ON PROPAGATION OF SINGULARITIES FOR FUCHSIAN QUASILINEAR DIFFERENTIAL OPERATORS

BY

JOSÉ RUIDIVAL DOS SANTOS FILHO

Introduction

A Meyer type flow, of a Tricomi gas for nozzle problem, is expressed in terms of solutions of the system

(0.1)
$$\begin{pmatrix} s \\ \theta \end{pmatrix}_{\psi} = \begin{pmatrix} 0 & 1 \\ s & 0 \end{pmatrix} \begin{pmatrix} s \\ \theta \end{pmatrix}_{\phi}$$

where s is the speed, θ is the inclination of the velocity, ψ is the stream function and ϕ is the velocity potential (see Bers, [1]). Therefore, for sufficiently smooth solutions, one could reduce the problem to the study of solutions of the equation

(0.2)
$$u_{xx} - uu_{yy} - (u_y)^2 = 0.$$

A generic propagation of singularity result was proved in Guillemin–Schaeffer [3] for a linearization of (0.2), (considering Taylor expansion of u and u_y). This result was completed for the *n*-dimensional case by Santos Filho [6].

Based in the theory of paradifferential operators of Bony [2], see also Meyer [5], we can prove a result which, in particular, states that for sufficiently smooth solutions of (0.2) singularities can not be isolated in the set $\{(x, y); u(x, y) = 0, \nabla u(x, y) \neq 0\}$. The paper is organized as follows: In §1 we state the theorem and recall the main definitions and basic theorems of Bony's theory. In §2, we prove the main result. Finally, in §3, we state a generalization of our theorem.

1991 Mathematics Subject Classification. Primary 35S05, 35M05; Secondary 76N15, 35G20.

 $\textcircled{\sc 0}$ 1992 by the Board of Trustees of the University of Illinois Manufactured in the United States of America

Received December 7, 1990.

1. Statement of the theorem

Our equation has the form

(1.1)
$$u_{x_1x_1} - uu_{x_2x_2} - (u_{x_2})^2 = 0.$$

where $(x_1, x_2) \in \mathbf{R}^2$ and u is real valued. Let $s \in \mathbf{R}$ and $0 < \delta < 1$ we assume

$$(H1) s > 2 + 2\delta.$$

Let $u \in H^{s-\delta}(\mathbb{R}^n)$. We assume the following:

(H2)
$$H_p(x^0,\xi^0) = \theta Z(x^0,\xi^0) \text{ with } \theta \neq 0 \text{ and } |\xi^0| = 1,$$

where

$$H_p(x^0,\xi^0)\left(=\sum\left(\frac{\partial p}{\partial\xi_i}\frac{\partial}{\partial x_i}-\frac{\partial p}{\partial x_i}\frac{\partial}{\partial\xi_i}\right)\right)$$

is the Hamiltonian vector field of

$$p(x,\xi) = \xi_1^2 - u(x)\xi_2^2$$

and $Z(x,\xi) = \sum \xi_i \partial_{\xi_i}$ the radial vector field, at (x^0,ξ^0) .

We also assume

(H3)
$$u \in H^s_{(x,\xi)} \cap H^{s-\delta}(\mathbf{R}^n)$$
 if $(x,t\xi) \neq (x^0,\xi^0), \forall t > 0$.

and

(H4)
$$\theta\left(s-\frac{1}{2}\right)+2\partial_{x_2}u(x^0)>0$$

Here $H^t(\mathbf{R}^n) = H^t$ is the usual Sobolev space and $H^t_{(x,\xi)}$ is its microlocal version (see Hörmander [4]). From Bony's main result, see [2], we can consider that $(x^0, \xi^0) = (0, (0, 1))$ and hence we prove:

THEOREM. Let u satisfy (1.1). Under the hypothesis (H1) to (H4) we have $u \in H^{s}(\mathbb{R}^{n})$.

