspaces coincide
with the closed ideals. In either case the closed invariant subspaces can be
described explicitly in terms of the Riesz factorization. Given I, let

E E(I) {eilf(eiO) 0 for all f I}
and let u be the greatest common divisor of the inner factors of the functions
in I. Then a function f belongs to I if and only if f vanishes on E and f is
divisible in H by u. This was proved for $(t) t and M, in [1] and
independently, by Shamoyan [4]. The same techniques apply for an arbitrary

and for the spaces L,. This is also a consequence of the more general
results of Shirokov [5], [6].

In each case the technique of proof involves the approximation of func-
tions vanishing on E by functions vanishing on E to high order. To be
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specific, let d(z, E) denote the distance from z to E, and for a > 0 let

J’(E) {f X[ If(z)l < Cd(z,E)}

where X is Lq, or Mq,. It turns out that if I(E) denotes the closed invariant
subspace of functions vanishing on E, then for each a > 0, J’(E) is dense in
I(E). The known proofs of this are purely constructive (e.g. [2], [5, 6]).
At this point the usual procedure is to consider the linear functionals

annihilating the given ideal and, after some preliminary analysis, to apply the
Hahn-Banach theorem.
The purpose of this paper is to show that, when the inner factor u

associated with the ideal I is trivial, then I is generated by any outer
function f which vanishes precisely on E(I). The proof below is purely
constructive, and consequently the characterization I I(E(I))can be estab-
lished without recourse of the Hahn-Banach theorem. This will be a conse-
quence of the following theorem, in which X denotes Lq, or Mq,.

THEOREM. If f is an outer function in X with boundary zero set E, and if
g J(E) for sufficiently large a, then there is a sequence offunctions {gn}=l
such that

(i) gnf I(f) for each n and
(ii) gnf -- g in X.

3. The construction of the g,, proceeds as follows. Let {I,}= denote the
sequence of complementary intervals to E, and let Bn U=+Ilk, and
En=EcBn.Let

lf.eFn( z) exp
.e
0 + z logl f(e)ldOl.iO Z

Then F, is outer, IFnl Ill on Bn and IFI 1 on the complement of Bn.
Define

so that gnf gFn. It is easy to see that g,,f g uniformly on compact
subsets of D. The theorem will be proved in three steps. First, it will be
shown that g,,f X, and then that g,,f g in X. Finally, it will be shown
that g,,f J(E).

Since (g,f)’ F,,g’+ F,g, it will be necessary to estimate F,g. The
appropriate estimate will be provided in Lemma 2. A preliminary estimate is
given in Lemma 1. If f H and F is a measurable subset of the unit circle,
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define

1
fr(z) exp - eio + z logl f(fF ei z

LEMMA 1. Let F be a measurable set on the unit circle, let f H with
reitIlflloo < 1 and let 0 < 1 <_ 3. Then there is a constant C such that if z

satisfies e it F and d(e it, F) >_ (1 r)n, then

log Ifr(z)l >_ c(1 r)-2" loglf(0) I.

Proof First note that if ei F and [0 t[ _< 7r, then

eiO re it 12 > (1 r)2 + rl ei eit 12

It follows that

1

But

[eiO eitl > d(eit, F) > (1 r) n,
and it follows that

1 r 2 1 r 2

leiO ZI 2
__< 16 < 32(1 r)l-En

(1 r)2n

Hence

1 f 1 r eiO)logl fr(z)l
leiO Zi2

logl f( [dO

>_ C(1 r)’-2nfrloglf(ei)ldo
>_ C(1 r) 1-2" loglf(O) 1.

LEMMA 2. With g and F,, as above, ifX M, then

Ig(z)F,(z)l o((1- r))1-r
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while ifX Lq, then

Proof Let

G2 (z
G3 (z

1M=( gF’ r)
dr <( a )

reU]d(eU, B,)< (1- r)’/z},
reiZld(eit, Bn)< (1- r) 1/2 eit Bn}
reiZld(eit, Bn)< (1- r) 1/2 eit

For z re it G1, there exists ei E such that

d2(z, En) [z ei12
)2 rd2(ei-(1-r +

< (l-r).

By Cauchy’s estimate [F,(z)[ < (1 r) -1, so, using the estimate t < q(t),

Ig(z)F(z)[ <_ (1 r) a/2-1 ((1- r))1-r

if a is large enough.
If z re it G2 and ei q B,,, then

]eio z] 2 (1- r)E + 4r sin2( O )2
> (1 r) 2 + rd2(eit, En)
> (1-r +r(1-r)

and

Hence

d2(z, En) (1 r) 2 + rd2(eit, En)
<2d(eit, En).

g(z)l _< Cd"(z, E,,)
< Cda/2(eit, En).
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Now ira >0, b>0, a +b=2, then

leiO zl 2 le io zlaleia zl

( r)a/2db(eit, En)

and this, combined with Lemma 1, with r/ 3, leads to the estimate

IF (z)l ClloglF(0)I ](1 r)-a/2d-b(eit, En),

so that

Ig(z)Fg,(z)l <_ Cd(a/2)-b(eit, En)(1 r) -a/2.

Choosing a so that a/2 b >_ 0, this is

Ig(z)F(z)l <- C( r) -a/2

o(b(1 r) )1-r

if a is small enough.
For z G3,

1 fcnF(z) Fn(z)F-I(z)F’(z) Fn(Z ) - (eiO z )2
lgIF(ei)ldO

The second term is bounded as in G2. But Lemma 1 with r/ yields

IFn( z)F-I( z)l < cl F(O)I -,
so the first term is bounded by

CIF’(z)l= o( (1 r) )1-r

That completes the proof.
Since g X it follows from Lemma 2 and the fact that Fn H that

g,,f gFn X. Since F 1 uniformly on compact subsets of D; it follows
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that F, 0 uniformly on compact subsets, and so to show that gnf g in
X it is enough to estimate

M(((gn(1 f))’)
b(1 r)

for R < r < 1, where R is close to 1. But gnf-g--g(Fn- 1), so the
derivative is g’(F -1)+ gF,. The first term is dominated by 2M=(g’,r)
while the estimate of Lemma 2 takes care of the second term. It follows that
gnff in X.

4. To show that gnf I(f) requires a bit more effort. Suppose that
Ik (ei, ei) for k 1, 2,..., n. For 6 > 0 let

z-1
O(z) z-l-8"

Let

n

dp( z) 1-1 @( ze-"’)@( ze-’kt’)
k=l

It is easy to show that g,,fdp --> gnf in X as 6 O, so it will suffice to show
that gnFdP gf,,dp I(f). To this end, let

n

D= U [ak +e,/3k-e]
k=l

for small e, and let

1 fDei+zF,(z) exp
eiO z loglf(ei)ldO),

and

n

a,e(Z) YI 2(ze-i(ak+e))(ze-i(/3k-e)).
k=l

It follows from Lemma 2 that f,,eF-1 --X, and so gff,,eF-1 I(f), and
by standard arguments that gf,F-1 gF,,d as e 0. Hence gF

I(f) and the proof of the Theorem is complete.
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