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1. Introduction

The heat kernel on a manifold provides a natural analog for n dimensional
Gauss measure. If A is the Laplace-Beltrami operator on a Riemannian
manifold then the heat kernel Pt(X," ) is the measure on M given by
(etaf)(x) ,flf(y)pt(x, dy). pt(x, ) reduces to Gauss measure centered at
x in case M= Rn. Put 1, fix x and write lz(dy)=pl(X, dy). The
Dirichlet form operator L for/x is the self-adjoint operator on LZ(/x) defined
by

(1.1) (Lf, g)L2(.) fMgrad f(y) grad (y)/x(dy)

for f and g in C(M). In case M Rn, L is the harmonic oscillator
Hamiltonian in its ground state representation. Ever since E. Nelson [32]
showed the usefulness to quantum field theory of operator bounds on
exp(-sL) as an operator from LP() to Lq(/), the boundedness and in
particular the contractivity of this operator and similar operators has been
explored with great intensity. A variety of techniques for exploring exp(- sL)
as an operator from Lp to Lq for the harmonic oscillator Hamiltonian and
for other second order elliptic operators have been investigated. Among
them is the use of an equivalence between boundedness properties of e-tL:
Lp Zq (hypercontractivity) and direct inequalities on the quadratic form of
L itself. The latter have the form of logarithmic Sobolev inequalities [17] (see
e.g. (3.7) below). A survey of these topics is given in [9] and a more recent
bibliography is given in [18]. In the present paper it will be shown that a
technique used in [17] for proving logarithmic Sobolev inequalities for Gauss
measure on R goes over to the heat kernel measure on Lie groups.
Denote by W the space C0([0, T]; G) of continuous functions g(.) on [0, T]

with values in a connected Lie group G for which g(0) identity. In Section
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2 we discuss a notion of differentiability for functions on W which reduces, in
case G R, to a much studied notion of differentiability of functions on
Wiener space. In fact W is a Banach space if G R, and if H is the
Cameron-Martin Hilbert space for Wiener measure on W then for a function
f: W R the derivative of f in H directions plays a central role in Gaussian
integration theory, unlike the Frechet derivative which usually plays only a
technical role in this context. R.H. Cameron [8] was the first to recognize that
the derivative in H directions relates well to the Wiener integral and in fact
allows an integration by parts formula. (Actually he considered only deriva-
tives in W* directions with W* properly contained in H by the usual
injection W* H*= H W. But the extension of his formula to H
directions is immediate.) I.E. Segal [40,41] emphasized and clarified the
central role of H by dispensing with an ambient Banach space or other
ambient vector space altogether. Directional derivatives in H directions are
ubiquitous in Boson quantum field theory because they represent annihila-
tion operators. For functions on a Banach space B with a given nondegener-
ate Gaussian measure/x and corresponding covariance Hilbert space H the
H-derivative (i.e., gradient in H directions) is an intrinsic notion of differen-
tiation relative to/x. The H-derivative was systematically exploited in [16] for
regularity theorems in infinite dimensional potential theory and in many
other works [2], [10], [12], [13], [14], [15], [22], [23], [24], [25], [26], [36], [37],
[38] in the 1960’s and early 1970’s. More recently the closure of the H-deriva-
tive as a densely defined operator from LP(tz) to LP(I)(R) H has been
intensely explored. The literature on the closed intrinsic derivative (i.e.,
closed H-derivative) is too vast to survey here. For extensive lists of some of
the early work on these operators and their applications (e.g. to regularity of
heat kernels for hypoelliptic operators) see the bibliographies of [1], [5], [7] as
well as [20], [21], [27], [28], [30], [31], [45]. In Section 2 we describe the
analogous intrinsic derivative (i.e., H-derivative) for functions on W
C0[(0 1]; G)when G is an arbitrary Lie group and Wiener measure is
replaced by the G valued Brownian motion path space measure P on W. We
do this by first defining an operation of "addition" of a finite energy Lie
algebra valued function h with an element g of W. The operation h, g
h + g is defined on all of H W by direct analytic means without reference
to stochastic integrals or any probability measures. But in fact it is a thinly
disguised version of ordinary translation B h + B in the Lie algebra
valued Wiener space when the Wiener path B is identified with g via an
Ito-Stratonovich differential equation. In this paper we take an analytic
viewpoint, avoiding direct use of stochastic differential equations (however,
cf. [19]). Moreover since W is a group under pointwise multiplication there is
another more natural notion of differentiation of functions on W and we
shall explain the relation between these two derivatives (cf. Proposition 2.7).

In Section 3 we represent the G valued Brownian motion as a limit of
random walks in G. We use the representation to derive a logarithmic
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Sobolev inequality on W for P (cf. equation 3.6))with best constant ({}5). A
logarithmic Sobolev inequality on the Lie group itself for the heat kernel
measure follows from this (Section 4). But in Section 5 we show by example
why we cannot expect our method to produce always the best Sobolev
constant for the heat kernel measure on G. The example is motivated by the
preceding random walk representation with the random walk taken as a
simple random walk in the Lie algebra of the circle group. Specifically, if/z is
the symmetric probability measure on R supported on the two point set
{-1, 1} we look at the discrete Dirichlet form operator N associated to the
measure/x

3
=/x /z /x and describe the effect on the Sobolev constant and

spectrum of N that occurs when one wraps R around $1, so as to identify the
points -3 and 3 in the support of/x3.

It is a pleasure to acknowledge very useful discussions with G. Ben Arous,
J. Deuschel, Z. Guo, A. Knapp, O. Rothaus, and D. Stroock.

2. Differential calculus on C0([0, T]; G)

Let G be a connected Lie group and denote by ’ its Lie algebra. We
denote by W the set of continuous functions g from [0, T] into G such that
g(0) e, the identity element of G. Throughout this paper we consider a
fixed inner product ( ) on with associated norm which need not
be invariant under the adjoint action of G except when specified. We denote
by H the real Hilbert space consisting of absolutely continuous functions
from [0, 1] into such that

dt <o and h(0) =0.

In this section we shall describe an action g - h + g of H on W which
reduces, in case G is the additive group R of real numbers, to translation by
h." (h + g)(t) h(t) + g(t). This action, which underlies all of advanced
calculus on Wiener space, will play a similar role for us for a general Lie
group. If c(.) is a smooth curve in G then c(t)-16(t) is in Te(G), the tangent
space to G at e. We shall generally omit the ,, writing c(t)-16(t) instead.
Moreover we identify the Lie algebra with Te(G) and if a is in Te(G) then we
put

(&f)(x) df(xeS)/dsls=o

for the corresponding left invariant vector field on G.

LEMMA 2.1. Let h be in H. Then there is a unique function v in Wsuch that
the equations

(a) v(0) e
(b) v(t)-lb(t) h(t) 0 < < T,
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hold in the following sense. For any smooth function f: G R and 0 < a <
b<T

(2.1) f(v(b)) f(v(a)) fab(h(t)^f )(v(t)) dt.

Moreover if h converges in H to h then the corresponding solutions v converge
uniformly on [0, T] to v.

Let B be a ball centered at the origin of such that the exponential map is a
diffeomorphism from 2B onto a neighborhood U of e in G. There is a number
e > 0 such that if [[h[[ < e then v(t) is in Ufor 0 <_ t <_ T. For such an h put
x(h)(t) Log v(t). Then for some c > O, h - x(h) is a C diffeomorphism
from S =- {h H: [Ihll < c} into H and the Frechet derivative X’ of this map
satisfies

(2.2) X’(0) IH.

Proof. If a is in Te(G) then is represented on 2B in exponential
coordinates by a vector field y /3(y)a where the linear map/3(y): W- 4’
is defined by

fl( y)a =d Log((exp y)(exp ta))/dtlt= o.

/3(y) is Coo on 2B, has bounded derivatives on B and clearly/3(0) I. A
standard proof of the existence theorem proceeds by showing that once one
has established the existence of a solution v up to time o one may continue
the solution into the neighborhood v(t0)exp B by solving the integral equa-
tion

(2.3) W(t) ftil3(w(s))h(s) ds, [t to[ <8

where v(t)= v(t0)exp w(t) and 6 depends on h and /3 but not on 0. The
continuity of h --, v from H (in fact also with respect to [[hill1) to W (with
uniform convergence) is also standard. Now if ll/3(y)[] < M for all y B
then [w(t)l < Mfdlh(s)[ ds. So if B has radius a and mT1/Zllhl[ < a then the
solution w(t) to (2.3), with o 0, remains in B up to time T, and we may
therefore use just one coordinate patch up to time T for such small h.
Moreover standard O.D.E. methods show that w(t) is a Coo function of h in
L norm, hence in H norm uniformly in t. Thus for small h, h (w(t)) is
C in h into C([0, T]; Horn(,_4’, W)). But x(h)(t) w(t) and, denoting time
derivative with a dot, (2.3) gives ,(h)(t) (w(t))h(t)which is a "product"
of a smooth, uniformly bounded multiplication operator on H with /:t itself.
h x(h) is therefore C into H for small h. We may compute the Frechet
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derivative by the formula

Of((h + rk)/Orlr=o(t) ’(w(t))

(Ox(h + rk)/Or)r=O/C(t) + (w(t))[c(t).

But w 0 if h 0. Thus at h 0 we have ,’(0)(k)(t) =/3(0)/(t) =/(t).
Hence ,’(0) 1/4. By the inverse function theorem X is a diffeomorphism on
a neighborhood of zero in H.

DEFINITION 2.2. Let g be in W and h in H. Let v be the solution to

(2.4) v(t)-lb(t) (Ad g(t))f(t) v(O) e

as in Lemma 2.1. Put u(t) v(t)g(t), 0 < < T and write h + g u. Then
h + g is in W.