We now recall some facts regarding the theory of Bony. Let $\phi \in C_0^{\infty}(\mathbb{R}^n)$ such that is supported in the ball centered at the origin and radius 1 and which is equal to one in the ball with same center and radius 1/2. Taking $\psi(\xi) = \phi(\xi 2^{-1}) - \phi(\xi)$. For $f \in S(\mathbb{R}^n)$ (the Schwartz space), consider

the Littlewood-Paley decomposition of f, $f = S_0(f) + \sum \Delta_k(f)$, where $(S_0(f))^{\wedge} = \phi f^{\wedge}$ and $(\Delta_k(f))^{\wedge} = \psi(\xi 2^{-k})f^{\wedge}$; here $^{\wedge}$ means Fourier transform. For $f \in C^r$, r > 0, the sum converges uniformly to f. Let $f \in H^t(\mathbb{R}^n)$, t > n/2. Define the paraproduct

$$\Pi(f,g) = \sum S_{k-6}(f)\Delta_k(g), \qquad g \in S(\mathbf{R}^n);$$

here $S_j(f) = S_0(f) + \sum_{l=1}^j \Delta_l(f)$, $j \ge 1$. We summarize results of Bony [2] and Meyer [5], see Theorems 2.1, 2.3, 2.4 and 2.5 of [2] and Theorems 3 and 5 of [5].

THEOREM 1.1. Let $f, g \in H^t$, t > n/2 and $h \in H^s$.

- (a) $\prod(f, \cdot)$ can be extended to a continuous operator from H^r into H^r .
- (b) $E = \prod(f, \cdot) \circ \prod(g, \cdot) \prod(ab, \cdot)$ is a (t n/2)-smoothing operator, that is, it maps continuously H^r into $H^{r+(t-n/2)}$.
- (c) The adjoint $(\prod(f, \cdot))^*$ of $\prod(f, \cdot)$ applies H^r into H^r and $\prod(f, \cdot) (\prod(f, \cdot))^*$ is a (t n/2)-smoothing.
- (d) If s > n/2 then

$$fh = \prod(f,h) + \prod(h,f) + r$$

where $|r|_{s+t-n/2-\varepsilon} \leq C|f|_t|h|_s$. If $-t + n/2 < s \leq n/2$, then

$$fg = \prod(f,g) + r$$

where $|r|_{s+t-t/2-\varepsilon} \leq C|f|_t|h|_s$.

DEFINITION. We say $\sigma \in B_r^m$ if $\sigma \in S_{1,1}^m$,

$$\left\|\partial_{\xi}^{\alpha}\sigma(x,\xi)\right\|_{C'} \geq C_{\alpha}(1+|\xi|)^{m-|\alpha|}$$

and for each ξ , the support of $\sigma^{\wedge}(\cdot,\xi)$ is contained in $\{\eta; |\eta| < |\xi|/10\}$. Here $S_{\rho,\delta}^m$ is Hörmander's class of symbols; see [4].

Examples. (1) The symbol of $\prod(a, \cdot)$ belongs to B_r^0 , where r = s - n/2 > 0, if $a \in H^s(\mathbb{R}^n)$. (2) $\sigma(\xi) \in B_r^m$ for each $\sigma \in S_{1,0}^m$ and r > 0.

THEOREM 1.2. (a) Let F(x, y) be a C^{∞} function, where $y = (y_0, \ldots, y_{\alpha}, \ldots) |\alpha| \le (m - 1)$, such that F(x, 0) = 0. Then

$$F(x,U(x)) = \sum_{|\beta|=0}^{m-1} \prod((\partial_{\gamma\beta}F)(x,U(x)),u) + E_{\gamma}$$

where $U(x) = (u(x), ..., \partial^{\beta} u(x), ...)$ with $u \in H^{t}$, t - (m - 1) > n/2 and $E \in H^{(2t-2(m-1)-n/2)}$.

(b) If $\sigma \in S_{1,1}^m$ then for s > 0 $\sigma(x, D)$ can be extended to a continuous operator from H^{s+m} into H^s .

(c) Let r > 0, $\sigma \in B_r^{m_1}$ and $\tau \in S_{1,1}^{m_2}$ then

$$\tau(x,D)\circ\sigma(x,D)=\omega(x,D)+\rho(x,D)$$

where

$$\omega(x,\xi) = \sum_{|\alpha| \leq [r]} \frac{1}{i^{|\alpha|}} \frac{l}{\alpha!} \partial_{\xi}^{\alpha} \tau(x,\xi) \partial_{x}^{\alpha} \sigma(x,\xi) \quad and \quad \rho(x,\xi) \in S_{1,1}^{m_{1}+m_{2}-r}.$$

Remark. Theorem 1.2 implies the classical Schauder's Lemma, which says that $H^{t}(\mathbf{R}^{n})$, t > n/2 is invariant under non-linear transformations.

