CYCLIC VECTORS FOR INVARIANT SUBSPACES IN SOME CLASSES OF ANALYTIC FUNCTIONS

BY

A. Matheson

1. Let ψ be a positive increasing function on $(0, \infty)$ such that

$$
\lim _{t \downarrow 0} \psi(t)=0, \psi(t)=\psi(1) \text { for } t>1 \quad \text { and } \quad \int_{0}^{1} \frac{1}{\psi(t)} d t<\infty .
$$

Define

$$
M_{\psi}=\left\{f \in H^{\infty} \left\lvert\, M_{\infty}\left(f^{\prime}, r\right)=o\left(\frac{\psi(1-r)}{1-r}\right)\right.\right\}
$$

and

$$
L_{\psi}=\left\{f \in H^{\infty} \left\lvert\, \int_{0}^{1} \frac{M_{\infty}\left(f^{\prime}, r\right)}{\psi(1-r)} d r<\infty\right.\right\}
$$

where H^{∞} is the space of bounded analytic functions on the unit disk, and

$$
M_{\infty}(g, r)=\sup _{|z|=r}|g(z)|=\sup _{|z| \leq r}|g(z)|
$$

Each of the spaces M_{ψ} and L_{ψ} becomes a Banach algebra under the norms

$$
\begin{gathered}
\|f\|_{M_{\psi}}=\|f\|_{\infty}+\sup _{0<r<1} \frac{(1-r) M_{\infty}\left(f^{\prime}, r\right)}{\psi(1-r)} \\
\|f\|_{L_{\psi}}=\|f\|_{\infty}+\int_{0}^{1} \frac{M_{\infty}\left(f^{\prime}, r\right)}{\psi(1-r)} d r
\end{gathered}
$$

respectively. Since $M_{\infty}\left(f^{\prime}, r\right)$ is increasing and $\psi(1-r)$ is decreasing, it is

[^0]easy to see that $L_{\psi} \subset M_{\psi}$. Indeed,
$$
(1-r) \frac{M_{\infty}\left(f^{\prime}, r\right)}{\psi(1-r)} \leq \int_{r}^{1} \frac{M_{\infty}\left(f^{\prime}, \rho\right)}{\psi(1-\rho)} d \rho
$$
and, for $f \in L_{\psi}$, the latter quantity tends to 0 as $r \rightarrow 1$. It follows immediately from the closed graph theorem that the inclusion is continuous.

In case the function ψ is sufficiently regular, it is possible to characterize the classes L_{ψ} and M_{ψ} in terms of moduli of continuity. The regularity condition is as follows: there are positive constants α, and β such that

$$
\delta \int_{\delta}^{\infty} \frac{\psi(t)}{t^{2}} d t \leq \alpha \psi(\delta)
$$

and

$$
\int_{0}^{\delta} \frac{\psi(t)}{t} d t \leq \beta \psi(\delta)
$$

for all $\delta>0$. If $\omega(f, \delta)$ denotes the modulus of continuity of f on ∂D and the regularity condition holds, then it is shown in [3] that $\omega(f, \delta)=O(\psi(\delta))$ if and only if

$$
M_{\infty}\left(f^{\prime}, r\right)=O\left(\frac{\psi(1-r)}{1-r}\right)
$$

The proof is easily modified to show that $f \in M_{\psi}$ if and only if $\omega(f, \delta)=$ $o(\psi(\delta))$. Also, using the techniques of [3], it can be shown that $f \in L_{\psi}$ if and only if

$$
\int_{0}^{1} \frac{\omega(f, t)}{t \psi(t)} d t<\infty
$$

In [3], this is proved for $\psi(t)=t^{\alpha}, 0<\alpha<1$, but essentially the same proof works for an arbitrary regular ψ. In the following, ψ will always be regular and continuous.