Remark 2.3. For each t, Ad g(t) is a bounded operator on W. Since the
image of g(. ) is compact for g in W [Ad g(t)[_ is uniformly bounded on
[0, T]. Hence the function - (Ad g(t))h(t) is in L2 when h is in H. Thus
Lemma 2.1 is applicable to (2.4) and h + g is therefore well defined.

THEOREM 2.4.
properties:

(a)
(b)
(c)
(d)
(e
(0

The map h, g --, h + g from H W to W has the following

O+g=g.
(h + h2) + g h + (h 2 + g) for hi, h 2 H, g W.
If g W and h + g h2 + g then h h 2.

h + g is continuous as a function from H W to W.
If g W then {h + g: h C([0, T]; W)} is dense in W.
If g is piecewise C 1, h is in H, and u h + g then u is absolutely
continuous and is the unique solution to the initial value problem

(2.5)

(g)

u(t)-ft(t) g(t)-l(t) +/t(t) a.e. u(O) e.

If h o on (a, b) then (h + g)(a)-l(h + g)(b) g(a)-lg(b) for all g
inW.

Proof (a) If h 0 then (Ad g(t))h(t) 0. The unique solution to (2.4) is
v(t) e. Hence (0 + g)(t) e g(t) g(t).

(b) Let u h + g. If Vl(t)-lba(t) (Ad g(t))/l(t) and Va(0) e then
Ua(t) vl(t)g(t). Let v2 be the solution to

v2(t)-lb2(t) (Ad ul(t))h2(t) with v2(O) e.
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Then (h2 + (h + g))(t) v2(t)Ul(t). Put v(t) v2(t)Vl(t). Then for almost
all t,

v(t)-l/)(t) Vl(t ), v2(t), v2(t),/)l(t) +/)2(/)Vl(t),)

where V l(t), on the right in the last term means the differential of right
multiplication acting on the tangent vector b2(t). Thus for a.e. t,

-1 -1 -1V(t)-lt)(t) Vl(t ), /31(t) + Vl(t ), V2(t), /)2(t)Vl(t),

(Ad g(t))ha(t ) + Vl(t)-l{Ad(Vl(t)g(t))h2(t)}Vl(t),
(AO g(t))ll(t ) + (Ad g(t))12(t )

since (Ad a)= (La),(Ra-1), on ’ where La and Ra-1 are left and right
multiplication. Hence v(t)-lb(t) (Ad g(t))(hl(t) + h2(t)) while v(0)= e.
Thus

((h + h2) + g)(t) v(t)g(t) v2(t)Vl(t)g(t ) v2(t)Ul(t )

(h 2 + (h + g))(t).

This proves (b). We emphasize that the + sign has two different meanings in
(b). h + h2 is the sum in the vector space H.

(c) Suppose h + g hz + g. Write (h + g)(t) vi(t)g(t), 1, 2. Then
V V2. SO

(Ad g(t))tl(t ) Vl(t)-lt)l(t) v2(t)-lt)2(t) (Ad g(t))h2(t ) a.e.

Hence/1 h2 a.e.
(e) Choose a left invariant metric p on G. The topology on W is deter-

mined by the metric

dist(f, g) sup{ p( f( t) g(t))" 0 < < T}.

Fix f and g in W and e > 0. By choosing local charts in G along f and g
one can find f0 and go in W n C([0, T]; G) such that dist(f, f0) < e and
dist(g, go) < e. Let

k(t) =fo(t)go(t) -1

and

ho(t ) (Ad g(t)-l)(k(t)-l/c(t)).
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Then h0 is in C([0, T], ), but may not be smooth. Since

k(t)-l[c(t) (Ad g(t))ho(t ),

we have

(ho + g)(t) k(t)g(t) fo(t)(go(t)-g(t)).
Thus

dist(h 0 + g, f) _< dist(h0 + g, f0) + e dist(f0" (gffl
dist(g, go) + e _< 2e.

"g),fo)+e

Since C=([0, T]; 4’) is dense in H we may, by d), find h in C=([0, T];
close to h0 such that dist(h + g, h0 + g) < e. Then dist(h + g, f) < 3e.

(d) Suppose that h converges to h in H while gn converges to g in the
topology of W (i.e., uniformly on [0, T ]). Then Ad gn(t) Ad g(t) converges
to zero in operator norm on W uniformly in t. Hence

2 )1/2f0r[(Ad gn(t))hn(t) (Ad g(t))h(t)l dt

(loT[(ad gn(’) Ad g(t))/n(’)12) 1/2

_<

+ f0rlAd g(t)(hn(t ) h(t))[2
dt

< sup lind gn(t) Ad g(t)llllhnllH / sup lind g(t)llllh hlln.

But since g(.) has compact range sup{ [lAd g(t)[[" 0 < T} is finite. So the
function (Ad gn(t))hn(t) converges to (Ad g(t))h(t) in H. By Lemma 2.1 the
solutions to

Un( ) 1/)n( ) (Ad gn( ) )hn( )

converge uniformly to v. The functions (h / gn)(t) =- Vn(t)gn(t) also con-
verge to v(t)g(t) (h + g)(t) in W because if V is a neighborhood of e in
G then, since range g is compact, there are neighborhoods U and U’ of e
such that x’g(t)-lxg(t) is in V for all if x’ is in U’ and x is in U. Thus if n
is so large that gn(t)- lg(t) U’ for all and Vn(t)- 1u(t) U for all we
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have

(Un(t)gn(t))-lu(t)g(t) (gn(t)-lg(t))g(t)-l(Un(t)-lUn(t))g(t)

is in V for all in [0, T].
(f) If v is defined by (2.4) then u(t) v(t)g(t) is a product of two

absolutely continuous functions on [0, T] and is therefore absolutely continu-
ous. Moreover

u(t)-lft(t) g(t)-lv(t)-ld(u(t)g(t))/dt
g(t)-i -1v(t) (b(t)g(t) + u(t)6(t))

g(t)-l{(Ad g(t))h(t)}g(t) + g(t)-l(t)

h(t) + g(t)-1(t).

We have used, as in part (b), the identity (Ad a)= (La),(Ra-1) , and the
notation :a (Ra), for ’ and a G.

(g) Write

(h + g)(t) v(t)g(t) wherev(t)-lb(t) (Adg(t))h(t)a.e.

as in Lemma 2.1. Since (Ad g(t))h(t) 0 on (a, b) it follows from (2.1) that
f((b)) f(v(a)) 0 for all f in C=(G). Hence (b) u(a). This proves (g).

DEFINITION 2.5. If f is a function from W to R and h is in H we put

 Z(sh + g)/asl =o, h 14, W

if the derivative exists. We say f has a gradient at g if there is a vector
(Vf)(g) in H such that (Ohf)(g) ((Vf)(g), h)n for all h in H. We say f is
in CX(W) if (7f)(g) exists for each g in W and 7f: W --* H is continuous.

Notation 2.6. For g in W and h in H let

( g h)(s) ff(Ad g(r))/(o’) do’.

Note that g. h is again in H because {Ad g(o’)}0_<r_<T is a uniformly
bounded family of operators on ’ for each g in W. W is a group under
pointwise multiplication. In the next proposition we relate the group struc-
ture of W to the preceding notion of gradient.
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PROPOSITION 2.7. Let

(ehg)(s) (exp h(s))g(s)

for h in H and g in W. Let f: W R and fix g in W. Then the functions
h f(h + g) and h f(e g" hg) are both Frechet differentiable at h 0 if
either is. Moreover they have the same Frechet derivative. In particular if u is in
C(Gk) and f has the form

(2.6) f(g) u(g(tl) g(tl) -1 g(t2), g(t2 ) lg(t3),.. g(tk- 1) g(tk) )
where 0 < tl < < tk < T then (Oh f)(g) exists for all h in H and g in W
and is given by

k

(2.7) (Ohf)(g) Eui(g(tl),’’’,g(tk-1)-lg(tk))
i=1

where

(Ad g(ti) )g( s) )h( s) ds

Ui( X1, Xk ) ( > du( x1, Xies, Xi+ l, Xk )/dSls=o

for in W. Moreover (Vf)(g) exists for all g and

(2.8)
k

I(W)(g) 2 ,af.tl(Adg(ti) -lg(S))trui 2[, ds,
i= ti-1

where u ui(g(tl),...,g(tk_l)-lg(tk)) is in the dual space W* and the
superscript tr denotes the transposed operator.

Proof By Definition 2.2 we may write

(h + g)(s) [expx(g. h)(s)]g(s)

where X is defined in Lemma 2.1 for h with small norm. Let q(h) f(ehg)
and q(h) f(ex(h)g) where (ex(h)g)(s) [exp x(h)(s)]g(s). Then q(h)
q(x(h)). By Lemma 2.1, q and q have the same Frechet derivative at h 0.
Hence so do the functions h q(g. h) f(eg’hg) and h --, q(g" h) f(h
+ g) since the map h --, g h is a bounded linear map from H into H with
inverse h g-1. h where g-l(s) g(s) -1. We now use this to verify (2.7).
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For real r we have

(erg’hg)( ti_l)-l(erg’hg)( ti)

g(ti-1)-1 e-r(g’h)(ti-1)er(g’h)(ti)g(ti)

g(ti 1) -1 g(ti)exp[-r AO g(ti) 1( g" h)(ti_l)

exp[rgd g(ti)-(g h)(ti)

If we use the identity to compute f(eg’hg) with f given by (2.6) we see that
h f(eg’hg) is a Frechet differentiable function of h at h 0. Moreover for
X and Y in ’ the tangent vector to the curve exp(- rX)exp(rY) is Y- X at
r=0. Henceat r=0,

df(erg’hg)/dr
k

tti(g(tl),... )((Ad g(ti)-l){(g’h)(ti) (g. h)(ti_l)})
i=1

which is (2.7). Since the right side of (2.7) is a linear functional of h given in
each interval (ti_l,ti] by integration against a continuous function into
*(Ohf)(g) is, for each g in W, a continuous linear functional of h on H
whose norm is given by (2.8).