2. Proof of the theorem

Consider

(2.1)
$$D_{x_1}^2 u - u D_{x_2}^2 u + (u_{x_2})^2 = 0.$$

Multiplying this equation by χ , where $\chi \in C_0^{\infty}$, $\chi = 1$ if $|x| \le \varepsilon/4$, $\chi = 0$ if $|x| \ge \varepsilon$, for $\varepsilon > 0$ small, we obtain

$$D_{x_1}^2(\chi u) - D_{x_2}^2(\chi u) + \chi((\chi u)_{x_2})^2 = f$$

where $f \in H^{s-1}(\mathbb{R}^2)$ from (H1) and (H3), by Schauder's Lemma.

We write the equation above in the form

$$(2.1)' \qquad \qquad P(\chi u) + Q(\chi u) = f$$

where $P = D_{x_1}^2 - uD_{x_2}^2$ and $Qv = \chi(\partial_{x_2}(v))^2$. We can assume $r = s - \delta - 1$ is a non-integer positive real number. Let $\mathscr{C} \subset S_{1,0}^{s-(m-1)/2-\lambda}(\mathbb{R}^{2n}), \ \lambda > \frac{1}{2} + \delta$ be a bounded subset of

Let $\mathscr{C} \subset S_{1,0}^{s-(m-1)/2-\lambda}(\mathbb{R}^{2n})$, $\lambda > \frac{1}{2} + \delta$ be a bounded subset of $S^{s-1/2}(\mathbb{R}^{2n})$, which consists of real valued symbols. For each $c \in \mathscr{C}$ we put C = c(x, D) and hence by (2.1)' we get

(2.2)
$$\Im m(Cf, Cu) = \Im m(C(Pu - \Pi, Cu) + \Im m(\Pi(Cu), Cu) + \Im m([C, \Pi]u, Cu) + \Im m(C(Q(u)), Cu)$$

494

here $\prod = D_{x_1}^2 - \prod(u, \cdot) \circ D_{x_2}^2$. For convenience, we write the right hand side of (2.2) as, I + II + III + IV, respectively.

We will analyse the terms I, II, III and IV of the right hand side of (2.2), keeping the non-absorbable terms (in a sense we will make precise along the lines of this proof). By a linear change of variables, we assume $(x^0, \xi^0) = (0, e_n), e_n = (0, \dots, 0, 1)$, and by replacing p by -p (if necessary) we assume $\theta > 0$.

Step 1. Analysis of term I. We have

$$(P-\Pi)(\chi u) = -(M_u - \Pi(u, \cdot))D_{x_2}^2(\chi u),$$

where M_u is the multiplication by u. From Theorem 1.1(d) we have

$$(-M_u + \prod(u, \cdot))D_{x,\varepsilon}^2(\chi u) \in H^{2r-1-\varepsilon}, \quad \forall \varepsilon > 0.$$

From this we know that there exist $K_{1,0}$ and $K_{1,1}$ positive constants, uniformly on \mathcal{C} , such that for all $\mu > 0$,

(2.3)
$$|\mathbf{I}| \leq \mu K_{1,1} \left\| (\mathbf{I} - \Delta)^{1/4} C(\chi u) \right\|_{L_2}^2 + \frac{1}{\mu} K_{1,0}$$

where $(I - \Delta)^{1/4}$ is the pseudo-differential operator whose symbol is $(1 + |\xi|)^{1/4}$.

Step 2. Analysis of term II. We have

$$\Pi - \Pi^* = \Pi(u, \cdot) \circ D_{x_2}^2 - D_{x_2}^2 \circ (\Pi(u, \cdot))^*,$$

and from Theorem 1.1(c), $-\prod(\overline{u}, \cdot) + (\prod(u, \cdot))^* = R_{2,1}$, where $R_{2,1}$ is an *r*-smoothing; and since *u* is real-valued, we have $\prod - (\prod)^* = [\prod(u, \cdot), D_{x_2}^2] - D_{x_2}^2 \cdot R_{2,1}$. In the other hand, from Theorem 1.2,

$$\left[\Pi(u, \cdot), D_{x_2}^2\right] = \omega(x, D) + R_{2,2}$$

where

$$\omega(x,\xi) = -\sum_{1 \le |\alpha| \le [r]} (i)^{-|\alpha|} \frac{1}{\alpha!} \alpha_{\xi}^{\alpha} \xi_{2}^{2} \partial_{x}^{\alpha} (\sigma(\pi(u,\cdot)))$$

and $\sigma(R_{2,2}) \in S_{1,1}^{2-r}$. Here [r] is the greatest integer less or equal to r.