A final consequence of the regularity conditions is the existence of a number $s, 0<s<1$ such that $t^{s} \leq \psi(t)$ for all small t. This can be proved as follows. Define the function $\phi(t)$ by the equation

$$
\phi(t)=t \int_{t}^{\infty} \frac{\psi(s)}{s^{2}} d s
$$

Note that $\psi(t) \leq \phi(t) \leq \alpha \psi(t)$, and $\alpha>1$, since otherwise, differentiating

$$
\frac{\psi(t)}{t}=\int_{t}^{\infty} \frac{\psi(s)}{s^{2}} d s
$$

leads to $\psi^{\prime}(t)=0$. Differentiating the equation defining ϕ gives

$$
\phi^{\prime}(t)=\frac{\phi(t)}{t}-\frac{\psi(t)}{t}
$$

which leads to

$$
\frac{\phi^{\prime}}{\phi}=\frac{1}{t}\left(1-\frac{\psi}{\phi}\right)
$$

Since $\phi \leq \alpha \psi$, it follows that

$$
\frac{\phi^{\prime}}{\phi} \leq \frac{1}{t}\left(1-\frac{1}{\alpha}\right)
$$

If $s=(1-1 / \alpha)$ and $\gamma=\phi(1)$, then integrating from t to 1 gives

$$
\log \frac{\gamma}{\phi(t)} \leq-s \log t
$$

or

$$
\gamma t^{s} \leq \phi(t) \leq \alpha \psi(t)
$$

By choosing a slightly larger s the assertion follows.
2. A closed subspace I of L_{ψ} or M_{ψ} is invariant if $z I \subset I$. Since the polynomials are dense in L_{ψ} and M_{ψ}, the closed invariant subspaces coincide with the closed ideals. In either case the closed invariant subspaces can be described explicitly in terms of the Riesz factorization. Given I, let

$$
E=E(I)=\left\{e^{i \theta} \mid f\left(e^{i \theta}\right)=0 \text { for all } f \in I\right\}
$$

and let u be the greatest common divisor of the inner factors of the functions in I. Then a function f belongs to I if and only if f vanishes on E and f is divisible in H^{∞} by u. This was proved for $\psi(t)=t^{\alpha}$ and M_{ψ} in [1] and independently, by Shamoyan [4]. The same techniques apply for an arbitrary ψ and for the spaces L_{ψ}. This is also a consequence of the more general results of Shirokov [5], [6].

In each case the technique of proof involves the approximation of functions vanishing on E by functions vanishing on E to high order. To be
specific, let $d(z, E)$ denote the distance from z to E, and for $\alpha>0$ let

$$
J^{\alpha}(E)=\left\{f \in X| | f(z) \mid \leq C d^{\alpha}(z, E)\right\}
$$

where X is L_{ψ} or M_{ψ}. It turns out that if $I(E)$ denotes the closed invariant subspace of functions vanishing on E, then for each $\alpha>0, J^{\alpha}(E)$ is dense in $I(E)$. The known proofs of this are purely constructive (e.g. [2], [5, 6]).
At this point the usual procedure is to consider the linear functionals annihilating the given ideal and, after some preliminary analysis, to apply the Hahn-Banach theorem.
The purpose of this paper is to show that, when the inner factor u associated with the ideal I is trivial, then I is generated by any outer function f which vanishes precisely on $E(I)$. The proof below is purely constructive, and consequently the characterization $I=I(E(I))$ can be established without recourse of the Hahn-Banach theorem. This will be a consequence of the following theorem, in which X denotes L_{ψ} or M_{ψ}.

Theorem. If f is an outer function in X with boundary zero set E, and if $g \in J^{\alpha}(E)$ for sufficiently large α, then there is a sequence of functions $\left\{g_{n}{ }_{n=1}^{\infty}\right.$ such that
(i) $g_{n} f \in I(f)$ for each n and
(ii) $g_{n} f \rightarrow g$ in X.
3. The construction of the g_{n} proceeds as follows. Let $\left\{I_{n}\right\}_{n=1}^{\infty}$ denote the sequence of complementary intervals to E, and let $B_{n}=\bigcup_{k=n+1}^{\infty} I_{k}$, and $E_{n}=E \cap \bar{B}_{n}$. Let

$$
F_{n}(z)=\exp \left\{\frac{1}{2 \pi} \int_{B_{n}} \frac{e^{i \theta}+z}{e^{i \theta}-z} \log \left|f\left(e^{i \theta}\right)\right| d \theta\right\}
$$