It is technically useful to have available functions on W with bounded
gradient. Unfortunately the simplest kinds of functions on W may never have
this property as the following corollary shows.

COROLLARY 2.8. Assume that the dual of the adjoint representation of G
has the property that every non zero orbit is unbounded. In other words,
{Ad(x)trr/: x G} is an unbounded set in * for each non-zero 7 in *. Let
v be in C(Gk) and let 0 < < 2 < < k <_ T. Put

(2.10) f(g) v(g(tl),g(tz),...,g(tk) ).

Then I(Vf)(g)l 2 is unbounded on W unless v is constant.

Remark 2.9. If G SL(2, R) then the hypothesis of Corollary 2.8 holds
because the image of the adjoint representation of G is S0(2, 1) which is
isomorphic to its contragredient representation.

Proof of Corollary 2.8. The map S: Gk
_
Gk defined by

S(Xl,...,Xk) (X1, XIX2,X1X2X3,...,XIX2 Xk)
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is a diffeomorphism with inverse

s-l(yl y,) (yl y-(lya yy y-1 y,)3’’’ k-1

Let u v S. Then u is also in C(Gk) and f is given by (2.6). By
Proposition 2.7, (Vf)(g) exists for all g and (2.8) holds. Suppose that v and
hence u is not constant. Then there is a point xa,..., x, in Ge such that
ui(xa,..., x) 4:0 for some i. Consider all functions g in W for which
g(t1) x and g(tj)-lg(ti)= xj for j 2,...,k. Such functions are re-
stricted only at the points t. and by the requirement of continuity in between.
Since (Ad g(ti)-l)tru is not zero (Ad x)tr(Ad g(ti)-l)trui is unbounded as a
function of x on G. Thus

2

fti I(md g(s))tr(md g(ti)-l)
tr Uil, ds

ti-1

can be made arbitrarily large by choosing g(s) suitably on (ti_a, ti).
In order to construct bounded functions with bounded gradients on W the

function defined in the following Lemma will be useful.

LEMMA 2.10. Let

(2.11) q( g ) foT )*trace (Ad g(t) (Ad g(t) ) at.

Then (Vqg)(g) exists, is continuous from W into H* and

(2.12) I(V,c)(g)l < 2M,c(g)3/2

where M is the operator norm of the map 7 -+ ad r/from c to operators on
and the superscript denotes the adjoint relative to the given inner product
OFt .
Proof Let u(x)= trace{(Ad x)*Ad(x)} for x in G. Then

u’( x)(sc ) du(xeSe)/dsl,=o
trace{(Ad x)*(Ad x)ad sc} + trace((ad :)*(Ad x)*Ad x}
2 trace{ (Ad x )* (Ad x ) ad :}.
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Hence by (2.7) and the identity Ad x ad ad((Ad x)sC)Ad x we have

OhU(g(t))

=2 trace((Ad g(t))* (Ad g(t))ad Ad g(t)-l(Ad g(s))/t(s)ds}
=2 trace((Ad g(t))* (ad f:(Ad g(s))h(s)ds Ad g(t)}.

As a function of g from W into H* this is clearly continuous and is bounded
on bounded sets in W uniformly in t. Hence u((sh / g)(t) is continuously
differentiable in s for each with a uniformly bounded (in t) derivative in
Is _< 1. Thus we may interchange the derivative and integral in to get

T
(Ohq)(g) OhU(g(t)) dt.

The operator norm satisfies Ilad 7 MITI by assumption and is of
course majorized by the Hilbert-Schmidt norm. Hence

T
I(Oh,)(g)l <_ IOhu(g(t))ldt

< f0r2 trace{ (Ad g(t))*Ad g(t)} I[ad f:(Ad g(s))h(s)dsl[ dt

,
< 2 trace{(Ad g(t)) Ad g(t)}M (Ad g(s))[(s) ds dt

f0T )* foTl(Ad g S< 2 trace{(Adg(t) Ad g(t)}M (s))/()ldsdt

< 2q(g)MfoTl(Ad g(s))h(s)[ds

< 2q(g)M Ttrace{(Ad g(s))*Ad g(s)} ds

2q(g)Mq(g) 1/211h

which proves (2.12).
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COROLLARY 2.11. Let u and v be in Cac(G). Define f: W --. R by (2.6) or
(2.10) and define q by (2.11). Let e > 0 and put

F(g) f(g)(1 + eq(g)) -1.

Then F has a bounded continuous gradient on W.

Proof Suppose f is given by (2.6). Then

(2.13) VF(g) (Vf)(g)(1 + eqg(g)) -1

el(g)(1 + eqo(g))-z(vqg)(g).

By (2.8) we have

(2.14) Tf( g)l2 ti
,*__* ds (Ad g(ti) -1< 2 f I[(Ad g(s))trl[2

Ui *i= ti-1

< foTIIAd g(s)ll ds maxl(ad g(ti)-l)
tr 12Ui *

<_ C (g)

where

C sup I(Ad x:l)trui(x1,...,Xk)l,
i,x

which is finite because u Cac(G). Thus by Lemma 2.10,

I(VF)(g) _< C1/2qg(g)l/2(1 -1

+ elf(g)12mq (g)3/2(1 + eq (g)) -2.

Both terms are bounded. The continuity of g (VF)(g) from W to H*
follows from Lemma 2.10 and (2.7).

In case f is given by (2.10) then it is also given by (2.6) where u v S and
S is the diffeomorphism of G’ defined in the proof of Corollary 2.8. Since u
is then in Cac(G) the previous case applies.
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Next we define polygonal functions in W. Choose a partition 0 to < <
2< <tg< Tandlet Yl,’",Ykbein .Define

d/( Yl, Yg)( t)

(t--tr--lr t(ex (expy (exp y_l exp
_

Cr_
if tr_ <__ <

constant iftg<t< T.

Then (Yl,’" Yk)(’) is continuous and has bounded derivatives of all
orders on each interval (tr_l, tr). In particular it is absolutely continuous on
[0, T].

PROPOSITION 2.12. Suppose that f: W - R has a gradient Vf(g) for all g
in W. Define b by (2.15) and put v f qt" k

_
R. Let 1,..., d be an

O.N. of . Then the partial derivative

(Or jU)(Yl,’’" Yk) =dr(Y1,"" Yr + Sj Yr+l,’’" y)/dsls=O
ex&ts and is given by

(2.16) Or,jU (Ohr,jf) ffJ

where hr, is the element ofH determined by

(t tr_l)-l:j if tr_ < <(2.17) hr,j( t)
0 otherwise.

Moreover if r/n, r 1,..., k then

(2.18) n-ll(Vv)(yl,..., y)le
_< I(Vf)((yl,..., y))l2

where Vv is the gradient on the Euclidean space k.

Proof Fix Yl,...,Yk in .vak and write g= I/t(yl,...,yk). Put gs
shr, + g. Since g is piecewise C 1, by Theorem 2.4(f)we have

(2.19) gs(t)-ls(t) g(t)-l(t) + Shr,j(t ) for a.e.t.

But (2.15) shows that R(t) g(t),(t tr_l)-lyr for tr_ < < r. Hence
g(t)-a,(t) (t tr_l)-lyr on the rth interval for each r and in particular
for the r in the statement of the proposition. Thus gs(t)-l,(t) g(t)-lR(t)
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on each of these open intervals except the rth interval where it takes the
constant value (t tr_l)-l(yr + Sj). The unique solution to (2.19) is there-
fore

gs(t) I]t(Yl’’’’’ Yr + Sj, Yr+l,’’’, Yk)(t)

Hence

Shr,j + (Y’,’’’, Yk) (Yl,’’’, Yr + Sj,..., Yk)"

Thus

df(shr, + O(Y,,..., y:))/ds df(qt(yl,... Yr + Sj,..., y:))/ds

which proves (2.16). Finally, if r/n for r 1,..., k then

[[hr .[12 fr/n -1 dt n.
j(r_l)/n

](tr-tr-l) :jl
2

Hence the functions n-1/2hr, form an O.N. set in H. Thus, writing y
(Yl,..., Yk) in ’k, we have

k d

Iv(y)l2= E E
r=l j=l

k d

E E ((7f)(l’(y)), hr,j)
2

r=lj=l

k d

n E

_
((Vf)(O(Y)),n-1/2hr, j)2

r=l j=l

< nl(Vf )( g,( y)) 2.

3. Logarithmic Sobolev inequality on path space

Let k be the integer part of nT. Define I]tn" ,_k ._..) W by

n( Yl,’’’, Y)(t) exp[ Yl] exp[ Yr-1]
exp[n(t- (r- 1)/n)Yr]

if(r- 1)/n <t <r/n

for r 1,..., k and define n(Yl,’-’, y)(t) to be constant on [k/n, T]. Let
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h be a probability measure on ’ such that

(a) flyl2A(dy) < 0

(b) fyX(dy) o
(C) fc(i y)(j, y)i(dy) ij

where 1,’’’, d is an O.N. basis of W.
Let An(E) A(nl/2g) for Borel sets E __C_ W and put hn h x x A

on 4’k. Define, for a Borel set B in W,

(3.2)

Then Pn is a probability measure on W.