From Theorem 1.1 and Theorem 1.2 it can be shown that $Im(A \circ C(\chi u), C(\chi u))$ satisfies the same type of estimate in (2.3), where A is

taken to be $D_{x_2}^2 \circ R_{2,1}$ or $R_{2,2}$ or

$$\sum_{[r]\geq |\alpha|>1}\frac{1}{\alpha!}\partial_{\xi}^{\alpha}\xi_{2}^{2}\sigma(\pi(D^{\alpha}u,\cdot)))(x,D)$$

or

$$\left(\sum_{|\alpha|=1}\frac{1}{\alpha!}\partial_{\xi}^{\alpha}\xi_{2}^{2}(M_{D^{\alpha}u(x)}-M_{D^{\alpha}u(0)})\right)(D).$$

Which finally gives this result:

There exist $K_{2,0}$ and $K_{2,1}$ positive constants, uniformly on \mathcal{C} , such that for all $\mu > 0$, we have

(2.4)
$$\left| II - D_{x_2} u(0) (D_{x_2} \circ C(\chi u), C(\chi u)) \right|$$

 $\leq K_{2,1} \mu \left\| (I - \Delta)^{1/4} C(\chi u) \right\|_{L^2}^2 + K_{2,0} \frac{1}{\mu}.$

Step 3. Analysis of the term III. By assuming $\sigma(C) \in B_r^m$ we have

$$\sigma([C,\pi]) = \sum_{|\alpha|=1} \left(\frac{1}{\alpha!} \partial_{\xi}^{\alpha} c \sigma(\pi(D^{\alpha}u,\cdot)) \xi_{2}^{2} - \frac{1}{i^{|\alpha|}} \frac{1}{\alpha!} \partial_{\xi}^{\alpha} (\xi_{2}^{2} \sigma(\pi(u,\cdot))) \partial_{x}^{\alpha} c(x,\xi) \right) + \sigma(R_{3,1})$$

where $\sigma(R_{3,1}) \in S^{s+1/2-\tilde{r}+1-\lambda}$, and $\tilde{r} = \text{Min}\{r, 2\}$. Hence as before:

There exist $K_{3,0}$ and $K_{3,1}$ positive constants, uniformly on \mathcal{C} , such that for all $\mu > 0$, we have

(2.5)
$$|\operatorname{Im}([C,\pi](\chi u), C(\chi u)) + \operatorname{Re}(H_c(\xi_1^2 - u\xi_2^2)(0,D)(\chi u), C(\chi u))| \\ \leq \mu K_{3,1} ||(I-\Delta)^{1/4}(Cu)||_{L^2}^2 + \frac{1}{\mu} K_{3,0}.$$

Step 4. Analysis of the term IV. Using Taylor's formula, by Schauder's Lemma since (H1) and (H3) hold, we have

$$\chi(\partial_{x_2}(\chi u))^2 = \chi(\partial_{x_2}u(0))^2 + \chi^2(\partial_{x_2}u(0))(\partial_{x_2}(\chi u) - (\partial_{x_2}u)(0)) + \tilde{q}(\partial_{x_2}(\chi u(\chi)))$$

where $\tilde{q}(\partial_{x_2}(u(0))) = 0$ and $\nabla \tilde{q}(\partial_{x_2}(u(0))) = 0$. Therefore, as before:

496

There exist $K_{4,0}$ and $K_{4,1}$ positive constants, uniformly on \mathcal{C} , such that for all $\mu > 0$, we have

(2.6)
$$\left| \operatorname{Im}(C(Q(\chi u)), C(\chi u)) - \operatorname{Im}(C(\chi 2(\partial_{x_2} u)(0)\partial x_2(\chi u)), C(\chi u)) \right|$$

