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ON PROPAGATION OF SINGULARITIES FOR FUCHSIAN
QUASILINEAR DIFFERENTIAL OPERATORS

BY

Jos RUIDIVAL DOS SANTOS FILHO

Introduction

A Meyer type flow, of a Tricomi gas for nozzle problem, is expressed in
terms of solutions of the system

where s is the speed, 0 is the inclination of the velocity, 4’ is the stream
function and 4’ is the velocity potential (see Bers, [1]). Therefore, for
sufficiently smooth solutions, one could reduce the problem to the study of
solutions of the equation

(0.2) Uxx uu,r (uy)2 0.

A generic propagation of singularity result was proved in Guillemin-
Schaeffe [3] for a linearization of (0.2), (considering Taylor expansion of u
and uy). This result was completed for the n-dimensional case by Santos
Filho [6].
Based in the theory of paradifferential operators of Bony [2], see also

Meyer [5], we can prove a result which, in particular, states that for Suffi-
ciently smooth solutions of (0.2) singularities can not be isolated in the set
{(x, y); u(x, y) O, Vu(x, y) 4: 0}. The paper is organized as follows: In 1
we state the theorem and recall the main definitions and basic theorems of
Bony’s theory. In 2, we prove the main result. Finally, in 3, we state a
generalization of our theorem.
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1. Statement of the theorem

Our equation has the form

(1.1) UX1X1 UUx2x2 (Ux2)2 O.

where (Xl, X2) R2 and u is real valued.
Let sRand0<6 < lweassume

(H1) s > 2 + 23.

Let u HS-(Rn). We assume the following:

(H2) Hp(X o, o) OZ(xo, 0) with 0 4:0 and I1 1,

where

( Op 0
Hp(x,) E OiOXi

is the Hamiltonian vector field of

p(x,

and Z(x, sc) Y’iOi
We also assume

the radial vector field, at (x, so).

(H3) u H fqHS-8(Rn) if(x tsc) 4: (x sc) Vt > 0(x,)

and

(H4) 0O(s--) + 20x2U(x ) >0

Here Ht(Rn) --H is the usual Sobolev space and Hx,e is its microlocal
version (see H6rmander [4]). From Bony’s main result, see [2], we can
consider that (x, sc) (0, (0, 1)) and hence we prove:

THEOREM.
u HS(Rn).

Let u satisfy (1.1). Under the hypothesis (H1) to (H4) we have

We now recall some facts regarding the theory of Bony. Let b C(Rn)
such that is supported in the ball centered at the origin and radius 1 and
which is equal to one in the ball with same center and radius 1/2. Taking
qt() =b(2-1) b(). For f S(Rn) (the Schwartz space), consider
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the Littlewood-Paley decomposition of f, f= So(f) + EAk(f), where
(S0(f)) ^= bf ^ and (Ae(f)) ^= q(sc2-)f ^; here ^ means Fourier trans-
form. For f Cr, r > 0, the sum converges uniformly to f. Let f Ht(Rn),
t > n/2. Define the paraproduct

H(f, g) ESk_6(f)Ak(g), g S(Rn);

here S(f) So(f) + E]=lA/(f), j >_ 1. We summarize results of Bony [2]
and Meyer [5], see Theorems 2.1, 2.3, 2.4 and 2.5 of [2] and Theorems 3 and 5
of [5].

THEOREM 1.1.
(a)
(b)

(c)

(d)

Let f, g Ht, t > n/2 and h Hs.
I-I(f, ) can be extended to a continuous operator from H into Hr.
E H(f," )o H(g," ) Fl(ab," ) is a (t n/2)-smoothing operator,
that is, it maps continuously n into nr+(t-n/2).
The adjoint (I-l(f," ))* of Fl(f, ) applies n into H and 1-I(f," )
(I-I( f, ))* is a (t n/2)-smoothing.
If s > n/2 then

fh 1-I(f,h) + 1--I(h,f) + r

where Irls+t-n/2- < clfltlhls.
If -t + n/2 < s < n/2, then

fg H(f, g) + r

where Irl+t-t/2- < clfltlhls.

DEFINITION. We say o- Br if o" Sm1,1

IIogtr(x,)llcr > C,(1 + I:1) m-lal

and for each s, the support of tr ^(., s) is contained in
Here So, is H6rmander’s class of symbols; see [4].

In < I1/10}.

Examples. (1) The symbol of Fl(a," ) belongs to Br, where r s-

n/2 > 0, if a H(Rn).
(2) tr(s)Brm for eachtrSm and r>0.1,0

THEOREM 1.2. (a) Let F(x, y) be a C function,
(Yo,..., Y,...)lal < (m 1), such that F(x, O) O. Then

F(x,U(x))
m-1

E lq((aeF)(x, U(x)), u) + E,
1/31 =o

where y
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where U(x) (u(x),... ,Otu(x),...) with u H, (m 1) > n/2 and
E H(2t- 2(m 1)-n/2).