PROPOSITION 3.1. The sequence of measures Pn converges weakly on W to
the probability measure P corresponding to the diffusion process on G with
initial value X(O) e and infinitesimal generator (1/2)E]= lf.
Proof The proof consists largely of verifying the hypothesis of the central

limit theorem of Stroock and Varadhan [43, Theorem 2.4] using largely
standard techniques. Put

(3.3) Xn(Yl,..., yk)(t) =exp[yl]...exp[yr] if(r- 1)In < < r/n

for r 1,...,k and define X on [k/n,T] so as to be constant on
[(k 1)/n, T]. Then Xn(Yl,’’’, Yk)(’) is piecewise constant, and lies in the
space 12d of functions from [0, T] into G which are right continuous on [0, T)
and left continuous at T and have only discontinuities of the first kind. The
Skorohod topology on 12d may be defined with the aid of a left invariant
metric p on G in the usual way [6, 35]. For a Borel measurable set B in Od

define

Rn(B) Akn(X-(B)).

The central limit theorem of Stroock and Varadhan [43, Theorem 2.4] asserts
that R converges weakly to P on fd under hypotheses which we will now
verify. We adhere to the notation of [43] in the rest of this proof.

Let /.z /n exp-1 be the probability measure on G induced from /n
by the exponential map. With B {y ’: lyl < r} we choose a so that
exp is a diffeomorphism of B2a onto a neighborhood N of e in G
and put V= expBa. We use exponential coordinates on N defined

dby j(exp Ei=lSii) Sj. The independent G valued random variables on
(4’k, hn), Xn, exp y, have a common distribution an, =/zn, j 1,..., k.
We need to verify the Lindeberg condition, covariance and mean conditions
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[43, (2.6), (2.22), (2.23)]. But in fact if U exp B is a neighborhood of e
then

IUbn(Uc) An(lyl _> r) ,X(Izl >_ na/2r) <_ r-2n-l f Izl2A(dz)
>- nl/2r

Hence nlzn(Uc) - O, which verifies the Lindeberg condition. The mean gn,
in V defined by [43, (2.8)] satisfies

[q(gn,j)l fv(O( X ) Ogn, j( dg) fff(exp y)Cv(exp y)1n(dY )

fBaYAn(dY) + f._naq(exp Y)Cv(eXp y)hn(dY )

<- fB Yhn( dY) -1- aln( n)

because I(x)Cv(x)l <_ a. But hn(B) O(/’/-1). Since fyhn(dY) 0 we
have

n-1/2flz
zA(dz) <_a-In-illz [z[2A(dz)

I> nl/Za I>_ nl/2a

Hence [p(g,)[ en/n with e - 0 as n oo. If Yn q(gn, j) (which is
independent of j) then gn, gn, exp(rYn) and since IrYn[ (r/n)e <_
Ten the cumulative means hn(t) (cf. [43, (2.14)]) converge to e uniformly on
[0, T].

Since
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and since qgp(gn, j) --o(n-1), the cumulative variance A(n)(t), cf. [43, (2.15)]
converges uniformly on [0, T] to times the identity matrix.
The central limit theorem of Stroock and Varadhan [43, Theorem 2.4] now

shows that R converges weakly to P. P is supported on W and we want to
show now that the measures Pn (on W) converge in the weak sense on W to
P. Let V exp B and put

Ae {(Yl,..., Yk) ?k. Xn(Yl,’’’, Yk)(t)-ln(Yl, Yk)(t) Ve
forO <t < T}.

By (3.1) and (3.3) the ratio Xn(Y)(t)-lOn(Y)(t) is exp[n(t- r/n)yr] if
(r 1)/n < < r/n and is e on [k/n, T]. But

n(t r/n) Yr -< lYrl if (r 1)/n < < r/n.

Hence

k

ACe) < Akn( SUp lYrl >e) < E Akn(lYrl >_t)
r=l k r=l

TnAn(lyl )

which goes to zero by the Lindeberg condition. Thus

(3.4) Ak(AC) 0 asn oo.

So if u" G -- R is bounded and uniformly continuous and if

I/g(X1,... Xm) bl( Xtl, Xtm) <

-1whenever all X X V then for any 0 < < < m <_ T,

f u(g(tl),... g(tm))Rn(dg) fwU(g(tl),... g(tm))Pn(dg)

f,k[U(Xn(Yl,..., Yk)(tl),’’’,Xn(tm))

--U(On(Yl,..-, Yk)(tl),...,On(tm))]Akn(dY)

< fAl IAkn(dY) + 211ulloAkn(A)

< + 211ullooAn(Z).
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The lim SUPn--,oo of the left side of (3.5) is therefore < 6 for any 6 > 0 and
hence is zero. But

f URn_ fWu(g(tl),..., (g(tm))P(dg)

for any 1,... m because P is supported on W. Thus

fwU(g(tl),...,g(tm))Pn(dg) --. fwU( )P(g).

It remains to show that {Pn} is tight on W. For this it suffices to show that,
regarded as measures on 1d, {Pn}= is tight. For if K is a compact set in fd
with Pn(K)> 1- 6 then, since W is closed in Od and has the relative
topology, K W is compact in W and Pn(K N W) P,,(K) > 1 6. To
show tightness of {P}=I on Od we use the already established [43] tightness
of {Rn}= on -d- If p is a left invariant metric on G the modulus of
continuity relevant for fd may be defined as

W’g(6) inf supsup{p(g(t),g(s))" ti_ <_S < <_ ti}
{ti}

where the inf is taken over partitions 0 o < < < T with
ti_ > t, 1,..., r and g is an arbitrary G valued function. Note that

if g and g2 are in 12a and

P(gl, g2) =- supP(gl(t),gz(t)) <-- e

then

W.l(6) < w.2(8) + 2e.

Thus for fixed Yl,’’’, Yk and 6 > 0, w.(a) > e if W’n(6) > 3e and
p(d/,, Xn) < e. Hence

k k 8}an{WOn(a ) 3e, [(ln Xn) 6} an{Wxn(a )

and therefore

kln{W}n(( ) >__ 3e} < a,{w#.(() > e} + a,{p(#,,, X,) > e}.

That is

Pn{w’g(() >__ 3e} _< Rn{W’g(( ) >_ e} + kn{O(n, Xn) > 6}.
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Given e > 0 and r/ > 0 there exists no and 6 > 0 such that Rn{w’g(8) > e} <
r/ for n > no by a standard tightness theorem (cf. [6, Theorem 15.2]). Since
hn{P(q, X) > e} 0 by (3.4), there is an n such that Pn(W’g(8) > 3e) <
for n > n 1. Since Pn{g(O)= e} 1, the same tightness theorem establishes
the tightness of {Pn}= on fa.

Example 3.2 (Bernoulli measure). If h assigns mass 2-a to each of the
points E4i= ejsc where d dim W and each ej _+ 1 then the conditions (a),
(b), (c) for Proposition 3.1 hold. This will be useful for understanding the loss
of best constants that we will explore in Section 5.

Example 3.3 (Gauss measure), h(dz) (2zr) -d/2e -Iz12/2dz. In this case a
stronger version of Proposition 3.1 has been proved by McKean [29] and
shows that P is the measure on W induced by "wrapping a W valued
Wiener process around G". For a manifold a similar theorem has been
shown by Elworthy [11]. See also the method of Baxendale [3].

THEOREM 3.4. Let P be the distribution on W of the diffusion process X in
G with infinitesimal generator (1/2)=12 and with X(O) e. Let f: W - R
be bounded and continuous and have a bounded continuous gradient on W.
Then

(3.6) fwf(g)2 lnlf(g)lP(dg)

< fwl(Vf)(g)12P(dg) + Ilfl 2I/(P) In Ilfll/=(p.

Proof Denote by h Gauss measure as in Example 3.3. We may apply
Proposition 3.1 to construct P. We start with the known [17] logarithmic
Sobolev inequality for the Gauss measure hk on Wk.

(3.7) f,, u( z ) 12 lnl u( z )[Ak ( dz )

I(Vu)(z)12  (dz) + Ilull 2

where z (Zl,... zk) is in k and VU is the gradient of the C function
u. Put An(E)= A(nl/2E) and let u(z)= u(n-1/2z). Then (Vu)(z)
n-1/2(Vt))(n-1/2z) by the chain rule. We change variables to y n-1/2z in
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(3.7) to get

(3.8) fek v(y) 12 lnl v(y) IAkn(dY)

_<n -1 k zAn( dY ) + Ilvll lnllv

With In defined by (3.1) put v(y) f(n(Y)). By the definition (3.2) of Pn
and by (2.18) we have

(3.9) f( g)l 2 lnl f( g)lPn(dg)

< fl(Vf)(g)12pn(dg) + Ilfll 2L2(Pn) In ]lfllL2(Pn).
"W

Since the integrands are all bounded and continuous on W we may let
n - in (3.9) to get (3.6).
We want now to extend the class of functions for which (3.6) holds to some

unbounded functions.

LEMMA 3.5. Let M be the norm of the linear map y - ad y from to
operators on in operator norm. Put 3/- 2M2. Then for 0 < < T we have

(3.10) vl(Ad g(t))12p(dg) < eVtl:l 2 for in ,
and

(3.11) fw,l(Ad g(b)- )tr
2

g(a) ql P(dg) <_ er(b-a)lrl

for 7 *, O < a < b < T.