 $\leq \mu K_{4,1} \| (I - \Delta)^{1/4} (Cu) \|_{L^2}^2 + \frac{1}{\mu} K_{4,0}.$

Step 5. End of the proof. Using (2.3), (2.4), (2.5) and (2.6), and since $Im(Cf, C(\chi u))$ is also absorbable (in the sense the above inequality is true for $|Im(Cf, C(\chi u))|$), we have:

There exist $K_{5,0}$ and $K_{5,1}$ positive constants, uniformly on \mathcal{C} , such that for all $\mu > 0$,

(2.7)
$$\begin{aligned} \left| \frac{1}{2} \operatorname{Re} \left(\left(2\partial_{x_2} u(0) D_{x_2} + \chi 2(\partial_{x_2} u)(0) D_{x_2} \right) C(\chi u), Cu \right) \right. \\ \left. + \frac{1}{2} \operatorname{Re} H_c \left(\xi_1^2 + u(x) \xi_2^2 \right) (0, D) \right), Cu \right) \right| \\ \leq \mu K_{5,1} \left\| \left(I - \Delta \right)^{1/4} (Cu) \right\|_{L^2}^2 + \frac{1}{\mu} K_{5,0}. \end{aligned}$$

Observe that the first term of the right hand side of (2.7) can be expressed in an invariant form, namely, for the general case it is equal to $\operatorname{Re}((\sigma_{sub}(P_L)C(\chi u), Cu))$, where P_L is the linearization of P at u, $\sigma(P_L) = \sum \partial_{(\partial^{\alpha}u)}(Pu)\xi^{\alpha}$ and $\sigma_{sub}(P_L)$ is the subprincipal symbol of P_L (see [4]). This will give us

(2.8)
$$\left|\frac{1}{2}\operatorname{Re}\left(H_{\sigma(P)}c^{2}(0,D)(\chi u),\chi u\right) + \operatorname{Re}\left(\sigma_{sub}(P_{L})c^{2}(0,D)(\chi u),\chi u\right)\right|$$

 $\leq \mu K_{1}\left\|\left(I-\Delta\right)^{1/4}(Cu)\right\|_{L^{2}}^{2} + \frac{1}{\mu}K_{0},$

for positive constants K_0 and K_1 and for all $\mu > 0$, uniformly on \mathscr{C} . Here $\sigma_{sub}(P_L)(0,\xi)$ is in this case equal to $2\partial_{x_2}u(0)\xi_2$.

At this point, we take a explicit class \mathscr{E} of symbols, which is taken in such a way we can apply the sharp Garding inequality for $\operatorname{Re}(Su, u)$ where $\sigma(S) = \frac{1}{2}H_{\sigma(P)}c^2 + \sigma_{sub}(P_L)c^2)(0, \xi)$. Namely we take

$$c_{\gamma}(x,\xi) = (\chi(x))^{2} (\psi(\xi))^{2} \xi_{2}^{(s-1)/2} (1 + \gamma \xi_{2}^{2})^{-\lambda/2}$$

where $0 < \gamma < 1$ and $\psi \in S_{1,0}^0$, homogeneous of degree 0 for $|\xi| \ge \frac{1}{2}$, $\phi(\xi) = 1$ for $|\xi_1| \le \frac{1}{2}\xi_2$ and $\psi(\xi) = 0$ for $|\xi_2| \ge \xi_2$. So

$$\frac{1}{2}2H_{\sigma P}(c_{\gamma}^{2})(0,\xi_{n}) \geq (s-\frac{1}{2}-\gamma\lambda)\theta\xi_{2}c_{\gamma}^{2},$$

where θ is given in (H2). So by taking γ small the proof of the theorem is finished from (H4) and Garding inequality, see [4].

3. Remarks

A generalization of our theorem can be expressed in the following form: Let

(3.1)
$$\sum_{|\alpha|=m} A_{\alpha}(x, u(x), \dots, \partial^{\beta} u(x), \dots)_{|\beta| \leq p_{\alpha}} \partial^{\alpha} u + q(x; u(x), \dots, \partial^{\beta} u(x), \dots)_{|\beta| \leq p_{m-1}} = 0.$$

where $p_{m-1}, p_{\alpha} \le m-1$ $(p_{\alpha} = -\infty$ (resp. $p_{m-1})$ if A_{α} (resp. q) depends only on $x \in \mathbf{R}^n$), $A_{\alpha} = A_{\alpha}(x, y)$ and $q = q(x, \tilde{y})$ are C^{∞} real-valued defined in an appropriate \mathbf{R}^{N+m} and u is a real function defined in \mathbf{R}^n .