Then F_{n} is outer, $\left|F_{n}\right|=|f|$ on B_{n} and $|F|=1$ on the complement of B_{n}. Define

$$
g_{n}=\frac{g}{f} F_{n},
$$

so that $g_{n} f=g F_{n}$. It is easy to see that $g_{n} f \rightarrow g$ uniformly on compact subsets of D. The theorem will be proved in three steps. First, it will be shown that $g_{n} f \in X$, and then that $g_{n} f \rightarrow g$ in X. Finally, it will be shown that $g_{n} f \in J(E)$.
Since $\left(g_{n} f\right)^{\prime}=F_{n} g^{\prime}+F_{n}^{\prime} g$, it will be necessary to estimate $F_{n}^{\prime} g$. The appropriate estimate will be provided in Lemma 2. A preliminary estimate is given in Lemma 1. If $f \in H^{\infty}$ and Γ is a measurable subset of the unit circle,
define

$$
f_{\Gamma}(z)=\exp \left\{\frac{1}{2 \pi} \int_{\Gamma} \frac{e^{i \theta}+z}{e^{i \theta}-z} \log \left|f\left(e^{i \theta}\right)\right| d \theta\right\}
$$

Lemma 1. Let Γ be a measurable set on the unit circle, let $f \in H^{\infty}$ with $\|f\|_{\infty}<1$ and let $0<\eta \leq \frac{1}{2}$. Then there is a constant C such that if $z=r e^{i t}$ satisfies $e^{i t} \notin \Gamma$ and $d\left(e^{i t}, \Gamma\right) \geq(1-r)^{\eta}$, then

$$
\log \left|f_{\Gamma}(z)\right| \geq C(1-r)^{1-2 \eta} \log |f(0)|
$$

Proof. First note that if $e^{i \theta} \in \Gamma$ and $|\theta-t| \leq \pi$, then

$$
\left|e^{i \theta}-r e^{i t}\right|^{2} \geq(1-r)^{2}+\frac{8}{\pi^{2}} r\left|e^{i \theta}-e^{i t}\right|^{2}
$$

It follows that

$$
\left|e^{i \theta}-r e^{i t}\right| \geq \frac{1}{4}\left|e^{i \theta}-e^{i t}\right|
$$

But

$$
\left|e^{i \theta}-e^{i t}\right| \geq d\left(e^{i t}, \Gamma\right) \geq(1-r)^{\eta}
$$

and it follows that

$$
\frac{1-r^{2}}{\left|e^{i \theta}-z\right|^{2}} \leq 16 \frac{1-r^{2}}{(1-r)^{2 \eta}} \leq 32(1-r)^{1-2 \eta}
$$

Hence

$$
\begin{aligned}
\log \left|f_{\Gamma}(z)\right| & =\frac{1}{2 \pi} \int_{1} \frac{1-r^{2}}{\left|e^{i \theta}-z\right|^{2}} \log \left|f\left(e^{i \theta}\right)\right| d \theta \\
& \geq C(1-r)^{1-2 \eta} \int_{\Gamma} \log \left|f\left(e^{i \theta}\right)\right| d \theta \\
& \geq C(1-r)^{1-2 \eta} \log |f(0)|
\end{aligned}
$$

Lemma 2. With g and F_{n} as above, if $X=M_{\psi}$ then

$$
\left|g(z) F_{n}^{\prime}(z)\right|=o\left(\frac{\psi(1-r)}{1-r}\right)
$$

while if $X=L_{\psi}$ then

$$
\int_{0}^{1} \frac{M_{\infty}\left(g F_{n}^{\prime}, r\right)}{\psi(1-r)} d r<\infty
$$

Proof. Let

$$
\begin{aligned}
& G_{1}=\left\{z=r e^{i t} \mid d\left(e^{i t}, B_{n}\right) \leq(1-r)^{1 / 2}\right\} \\
& G_{2}=\left\{z=r e^{i z} \mid d\left(e^{i t}, B_{n}\right)<(1-r)^{1 / 2}, e^{i t} \notin B_{n}\right\} \\
& G_{3}=\left\{z=r e^{i z} \mid d\left(e^{i t}, B_{n}\right)<(1-r)^{1 / 2}, e^{i t} \in B_{n}\right\}
\end{aligned}
$$