Moreover if q is defined by (2.11) then

(3.12) fwq( g)P(dg) < .
Proof. Two proofs of a related integrability theorem are given in [34],

which would yield a proof. We give another short proof based on the random
walk representation of P given in Proposition 3.1. Let A be Gauss measure
on as in the proof of Theorem 3.4. Since IIAd exp syll Ileaar[I < eglsrl
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the function

u(s) fl esady I2A(dY)

extends to an entire function of s. Clearly u(0) I:l 2. Moreover

u’(s) f2((ad y)esady, esady)A(dy)

and

u"(s) f(2((aO y)2esady,esady) + 2[(ad y)esady12)h(dy).
Thus u’(0)= 0 since the integrand in u’(0) is odd. Similarly u"(0)= 0.
Moreover

u"(o) <_ f4M21yl21#lt(dy) 4M21c12.

Hence u(s) (1 + as 2 + s4b(s, ))l:l 2 where la[ 2M2 and b(s, sc) is
bounded for Is _< 1. Thus if 0 < a < 1 then

flea""r12An(dY ) flen-/.a,z#12A(dz) u(n-a/2a)

(1 + aa2/n + O(n-2))[:[ 2.

Hence

(3.13) fleaa"’#12,n(dy ) . nl] 2

where n 1 "[-y/n + O(n-2). If (r- 1)/n < < r/n put a n(t-
(r 1)/n). Then 0 < a < 1 and by (3.2) and repeated use of (3.13) we have

fwl(Ad g(t))#12pn(dg)

adyl ead yr-leadayr12An( dYl) ln( dYr)
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Note that fl, converges to e/t as n oo. Let

x(g) =l(Ad g(t))scl 2
and Xm(g) min(m,x(g)).

X,, is bounded and continuous on W. Hence

fx(u)P(ag) lim fXmP(dg) lim limfXmPnmoo m n

< lim sup fX n <- lim sup/3rISCl 2 eVtlsl 2.
n n

The proof of (3.11) is similar but with the factors (e-adyj)tr occurring in
reverse order. This time one integrates first w.r.t, y. for the largest j. Finally
(3.12) follows by replacing s by sj, summing over j to get the trace and then
integrating over [0, T]. The integrand is continuous in g and and positive so
that the P and dt integrals can be interchanged.

LEMMA 3.6. Let u and v be in Clc(Gk). Define f: W - R by (2.6) or (2.10).
Then all integrals in (3.6) are finite and (3.6) holds.

Proof Just as in the proof of Corollary 2.11 it suffices to consider only the
case in which f is given by (2.6). Define F(g) as in Corollary 2.11. Since F
and its gradient are bounded and continuous (3.6) holds for F. As e $ 0 the
nongradient terms converge to flfl 2 lnlfl dP and Ilfll22 lnllfll2 respectively. By
(2.14) we have IVf(g)] 2 < Cq(g)which is integrable by Lemma 3.5. Hence
the first term in (2.13) converges in L2(p) to 7f as e $ 0. The second term in
(2.13) converges pointwise to zero and is dominated by 2MIf(g)leqffg)(1 +
eq(g))-2q(g)1/2 by Lemma 2.10. This is bounded by 2MIf(g)lqffg)/2 which
is in L2(p) by Lemma 3.5.

Remark 3.7. Even though u and its derivatives are bounded in the
preceding lemma Vf(g) may be unbounded as we noted in Corollary 2.8.

LEMMA 3.8. Let u and v be bounded functions in CI(Gk). Define f: W --. R
by (2.6) or (2.10). Then (3.6) holds.

Proof It suffices as before to consider only f given by (2.6). We must
remove the compact support condition of Lemma 3.6. Let U be a neighbor-
hood of e in G with compact closure such that U-1 U. Let /3 C(G)
with supt/3 c U such that fl > 0 and fa(z)dz 1 where dz is left invari-
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ant Haar measure on G. Let

,(x) fv.C](y-lx) dy.

One verifies easily that (a) n C(G), (b) fin(x) 1 on Un-a,
(c) 0 < fin(x)/1 on G as n and (d) there is a constant C such that
Ifl’,(x)(s)l < CJsl for all x in G and all n. Now let

k

bln(Xl,...,Xk) bl(Xl,...,Xk) H[3n(Xi).
i=1

Let

fn(g) un(g(tl), g(tl)-lg(t2), )
and put

k

Bn(g ) ]--In(g(ti_l) -lg(ti)).
i=1

Then u is in Ccl(Gk) and therefore by Lemma 3.6 f. satisfies (3.6).
Moreover

fn(g) =f(g)Bn(g)

and

(Vfn) (g) (Vf)( g)Bn( g) + f( g)VBn( g).

Since 0 < Bn(g)/1 for each g as n - and f is bounded we shall obtain
(3.6) for f in the limit as n - if we only show that

fwl(VB,)( g) [ZP(dg) 0 as n --> o.

But by (b) and (d) above, IB’gx)<>l Cxgx)ll where X(X) 0 on Un-1

and is one otherwise. Hence by (2.16),

k

i(VBn)(g)[2 ftti --1 -1E C (g(t ) g(ti))llAd g(ti) g(s)[lopds
i=1 ,’- 1Xn -1

k

1Xn(g(ti_l) g(ti))q(S, ti, g ) ds
i= ti-



LOGARITHMIC SOBOLEV INEQUALITIES 471

where o(a,b,g) denotes the square of the
Ad g(b)-lg(a). Hence

Hilbert-Schmidt norm of

fwl(VBn( g) ]2p( dg)

C i:l fti-, Xn g(’i--1) -1 g( ti) )qg( s, ti, g ) P( dg )

Since Xn(g(ti_l)-lg(ti)) "- 0 for each g in W, (3.11) shows that the P
integral on the right goes to zero for each s and boundedly in s. Hence
fl(VBn)(g)12e(dg) --* 0 as n o.

COROLLARY 3.9. Let u and v be in CI(Gk). Define f: W- R by (2.6) or
(2.10). Then (3.6) holds.

Proof As usual we need to consider only the case (2.6). Put

bin(X) ntan-l(n-lu(x)).

Then b/n is bounded, and by Lemma 3.8 the corresponding function

fn( g) n tan-l(n-lf(g))

satisfies (3.6). Moreover Ifn(g)l increases to If(g)l and IVfn(g)l (1 +
n-2f(g)2)-llVf(g)l increases to IVf(g)l. Since 2 lnltl is bounded below on
(0, ) we may take the limit on n to get (3.6) for f.

Remark 3.10. Just as we derived (3.6) by starting with the known logarith-
mic Sobolev inequality (3.7) for Gauss measure on Rn it is also possible to
derive (3.6) by starting with the known finite difference version of (3.7) which
is in fact the most elementary form of a logarithmic Sobolev inequality. One
starts with the purely atomic Bernoulli measure of Example 3.2. We will
sketch how this may be done because it will be useful in understanding the
failure of our method to produce best constants.

Let ll {1, -1} and let/z be the measure on II which assigns weight 1/2
to each point. If v: f R put Av (1/2)(v(1) v(-1)). We regard A as
an operator on L2([-,/). Then the inequality fflu 2 lnlvl dlx < f(Au)2 dlx +
Ilvl122 lnllvll2 is the simplest logarithmic Sobolev inequality [17]. It extends to
product spaces [17] yielding

ff dtx + Ilvll lnllvll2(3.14) U 2 lnlvl dtz < f _, (Air)
2
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where (Ajv)(Sl,..., Sm) 1/2(v(sls:=l v(s)ls:=-l) and s (Sl,..., Sn). Now
a We embed i-Ia intoput rn kd with d dim and write s {Sr, j}r"=l,j= 1.

’k by mapping s to

k d

) Z Sr,jj/nl/2
r=l j=l

with k [nTr] as in (3.1). Then [.L
kd clearly induces the measure A on k

where A is the Bernoulli measure of Example 3.2. For each fixed n we
identify -kd with its image in ,_k henceforth. With qn defined in (3.1) and
v f 0n for some bounded function f in CI(w) the inequality (3.14) reads

(3.15) f,(y)2 lnl(Y)lA(dy)

where

k d

f,.k E E (Ar,jU(y))21kn(dY) -]- Ilull lnllvll2
r=lj=l

(3.16) (Ar, jV)( y) 1/2(v( y)lyr,,=n-1/E--U( y)lyr,,=--n-1/2)

k d -kd.and y r=l,_j=lYr,jj is in The first and last terms in (3.15)
converge to fwf 2 ln lfl aP and Ilfll 2,(p lnllfll.(p respectively by Proposition
3.1. We shall show in the next proposition that the finite difference terms
converge to at most f lf(g)12P(dg) under suitable conditions on f, giving
another derivation of (3.6).

In the following proposition the conditions on f are satisfied by functions
of the form (2.6)when u has compact support in G and G is compact times
abelian. This case will be the only one of interest to us.

PROPOSITION 3.11. Assume that f: W--* R is bounded and in CI(W)o
Define the kernel Vf(g)(t) by

(Ohf)(g)

and put IIXTf(g)ll sup{lVf(g)(t)l: 0 < T}. Suppose there is a constant
C such that IIX7f(g)ll _< C1 for all g in Wand that the map g -, Vf(g)(’) is
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continuous from W into L([0, T]; ,_4’). Then

(3.17)
k d

limsupf (Zr,j( f I]tn))2 k fw 2pAn --< I(vf)(g)l (dg)
noo kr=l j=l

Proof. Write a n -1/2. If u is in CI(R) then

1 a 1 a

(u(a) u(-a))/2 7 f u,(t) at au’(a) + - f (u’(t) u’(a)) at
--a a

au’(a) + R(a)

where IR(a)l < a sup{lu’(t) u’(a)l; Itl a}. Similarly we may approximate
(u(a) u(-a))/2 by au’(-a)with a similar estimate on the error. Thus

(u(a) u(-a))/2 au’( +a) + R( +_a)

with

IR( _a)l _< asup{lu’(t) u’(___a) l; Itl _< a}.