Let $s \in \mathbf{R}$ and $0 < \delta < 1$ and assume

(H1)
(a)
$$s > p_{m-1} + \frac{n}{2} + \delta$$

(b) $s > \delta + \frac{\operatorname{Max} p(\alpha) + m}{2} + \frac{n}{4}$
(c) $s > \frac{n}{2} + \operatorname{Max} p(\alpha) + 1 + 2\delta$

Let $u \in H^{s-\delta}(\mathbf{R}^n)$. We assume

(H2)
$$H_p(x^0,\xi^0) = \theta Z(x^0,\xi^0)$$
 with $\theta \neq 0$ and $|\xi^0| = 1$,

where

$$H_p(x^0,\xi^0) \quad \left(= \sum \left(\frac{\partial p}{\partial \xi_i}\frac{\partial}{\partial x_i} - \frac{\partial p}{\partial x_i}\frac{\partial}{\partial \xi_i}\right)\right)$$

is the Hamiltonian vector field of $p(x,\xi) = \sum_{|\alpha|=m} A_{\alpha}(x,u(x),\ldots)\xi^{\alpha}$ and $Z(x,\xi) = \sum \xi_i \partial_{\xi_i}$ the radial vector field, at (x^0,ξ^0) . Observe that from (H1), $A_{\alpha}(x,u(x),\ldots) \in C^{1+\delta}(\mathbf{R}^n)$, so H_p is a well defined Hölder continuous vector field.

Also we assume

(H3)
$$u \in H^s_{(x,\xi)} \cap H^{s-\delta}(\mathbf{R}^n)$$
 if $(x,t\xi) \neq (x^0,\xi^0), \forall t > 0$.

and

(H4)
$$\theta\left(s-\frac{m-1}{2}\right)+2\sigma_{sub}(x_0,\xi_0)>0$$

where

$$\sigma_{sub}(x_0,\xi_0) = \operatorname{Re}\left(\sum_{|\beta|=m-1} (\partial_{y_{\beta}}q)(x_0,u(x_0),\dots)\xi_0^{\beta}\right) \\ + \frac{1}{2}\sum_{|\beta|=1} (\partial_x^{\beta}A_{\alpha})(x_0,u(x_0),\dots)(\partial_{\xi}^{\beta}\xi^{\alpha})(\xi_0).$$

Using the same method one can prove:

THEOREM. Let u satisfy (1.1). Under the hypothesis (H1) to (H4) we have $u \in H^{s}(\mathbb{R}^{n})$.

It should be said that even for the linear case this theorem says something new. In particular, it says that the solutions with prescribed singularities in a ray constructed in [3] and [6] cannot be arbitrarily smooth. In fact, it says that the solutions constructed therein are sharp regarding the regularity aspect.

References

- 1. L. BERS, Mathematical aspects of subsonic and transonic gas dynamics, Wiley, New York, 1958.
- 2. J.M. BONY, Calcul symbolique et propagation des singularités pour des équations aux dérivés partielles non linéaires, Ann. Sci. École Norm. Sup. (4) t.14 (1981), pp. 209–246.
- 3. V. GUILLEMIN and D. SCHAEFFER, On a certain class of Fuchsian partial differential equations, Duke Math. J., vol. 44 (1977), pp. 157–199.
- 4. L. HÖRMANDER, On the existence and the regularity of solutions of linear pseudo-differential equations, Enseign. Math., vol. 17 (1971), pp. 99–163.
- 5. Y. MEYER, Remarques sur un théorème de J.M. Bony, Supplemento Rend. Circ. Mat. Palermo, Serie II, n° 1 (1981), pp. 1–20.
- 6. JOSÉ RUIDIVAL DOS SANTOS FILHO, Propagation of singularities through radial points, Comm. Partial Differential Equations, vol. 6 (1981), pp. 399–435.

UNIVERSIDADE FEDERAL DE PERNAMBUCO RECIFE, BRAZIL