(b) If r S then for s > 0 r(x, D) can be extended to a continuous1,1
operator from Hs+m into Hs.

(c) Let r > O, r Bml and r Sam, then

r( x, D) o’( x, D) oo( x, D) + p( x, D)

where

to( x, ) , 1 10gr(x )Otr( x ) and
lal<_[r]ilal a[ p( X, ) Slm, +m2-r

Remark. Theorem 1.2 implies the classical Schauder’s Lemma, which says
that nt(Rn), t > n/2 is invariant under non-linear transformations.

2. Proof of the theorem

Consider

(2.1) )2 0.O2x,U-UO2x _U+ Ux 

Multiplying this equation by X, where X C, X 1 if Ixl e/4, x 0 if
Ix >_ e, for e > 0 small, we obtain

D2 D2 )2x,(Xu) (xu) + x((xu),. I

where f Hs- 1(R2) from (H1) and (H3), by Schauder’s Lemma.
We write the equation above in the form

(2.1)’ P( Xu) + Q(xu) f

where P O2x, uD22 and Qv X(Ox2(U))2. We can assume r s 6 1 is
a non-integer positive real number.

Ss-(m-1)/2-A(Rzn), A > 5 + a be a bounded subset ofLet g’ C 1,0
SS-1/2(R2n), which consists of real valued symbols. For each c we put
C c(x, D) and hence by (2.1)’ we get

(2.2) m(Cf Cu) m(C(Pu 1-[, Cu) + m(rl(Cu), Cu)
+ m([C,l-llu,Cu) + m(C(Q(u)),Cu)
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here 1--I 0 2 1-I(u )o Dx22. For convenience, we write the right hand side
of (2.2)as, I + II + III + IV, respectively.
We will analyse the terms I, II, III and IV of the right hand side of (2.2),

keeping the non-absorbable terms (in a sense we will make precise along the
lines of this proof). By a linear change of variables, we assume (x, sc)
(0, en), en (0,..., 0, 1), and by replacing p by -p (if necessary) we assume
0>0.

Step 1. Analysis of term I. We have

(P- I-I)(xu) -(M II(u, "))D22(Xu),

where M, is the multiplication by u. From Theorem 1.1(d)we have

(-M - 1-I(bl, "))O2xz(Xbl) H2r-l-e, Ve>0.

From this we know that there exist K1, 0

uniformly on , such that for all > 0,
and K1,1 positive constants,

(2.3) [I[ _</XKl, lll(I- A)I/4C(xu)I[2_L2-[- -K,, o

where (I A)1/4 is the pseudo-differential operator whose symbol is (1 +
Isc])1/4.

Step 2. Analysis of term H. We have

and from Theorem 1.1(c), -FI(," ) + (Fl(u,’))* R2,1, where R2,1 is an
r-smoothing; and since u is real-valued, we have H (1-I)* [1-I(u ), Dx

D.Ra, . In the other hand, from Theorem 1.2,

[1-I(u, "), D22] oo(x,O) + R2, 2

where

E
l<[a] <[r]

(i)-I1 1 2 ( u, .11

and o-(R 2 2 ) S 2-r Here [r] is the greatest integer less or equal to r.1,1
From Theorem 1.1 and Theorem 1.2 it can be shown that

Im(A C(xu), C(xu)) satisfies the same type of estimate in (2.3), where A is
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taken to be D2 R2, or R2, 2 or

E -..O?,zo" ( "n’( D’u, .1 ) ) ( x, D)
[r]>_[a[>l

or

E -. a2 (MD"u(x) MDu(O)) (D).

Which finally gives this result:
There exist K2, 0 and K2,1 positive constants, uniformly on d’, such that

for all z > 0, we have

(2.4) n Dx=u(O)(DxoC(xu), C(xu))l
_< K,l]l(I A)I/4C(xu) 112L + K,o -’1

Step 3. Analysis of the term III. By assuming or(C) Br we have

([c, ])
1
cr( v’(D"u, .))E .,

)a!O(’(rr(u’ ")))3c(x,) + o’(R,)

where o’(R3,1) Ss+l/2-f+l-h, and Min{r, 2}. Hence as before:
There exist K3, 0 and K3,1 positive constants, uniformly on g, such that

for all/x > 0, we have

(2.5) Im([C, zr ](Xu), C(Xu))

+Re(H(I u#)(O,D)(xu),C(xu))
</xK3 111(I- A)I/4(Cu)1[2-[- ---1 g3, 0./x

Step 4. Analysis of the term IV. Using Taylor’s formula, by Schauder’s
Lemma since (H1) and (H3) hold, we have