For $z=r e^{i t} \in G_{1}$, there exists $e^{i \theta} \in E_{n}$ such that

$$
\begin{aligned}
d^{2}\left(z, E_{n}\right) & =\left|z-e^{i \theta}\right|^{2} \\
& =(1-r)^{2}+r d^{2}\left(e^{i t}, E_{n}\right) \\
& \leq(1-r) .
\end{aligned}
$$

By Cauchy's estimate $\left|F_{n}^{\prime}(z)\right| \leq(1-r)^{-1}$, so, using the estimate $t^{s} \leq \psi(t)$,

$$
\left|g(z) F_{n}^{\prime}(z)\right| \leq(1-r)^{\alpha / 2-1}=o\left(\frac{\psi(1-r)}{1-r}\right)
$$

if α is large enough.
If $z=r e^{i t} \in G_{2}$ and $e^{i \theta} \notin B_{n}$, then

$$
\begin{aligned}
\left|e^{i \theta}-z\right|^{2} & =(1-r)^{2}+4 r \sin ^{2}\left(\frac{\theta-t}{2}\right) \\
& \geq(1-r)^{2}+r d^{2}\left(e^{i t}, E_{n}\right) \\
& \geq(1-r)^{2}+r(1-r) \\
& =1-r,
\end{aligned}
$$

and

$$
\begin{aligned}
d^{2}\left(z, E_{n}\right) & =(1-r)^{2}+r d^{2}\left(e^{i t}, E_{n}\right) \\
& \leq 2 d\left(e^{i t}, E_{n}\right)
\end{aligned}
$$

Hence

$$
\begin{aligned}
|g(z)| & \leq C d^{\alpha}\left(z, E_{n}\right) \\
& \leq C d^{\alpha / 2}\left(e^{i t}, E_{n}\right)
\end{aligned}
$$

Now if $a>0, b>0, a+b=2$, then

$$
\begin{aligned}
\left|e^{i \theta}-z\right|^{2} & =\left|e^{i \theta}-z\right|^{a}\left|e^{i \theta}-z\right|^{b} \\
& \geq(1-r)^{a / 2} d^{b}\left(e^{i t}, E_{n}\right),
\end{aligned}
$$

and this, combined with Lemma 1 , with $\eta=\frac{1}{2}$, leads to the estimate

$$
\left|F_{n}^{\prime}(z)\right| \leq C|\log | F(0)| |(1-r)^{-a / 2} d^{-b}\left(e^{i t}, E_{n}\right)
$$

so that

$$
\left|g(z) F_{n}^{\prime}(z)\right| \leq C d^{(\alpha / 2)-b}\left(e^{i t}, E_{n}\right)(1-r)^{-a / 2}
$$

Choosing α so that $\alpha / 2-b \geq 0$, this is

$$
\begin{aligned}
\left|g(z) F_{n}^{\prime}(z)\right| & \leq C(1-r)^{-a / 2} \\
& =o\left(\frac{\psi(1-r)}{1-r}\right)
\end{aligned}
$$

if a is small enough.
For $z \in G_{3}$,

$$
F_{n}^{\prime}(z)=F_{n}(z) F^{-1}(z) F^{\prime}(z)-F_{n}(z) \cdot \frac{1}{\pi} \int_{C B_{n}} \frac{e^{i \theta}}{\left(e^{i \theta}-z\right)^{2}} \log \left|F\left(e^{i \theta}\right)\right| d \theta
$$

The second term is bounded as in G_{2}. But Lemma 1 with $\eta=\frac{1}{2}$ yields

$$
\left|F_{n}(z) F^{-1}(z)\right| \leq c|F(0)|^{-2}
$$

so the first term is bounded by

$$
C\left|F^{\prime}(z)\right|=o\left(\frac{\psi(1-r)}{1-r}\right)
$$

That completes the proof.
Since $g \in X$ it follows from Lemma 2 and the fact that $F_{n} \in H^{\infty}$ that $g_{n} f=g F_{n} \in X$. Since $F_{n} \rightarrow 1$ uniformly on compact subsets of D; it follows
that $F_{n}^{\prime} \rightarrow 0$ uniformly on compact subsets, and so to show that $g_{n} f \rightarrow g$ in X it is enough to estimate