Put u f /n" By (3.16) we therefore may write, for y in ,d,

(Ar,jU)( y) aOv( y)/Oyr + Rr,j( y)

where

IRr,( Y)I -< a sup{lov ( y’)/Oyr, 3v( y)/OYrl}

and the supremum is taken over those y’ in k which agree with y except
in the (r, j)th coordinate while lY’r,j- Yr, jl <--2a. Now if /r (t)- n for
(r 1)/n < < r/n and is zero otherwise we put Or,f(g) ’n-l/2Ohr jr(g).

,a is an O.N. set in H we have Yr j(Orjf(g))2 < [Tf(g)[ 2Since {n 1/2hr, j}r=l,j=
and in fact as n -o oo the left side converges to the right side because the
projection Qn onto span {hr, j}r, converges strongly to the identity operator
on H as n -o o. In view of (2.16)we have

(Ar,jU)( Y) (Or,jf )(On( y)) + Rr,j( Y)

with

(3.18) IRr, ( Y) _< suPl(Or,f )(dn( Y’)) (Or,jf )(,n( y))[,
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the supremum being over the same set of y’ as before. Now

"(r-D/n"
g)(t),i)dt.

dt

So if g and g’ are in W then

(3.19) [a,f(g)l -< n-1/2Cl

and

(3.20) I(Or,jf )( g’) (ar,jf )( g) < n-X/Zllvf( g’) Vf(g)ll.

Hence [Rr, j(y)[ <_ 2Clr/-1/2 by the first of these inequalities. But

(3.21)

r,j
r,ju)(Y) 2

(,jf(ltn(y)) + Rr,j(y))2
r,j

<-- E (C3r,jf(d/n( y))2
r,j

1/2

_Rr,j(Y)2

r,j

<_l(vf)(qn( y))l2 + 2[Vf(qn( Y))l(4C?kd/n)l/2 + (4C2kd/n).

Since k/n < T the left side of (3.21) is uniformly bounded in n and y by a
constant C2. Given e > 0 there is a compact set C in W such that Pn(C) >
1 e for all n because the weakly convergent sequence Pn is tight. There is
a compact set a in G such that g(t) is in a for 0 < < T whenever g is in
C. Since g - Vf(g) is continuous on W to L([0, T], ) and C is compact
there is a neighborhood V of e in G such that IIVf(g’)- Vf(g)ll < e
whenever g is in C and g(t)-lg’(t) is in V for all in [0, T]. There is
moreover a neighborhood V of e such that

(h-lk)-lVl(h-lk) C V

for all h and k in a. There is an integer no such that exp z exp z2 is in V
whenever max(Iz I, Iz21) < 2(d/no)1/2. Thus if n > n0, y is in flkd, y’ differs
from y only in the (r, j)th coordinate as before, with lY’r,i Yr, il < 2n-1/2,
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and if g q,,(y), g’= qn(Y’) and g is in C then we see from (3.1) that
g(t) g’(t) for <_ (r 1)/n, and g(r/n)-lg(t) g’(r/n)-lg’(t) for >_

r/n, so that

g(t)_lg,(t) (g(r/n)_
-1

g(t)) (exp yr)(exp yr)(g(r/n))-1’g(t))

is in V for >_ r/n, and that g(t)-lg’(t) is in V for (r 1)/n <_ <_ r/n
also. Hence [[Vf(qn(y’)) Vf(bn(y))[[oo < e. By (3.18) and (3.20) Rr, j(y) <_

en -1/2 if b(y) is in C and n _> n0. Apply this estimate to the second line of
(3.21) to get

(3.22) E(Ar,V)(y)2

r,j

< E (Or,jf)(gffn(y))2 + 2[(Tf)(g,,,(y))l(2Td)a/z
r,j

+ e2Td

E< -b eC3
r,j

if bn(y) is in C. Thus

_(Ar,jV)(y)2An(dY ) <_ fc(lvf(g)[z
r,j

+ +

f vl f(g)l=en(dg) + EC4

for some constants C3 and C4 if n > n0. This proves Proposition 3.11.
However it might be useful to point out that if one lets n run through the
sequence n 2 then Er, j[Or,:f(g)[ 2 increases to [Vf(g)[ 2 hence the con-
vergence is uniform on the compact set C. By reversing the inequality (3.22)
along with the sign in front of e it then follows easily that (3.17) becomes
equality and lim sup,,.oo may be replaced by limn=2m

4. Logarithmic Sobolev inequalities on G and quotient spaces

Now we shall derive from Corollary 3.9 a logarithmic Sobolev inequality for
functions on G itself with respect to the heat kernel measure. We fix > 0.
Let/x be the distribution of g(t)with respect to P. Then convolution by/x

dgives the solution to the heat equation on G for the operator E:=l:f. In
view of the integrability result of (3.11) there is a positive operator valued
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function A(t, x) which operates on * and which is defined by the equation

(4.1)

x(Ad g(t) -1 )trg(s) dsP(dglg(t) x).

Note that the integrand is strictly positive and so therefore is A(t, x) for a.e.
x [t]- Explicitly A(t, x) is determined a.e. [/t] by the equation

(4.2)

where r/: G * runs over arbitrary bounded measurable functions. As
usual the superscript tr denotes transpose. In particular

f trace A( t, x)/d, (d ) < 0.

THEOREM 4.1. F/x > 0. Let u be in CI(G). Then

(4.3) fu(x)2 lnlu(x)llxt(dx )

< fa(A(t X)Ut(X) ut(x))l.llt(d ) --Ilull =z(t) In Ilu [Iz=<t)

where u’(x)() du(x exp s)/ds at s O.

Proof Put f(g) u(g(t)). By (2.8) and the equation (4.2), which clearly
extends to arbitrary measurable r/by the monotone convergence theorem,

(4.4) fl( vf )( g) lae( dg)

fwfo,l(Adg(t)_a )tr
2

g(s) u’(g(t)) dsP(dg)

fG(A(t,x)u’(x),u’(x))w, tzt(dx).

By Corollary 3.9, (3.6) holds and this is (4.3).
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THEOREM 4.2. Assume that Ad G acts orthogonally on with respect to
the given inner product. That is, [(Ad x)[ I[ for x in G and in c. Then
for u in CI(G),

(4.5) fu(

Proof
in (4.4) is

x)21nlu( x) lm,( dx)

< fG[ u’ ( x )12t(ax) / liu 2
LZ(m) In Ilu

Since (Ad X)tr is also orthogonal the right side of the first equality

fwf/lu’(g(t))[ dse(dg) f lu’(x)l
Thus A(t, x) tI.. (4.5) now follows from (4.3).

Remark 4.3. The hypothesis of Corollary 4.2 is very restrictive. The only
groups whose adjoint action is orthogonal for some inner product are
compact abelian.

Let K be a closed subgroup of G with Lie algebra JUc’. Write
M G/K {Kx" x G} for the manifold of right K cosets. Let JU
(Ad x-x)Ju for x in G and denote by JUx the annihilator of JC/x in *. If
u is in CI(G) and is K invariant; i.e., u(kx) u(x) for k in K and x in G
then for any sc in JU we have u(x exp ssC) u({exp s(Ad x):}x) u(x)
because (Ad x)sc is in JU. Hence u’(x)() 0. Therefore u’(x) is in JC/x.
Since JUkx JC/x for k in K we may identify JC/x with the dual space to the
tangent space Ty(M)if y r(x) and we write JCxl and xl to emphasize
dependence only on zr(x). If v is in CI(M) then its derivative v’(y) takes its
value in JUt and may be computed as v’(y) u’(x) where u v 7r and
y
We summarize in the following lemma a well known fact.

LEMMA 4.4. Let p(x) be a strictly positive continuous function on G such
that fp(x) dx 1 where dx is right Haar measure on G. Let tz(dx) p(x) dx
and let v Iz zr-1 be the induced probability measure on M. For each point y
in M there is a unique measure y(y, ) on 7r-l(y) such that for any bounded
continuous function u on Gf-lyU(Z)y(y, dz) is continuous in y and

(4.6)
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We apply this Lemma to/x t, which has a smooth density Pt with respect to
Haar measure on G. We write u z 7r

-1 for the induced measure on M
and Yt in place of 7.

Define B(t, y): JUt 0 for y in M by

(A(t,z)rl,rl)’yt(y, dz) rl .yO.(4.7) (B(t, y)r/, r/),_.
--ly

The integrand is nonnegative and B(t, y) exists for almost all y Ivt] since

(4.8) fM( B( t, Y)rl( Y), rl( Y)).* llt(dY )

fG(A(t,x)rl(x),rl(X))la,t(dx) <

in case r/ is a left K invariant continuous function on G with compact
support with r/(x) 3Vx. That is, r/ is a continuous section of T*(M) with
compact support.

COROLLARY 4.5. Let v be in CI(M). Then

(4.9) fMv(y)2lnlv(Y)lvt(dY) < fM(B(t, Y)v’(y),v’(y))vt(dY)

/ Ilvll 2

Proof Let u(x) v(-(x)). Then u is in CI(G) and (4.3) holds. The first
and third terms of (4.3) agree with those of (4.9). Moreover since u is
constant on right K cosets and u’(x) is in j/0 for all x we have by (4.6) and
(4.8),

A(t,

fM(B(t, y)v’(y),v’(y))vt(dy).

Remark 4.6. In case the given inner product on ,’ is Ad G invariant
then A(t, x)= tI, as we noted in Corollary 4.2. In this case B(y)=
t/(y, r- ly)I,0.
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5. Best constants

We will show that the constant one in front of the gradient term in (3.6) is
the smallest possible. On the other hand we will see by example that the
coefficients of the gradient term in (4.3) and (4.5) are unlikely to be best
possible in some cases.