((ax2(u))
2
--x(x2u(O))

2

+ x2(a2u(O))(a.2(xu) (a2u)(O)) + #(a.:(xu(x)))
where 4(Ox2(u(O))) 0 and V4(Ox2(u(O))) 0. Therefore, as before:
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There exist K4, 0 and K4,1 positive constants, uniformly on d’, such that
for all/z > 0, we have

(2.6) IIm(C(Q(xu)),C(xu)) -Im(C(x2(3x:u)(O)Oxe(xu)),C(xu))
_</zK4,[](i A)I/4(Cu)[] 2L’-[- 1 K4,0.

Step 5. End of the proof. Using (2.3), (2.4), (2.5) and (2.6), and since
Im(Cf, C(xu) is also absorbable (in the sense the above inequality is true for
[Im(Cf, C(xu))[), we have:
There exist Ks, 0 and Ks, positive constants, uniformly on d’, such that

for all z > 0,

(2.7) 11/2 Re((2Ox=u(O)Dx= + X2(Ox=u)(O)Dx=)C(xu), Cu)
+1/2 Re H(:12 + u(x))(O,D)),Cu)l

_</zKs, 111(I A) 1/4(Cu)II 2L+ -1K5,0.
Observe that the first term of the right hand side of (2.7) can be expressed

in an invariant form, namely, for the general case it is equal to
Re((O’sub(PL)C(xu), Cu), where PL is the linearization of P at u, cr(PL)
.,O(o,u)(Pu) and O’sub(PL) is the subprincipal symbol of PL (see [4]). This
will give us

(2.8) Re(H,(p)c2(O,D)(xu) Xu) + Re(osub(PL)c2(O,D)(xu), Xu)[
< .K,I[(I A)I/4(Cu){I 1KL221- -’ O

for positive constants K0 and K and for all /z > 0, uniformly on va. Here
%ub(PL)(O, ) is in this case equal to 20x2u(O)2.
At this point, we take a explicit class of symbols, which is taken in such

a way we can apply the sharp Garding inequality for Re(Su, u) where
o-(S) 2Hr(p)C q- O’sub(PL)C2)(O, ). Namely we take

c (x,e) +

where 0 < /< 1 and 0 SO homogeneous of degree 0 for Il > 1/2,1,0,
4)(s) 1 for ]s1] < s2 and O(s) 0 for Is21 > 2. So

2-2Hp(cZr)(O, n) -" (S "
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where 0 is given in (H2). So by taking y small the proof of the theorem is
finished from (H4) and Garding inequality, see [4].

3. Remarks

A generalization of our theorem can be expressed in the following form:
Let

(3.1) _, A(x, u( x),..., Ou( x ),... )lt <,0u

+ q(x u( x),..., Otu( x),... )lil _<Pm_l 0.

where Pm-1, Pa -< m- 1 (p -o (resp. Pm-1) if A (resp. q) depends
only on x Rn), Aa --Aa(x y) and q q(x, ,) are C real-valued defined
in an appropriate RN+m and u is a real function defined in Rn.

Let s R and 0 < t < 1 and assume

n
(H1) (a) s > Pm-1-k- - d-t

Maxp(a) +m +

_
(b) s>6+ 2

n
(c) s> +Maxp(a) + 1 +23.

Let u HS-(Rn). We assume

(H2) Hp(x o, o) OZ(xo, o) with 0 4:0 and I1 1,

where

Hp(x O, o) E o ox ox o

is the Hamiltonian vector field of p(x, ) Y’.I,I=mA,(x, u(x),...)sc" and
0 0Z(x, ) EiOi the radial vector field, at (x sc ). Observe that from (HI),

Aa.(x,u(x),...) cl+6(Rn), so Up is a well defined H61der continuous
vector field.

Also we assume

(H3) u H N Hs- t) :/: o), Vt > O.(x,) (Rn) if ( x (x,
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and

(H4)

where

m-I)2 + 2trsu( x’ o) > 0

O’sub(X o, SO0) Re( E
1/31 =m-1

(Oy3q)(Xo, U( Xo), )o )
1

U(Xo ) )(0g,)(o).E (Ox Ao)(Xo,
1/31-=a

Using the same method one can prove:

THEOREM.
u HS(R").

Let u satisfy (1.1). Under the hypothesis (H1) to (H4) we have

It should be said that even for the linear case this theorem says something
new. In particular, it says that the solutions with prescribed singularities in a
ray constructed in [3] and [6] cannot be arbitrarily smooth. In fact, it says that
the solutions constructed therein are sharp regarding the regularity aspect.
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