$$
\frac{M_{\infty}\left(\left(\left(g_{n}(1-f)\right)^{\prime}\right)\right.}{\psi(1-r)}
$$

for $R<r<1$, where R is close to 1 . But $g_{n} f-g=g\left(F_{n}-1\right)$, so the derivative is $g^{\prime}\left(F_{n}-1\right)+g F_{n}^{\prime}$. The first term is dominated by $2 M_{\infty}\left(g^{\prime}, r\right)$ while the estimate of Lemma 2 takes care of the second term. It follows that $g_{n} f \rightarrow f$ in X.
4. To show that $g_{n} f \in I(f)$ requires a bit more effort. Suppose that $I_{k}=\left(e^{i \alpha_{k}}, e^{i \beta_{k}}\right)$ for $k=1,2, \ldots, n$. For $\delta>0$ let

$$
\psi_{\delta}(z)=\frac{z-1}{z-1-\delta}
$$

Let

$$
\Phi_{\delta}(z)=\prod_{k=1}^{n} \psi_{\delta}^{2}\left(z e^{-i \alpha_{k}}\right) \psi_{\delta}^{2}\left(z e^{-i k \beta_{k}}\right)
$$

It is easy to show that $g_{n} f \Phi_{\delta} \rightarrow g_{n} f$ in X as $\delta \rightarrow 0$, so it will suffice to show that $g_{n} F \Phi_{\delta}=g f_{n} \Phi_{\delta} \in I(f)$. To this end, let

$$
D_{\varepsilon}=\bigcup_{k=1}^{n}\left[\alpha_{k}+\varepsilon, \beta_{k}-\varepsilon\right]
$$

for small ε, and let

$$
F_{\varepsilon}(z)=\exp \left(\frac{1}{2 \pi} \int_{D_{\varepsilon}} \frac{e^{i \theta}+z}{e^{i \theta}-z} \log \left|f\left(e^{i \theta}\right)\right| d \theta\right)
$$

and

$$
\Phi_{\delta, \varepsilon}(z)=\prod_{k=1}^{n} \psi^{2}\left(z e^{-i\left(\alpha_{k}+\varepsilon\right)}\right)\left(z e^{-i\left(\beta_{k}-\varepsilon\right)}\right)
$$

It follows from Lemma 2 that $\Phi_{\delta, \varepsilon} F_{\varepsilon}^{-1} \in X$, and so $g f \Phi_{\delta, \varepsilon} F_{\varepsilon}^{-1} \in I(f)$, and by standard arguments that $g f \Phi_{\delta, \varepsilon} F_{\varepsilon}^{-1} \rightarrow g F_{n} \Phi_{\delta}$ as $\varepsilon \rightarrow 0$. Hence $g F_{n}=g_{n} f$ $\in I(f)$ and the proof of the Theorem is complete.

References

1. A. Matheson, Approximation of analytic functions satisfying a Lipschitz condition, Michigan Math. J. vol. 25 (1978), 289-298.
2. \qquad "Closed ideals in spaces of analytic functions satisfying a Lipschitz condition" in Banach spaces of analytic functions, Lecture Notes in Mathematics, Vol. 604, Springer, Verlag, New York, 1977.
3. ___Mean growth and smoothness of analytic functions, Proc. Amer. Math. Soc., vol. 85 (1982), pp. 219-224.
4. F.A. Shamoyan, The structure of closed ideals in several algebras of analytic functions, Dokl. Akad. Nauk SSR, LV, vol. 4 (1972), pp. 207-210.
5. N.A. Shirikov, Analytic functions smooth up to the boundary, Lecture Notes in Mathematics, vol. 1312, Springer-Verlag, New York, 1988.
6. \qquad Closed ideals of algebras of $B_{p q}^{\alpha}$-type, Izv. Akad. Nauk SSSR Mat., vol. 46 (1982), pp. 1316-1333.

[^0]: Received June 13, 1990
 1980 Mathematics Subject Classification (1985 Revision). Primary 30D50; Secondary 46J20.