THEOREM 5.1.
such that

Define P as in Theorem 3.4. Suppose that c is a constant

(5.1) fwf(g)2 lnlf(g)lP(dg)

< c(l(f)(g)12e(dg) + Ilfll 2L2(p) lnllfllL(p)
-’w

for all bounded continuous real valued functions f with bounded continuous
gradient. Then c >_ 1.

LEMMA 5.2. Let v be in Cc(c). Suppose that the exponential map is a
diffeomorphism of B2a {y 4’: lyl < 2a} onto a neighborhood U of e in G
and that qg(exp y) y for y in B2a. Let u(t, x) v(t-1/2q(x)) if x is in U and
define u( t, x) to be zero otherwise. Then

(5.2) ’im g(t))P(dg) fcu(y)l(dy)
where h is Gauss measure on , with mean zero and variance one, given in
Example 3.3.

Proof. Let :1,’’’, d be an O.N. basis of ’. Define /3(y): 4’ W as in
Lemma 2.1 for [y[ <2a and denote by /3j, k(y) its matrix: /3(y)SCk=
Efl3, k(y):.. Since/3(0) I we have /3y, k(0) /Syk. The left invariant vector
field SCk is represented over U in canonical coordinates by Efl,k(Y)O/Oy.
Put

d

aiy( Y) [3i,k( Y).i,k( Y)
k=l

and

bi(y) 1/2 E fly, k( Y)Oji,k( Y)"
j,k

Then aij and b are in C(B2a) and aij(O)--ij" Let ff C()with



480 LEONARD GROSS

0 < sr < 1, sr 1 on na and " 0 outside B3a/2. Let ij(Y) be aij(y)(y) +
tiy(1- ’(y)) on B2a and equal to ij off n2a. Then ij is bounded and
smooth on ’ and uniformly elliptic an aiy(y) aiy(y) for lyl < a. Extend
b similarly to a bounded C function b on . which coincides with b on
Ba. For e > 0 define

(5.3) L
1 )02/0 el/2 )O/Oy- Eaij(el/2y yiOyj -t- Ebi(el/2y

i,j

Then the operator L dk=l(k)2 is correctly given in canonical coordi-
nates over B by the operator L1, as one computes readily from the previous
definitions.

Let X be a Markov process on [0, o) with state space ’, with continuous
paths and infinitesimal generator L1. Define X(t) e-1/Ex(et) for e > 0.
Then X is again a Markov process and one computes readily that its
infinitesimal generator is L. Now as e $0 we see from (5.3) that the
coefficients of L converge uniformly on bounded sets in W to the corre-

d 2 2sponding coefficients of L which is just the operator Y"i--10 /OYi" Hence if
X0 denotes the corresponding Brownian motion in beginning at the origin
and if we begin X at the origin also then by [44, Theorem 11.1.4] the
processes X, converge in distribution to X0. In particular if v Cc() then
E(v(X(1))) converges to E(v(Xo(1))). That is,

limE(v(e-1/2X(e))) fwv( y)h(dy).e$O

But since X has continuous sample paths and starts at the origin we have

[E(v(t-1/2X(t))) E(v(t-1/2X(t)),IX(s)I <_ a forO <s < t)l
_< (supl v(y) I)E(I x( s) > a for some s in [0, t])
0ast$0.

Let L]9 be the operator L over Ba with Dirichlet boundary conditions. Then
for any continuous bounded function f on Ba we have

E(f(X(t)), IX(s) a, 0 < s < t) (etIbf)(O).
Hence

(5.4)
$o

"))(0) fu( y)h(dy).

Under the exponential map the operator etLl goes over to the operator etLD
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acting on C(V)where V is the closure in G of exp Ba. Since u(t, x)=
v(t- 1/2(X)) for X in the left side of (5.4) is

lim(etLou(t, "))(e)
t$o

which is given in terms of the measure P by

limEe(u(t, g(t)), g(s) ’, 0 < s < t).
t$o

Since u is bounded and the paths g(.) are continuous this limit is the same
as lim oEe(u(t, g(t))) by the same argument used above for the process X.
This proves (5.2).

LEMMA 5.3. Define A(t, x) by (4.1). Then

limfGllt-lA(t’x)t$o Illmt() 0

for any norm on operators on *.

Proof The space of symmetric operators on * is a finite dimensional
real inner product space with respect to the inner product trace AB and is
spanned by the set of all one dimensional projections by the spectral
theorem. Hence there is a finite set r/a,..., r/k of unit vectors in ’* such
that the corresponding set P_ of one dimensional projections span this
space. Since trace(PnB) (B7j, zt)., IIBII Eh.J=l I(Brb, rb)*l is a norm
on symmetric operators and is equivalent to any other one. It suffices
therefore to show that for any vector r/ in ’*,

limf t$0
I((t-lz( t, x) I)n, n)l/zt() 0.

Choose a sequence which converges to zero and put

fn(g) t-l fl(md(g(t) g(s) ))tr12
with n. Put f(g)= (It/, r/)= 1. In view of (4.1) we must prove that
fwIfn(g) f(g)le(dg) O. Note that 0 < fn(g) f(g) for each g because
g(.) is continuous. Moreover

ff(g)P(dg) < t;lfne/(tn-S) ds
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by inequality (3.11). Thus

limsup fL(g)P(dg) <_ 1 ff(g)P(dg).
But if0<a <b then a-b] =a-b+2]a-bl. Henceif

Sn {g: fn(g) < f(g)}

then

flfn fl ffn f + 2f(f(g) fn( g))CSn( g)"

The second integrand is positive, dominated by f and goes to zero pointwise.
Hence the second integral goes to zero. But as

lim sup f(f f) < 0

the lemma follows.

Proof of Theorem 5.1. Assume that (5.1) holds. Then Theorem 4.1 holds
also with the constant c appearing in front of the gradient term. Let v be in
C() and define u(t, x) as in Lemma 5.2. Note that if v(y) 0 for ]y] > r
and o is so small that t/Zr < a then for 0 < < o, v(t-1/Zy)= 0 if
[y[ > a. Consequently u(t,. ) is in C(G) if 0 < < o and is supported in
V exp Ba. Thus by (4.3) we have

(5.6) fu(t, x) 2 lnlu(t, x) llz(dx)

< cfa(A(t,x)u’(t,x),u’(t,x))txt(dx )

+ ]lu(t ")]12Li(/zt) lnll u(t, ")

if < 0. By Lemma 5.2 the non gradient terms converge as $ 0 to

2fv(y lnlv(y)la(dy) and Ilvl12L2(A) In IIv IIz.=()

respectively. We now consider the gradient term as $ 0. For < o we may
compute u’(t, x) in local coordinates using the notation of the proof of
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Lemma 5.2. Thus

sCu(t, exp y) E/3j,(y)(O/Oyj)v(t-1/2y)

t-l/2 E[Zj,k( Y)(Ov/OYj)(t-1/2y)

for [y[ < 2a. If (Tk}kd=l denotes the basis of ’* dual to SOl,..., :d put

w(t, y) E j,( Y)(Ov/OYj)(t-1/2y)rI
j,k

Then u’(t, exp y) is t-1/2w(t, y) for lyl < 2a and is zero if lyl > a. Further-
more putting (7v)(t-1/2y) E(Ov/Oy)(t-1/2y)rl we see that Iw(t, y)
(Vv)(t-1/2y)l goes to zero uniformly in y as $0 because both terms are
zero if t-1/2lyl > r while for lyl < tl/2r, j,(y) tj,k is small if is small,
since /31(0) tj,, as noted in the proof of Lemma 5.2. Clearly
I(V)(t-’l’/2y)l and hence Iw(t, y)l are both bounded on (0, 0] . There-
fore writing q(exp y) y for lyl < 2a we have

fc,( A( t, x)u’( t, x), u’( t, x))].Lt(dx )

fv(A(t,x)t-1/2w(t,q(x)),t-1/2w(t, qg(x))izt(dx)

fv((t-lA(t,x) I)w(t,q(x)),w(t, qg(x)))tzt(dx)

+ fv Iw( t, (x)) I,(d).

The first integral on the right goes to zero as $ 0 by Lemma 5.3 because
w(t,q(x)) is uniformly bounded. The second integrand may be replaced by
I(Vv)(t- 1/2q(x))l 2 in the limit $ 0 because the difference goes to zero
uniformly for x in V. But by Lemma 5.2,

lim fw f,_-
Thus in the limit (5.6) becomes

flv(y)121nlv(y)lA(dy) cfl(Vv)(y)12A(dy) + Ilvll 2 lnllvll.

But it is known [17, Remark 3.4] that the smallest value of c for which the
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Gaussian logarithmic Sobolev inequality holds is c--1. This proves the
theorem.

COROLLARY 5.4. Assume the hypothesis of Theorem 4.2 and assume also
that the inequality (4.5) holds with the coefficient in front of the derivative
term replaced by a constant c(t) which is at most t. Then lim +0 c(t)/t 1.

Proof. In the notation of the proof of Theorem 5.1 put u(x) u(t, x) in
the assumed inequality to get

falu(t,x)l2 lnlu(t,x)ltx,(dx) <_ c(t) falu’(t,x)[2,() + Ilull,2 lnllull,

where Ilul], denotes the L2(/zt) norm. Since A(t, x)= tI., the proof of
Theorem 5.1 shows that

limtf lu’(t,x) lelxt(dx)
t$o

Hence

fl v(y) lnl v(y) IA(dy)

<_ (liminf c(t)/t) fclVv(y)l a(dy) + Ilvll lnllvll

for all v in C(4’). As noted in the proof of the theorem this implies that
lim inf c(t)/t > 1. But c(t)/t < 1 by assumption.

Remark 5.5. The preceding corollary is of interest only if G is a compact
group because if G compact times R then the validity of (4.5)with
replaced by c(t) for functions which depend only on the Rm coordinates
forces c(t) > since/x has a Gaussian factor.

Remark 5.6. The measure P on W is induced by "wrapping a ’ valued
Wiener process around G" (cf. McKean [29] and Elworthy [11]) as we noted
in Example 3.3. Indeed the basic Theorem 3.4 may be regarded informally as
following from the pulling back of the terms in (3.6) to the path space of an
ordinary ’ valued Wiener process on which logarithmic Sobolev inequalities
are known. However the discontinuity of this map leads to technical difficul-
ties, some of which have been studied in [7]. The proof of Theorem 5.1 is
based on the fact that for very small the Wiener process does not wrap very
far around G. But for a fixed > 0 the Wiener process may wrap around G
many times (e.g., if G is compact)with the result that the constants in (4.3)
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and (4.5)will in some cases not be the smallest possible. Indeed if G is
compact and is large then /x will be a very good approximation to Haar
measure and the large constant in (4.5) is hardly likely to be best possible.
The next example illustrates the mechanism by which the best constant in
front of the gradient term in (4.5) may be reduced because the exponential
map is not one to one. We shall first give the example, in which G S 1, and
then contrast it with the case G R.

Example 5.7 (Periodic Bernoulli algebra). We take G S and study in
detail the discrete approximation to the heat kernel on S described in
Remark 3.10. We take T 1 and study the process only at time 1.
Moreover we analyze only the case n 3, which gives a very simple but
interesting "approximation" to the heat kernel on S 1. Let fl {1, -1} as in
Remark 3.10. Identify the Lie algebra ’ of the circle with v/- 1 R. The
exponential map is iO ei. We take for a basis of W the element sc
ire3 -/2. In the notation of Section 3 we wish to take k n 3. The
measure hn h on 4’3 is then supported on the points

y (SI ) $2: ) S3)/3/2

where each s -[-1 for r 1,2,3 in accordance with Remark 3.10.
assigns equal weight to each of these eight points. At time 1 the map
q 03 is given (cf. 3.1)) by

*3(y)(1) exp(s1/3/2)exp(s2/31/2)exp(s3/31/2) eir(sl*s2+s3/3.

Let x s + s2 -[ S3. Then x is a function on 123 which takes all values in
the set S {3, 1, -1, -3}. If q is a function on S then y q(q(y)(1)) is a
function on 123 which depends only on x: f(x) qg(eirx/3). Moreover f is a
periodic function on S in the sense that f(3)= f(-3). Let ’ be the four
dimensional algebra of functions on f3 generated by x. Let e’e be the
three dimensional subalgebra of sO" consisting of the functions f(x) which
are periodic. I.e., f(3) f(-3). We write E(f) for the expectation of f over
(fl3,/x3) and (f, g) E(fg). The Dirichlet form operators D and N associ-
ated to the periodic and nonperiodic cases respectively are the operators on
the real Hilbert space ’e and defined by the equations

3

(5.7) (Of, g) _, (Zrf Zrg), f, g p
r=l

and (Nf, g) Er3= (Ar, f, Ar g), f, g d. The operator N is very well
understood with respect to its spectrum and hypercontractivity properties.
Just as D is the n 3 approximation to the Dirichlet form operator for the
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heat kernel on the circle so also N is the n 3 approximation to the
Dirichlet form operator for the heat kernel (Gauss measure) on the line. In
the next proposition we analyze D and then we shall contrast N and D with
respect to their spectral and hypercontractivity properties.

PROPOSITION 5.8. (a) spectrum D {0, 2, 21/2}
(b) There is a constant c such that

E(f lnlfl) c(Of, f) + Ilfl122 lnllflla, f

The smallest such constant lies in the interval (.532, .602).
(c) The operator e-t satisfies

(5.9) ]le-tOllL2_ t . 1 if and only if e -2t <__ e -2t

where e 2t .55 (approximately).

Proof We shall merely sketch the tedious computational proof with a
view toward explaining the origin of the above constants. Let u x 2 3 and
v (x 2 9)x. Then 1, u, v form an orthogonal basis for ’p and from (5.7)
one can compute that D1 0, Du 2u and Dv (21/2)v. This proves (a).
To prove (c) it is convenient to compute L4 norms in terms of 1, u and v and
their products, for which the following algebraic relations are useful and
straightforward to verify:

X 2"- 3 + 2(s1s2 "l- $2S3 + $3S1) X 3 7x + 6s1s2s3, X4"- 10X2- 9,

u2=4(u +3) =4x2, v2=8(6-u) =8(9-x2), uv= -2v.

Moreover E(xm) 0 if m is odd while E(x 2) 3. E(u) E(v) E(uv) 0
while E(u2) 12 and E(v 2) 48. Let f(x) 1 + au + by where a and b
are real constants. Then

e-tDf 1 + e-2tau + e-(21/2)tbl).

We wish to find the smallest positive number for which

lie -tD 4fl[4 < Ilfl124

for all real a and b. Put a e
that

--t/2. A straightforward computation shows

-tD 4[Ifl[24 lie fll4 24a2A + 48- 16b4B + 96b2C
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where

A (6 14c’6)a2 8o/12a + (1 3a8), B 3 4a2

and

C 12(1 -ce18)a2 + 12c14a + (1 3a’).

If we put b 0 we see that we must have A > 0 for all real a. This can
happen if and only if the discriminant of this quadratic form is nonpositive.
Put s a8 and let p(s)= 13s 3 7s2- 9s + 3. The condition of nonposi-
tive discriminant is p(s)> O. Standard analysis of this cubic polynomial
shows that p(s) has exactly one zero on the interval [0, 1) which is the only
range of interest to us. Denote this zero by s0. Then for 0 < s < 1 we have
p(s) > 0 iff 0 < s < s0. Since p(.3) > 0 and p(.31) < 0 we have .3 < so < .31.
Define o by e-at sO. Then (.3)1/2 < e -2t < (.31)1/2. Hence .5477 <
e -2t < .557. That is, e -2t=-- .55, approximately. We have shown that
A > 0 for all a if and only if e -2t < e -2t. To complete the proof of (c)
assume a8 < s0. Then a8 < .31. One can compute then that B > 0 while the
discriminant of C, which is 48{3a1 + aTM 1} is negative. This proves (c).
To prove (b) we first use the interpolation argument from [17, Example 2]
which shows that if [[e-tOllL2-_,L4 < 1 then (5.8) holds for some constant
c < 2t0. On the other hand if (5.8) holds for some constant c then the
argument in [17, Theorem 6] may be applied because D is a (discrete)
Dirichlet form operator on an algebra of functions and [17, Theorem 3, Case
2] may be used. From this theorem we may conclude that ]]e-tD]lL2_, L . 1 if
e -2t/c < 1/3. But since Ile-tolllS_,/4 > 1 if < o it follows that e -2t/c >
1/3. Hence c > 2t0/ln 3. Thus the smallest constant c for which (5.9) holds
satisfies 2t0/ln3 < co < 2t0. But since ln(.31) -1/2 < 2t0 < ln(.3) -1/2 we
have

(- 1/2)(ln.31)/ln3 < co < -(1/2)1n.3,

which implies the assertion (b) and proves Proposition 5.6.

Remark 5.9. The example illustrates three points. Suppose that v is a
probability measure on a Lie group G and L is a self-adjoint operator on
L2(v) with C(G) as a core such that

d

j=l
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for f and g in C2. Suppose further that there is a constant c such that

(5.a0) ff lnlfl dv <_ c( Lf f) + Ilfl122 lnllfll2

and that co is the smallest such constant. The mass gap of L is by definition
the infimum rn of the spectrum of L in the subspace orthogonal to the
constant functions. One has always mco > 1. (See e.g. [39], [42]. One need
only put f(x) esgx), g C2(G) in (5.10) and compare second order terms
in s.) Moreover rnco 1 for Gauss measure on R as well as for the discrete
Dirichlet form operator N defined after equation (5.7). N is a well under-
stood operator for all n [17, 4] with spectrum N {0, 1,2,..., n- 1} and
co 1. The Gaussian case on the line follows from this via the central limit
theorem argument of Remark 3.10 above, which was used in [17]. Thus the
Gaussian case on R reflects the discrete case and in view of Remark 3.10 and
Proposition 3.11 we may expect that the behavior of co for the circle reflects
Example 5.5. Since the heat kernel measure for S is the image of Gauss
measure on R under the exponential map it is easy to see that the mass gap
for L on S is strictly larger than that for L on R because the second lowest
eigenfunction for L on R is the linear coordinate function on R and this is
not periodic. But it is not a priori clear that the Sobolev coefficient co for the
heat kernel measure on S is strictly less than that for R. It is no bigger, in
any case, by Corollary 4.2. Example 5.7 shows that in the discrete approxima-
tion (n 3) to the heat kernel on the circle (a) the mass gap increases
(m 1 for N but rn 2 for D) (b) the Sobolev constant decreases (co 1
for N but co lies in (.532, .602) for D). In particular mco > 1 for D. This also
follows from Rothaus’ Lemma [39, second Lemma p. 105] since E(u3)
48 4: 0. Finally part (c) in Proposition 5.8 shows that e -tz is a more
regularizing operator than e -tN in the sense that e-a is a contraction from
L2 to L4 for smaller values of t since ][e-tNIIL2L4 < 1 if and only if
e -2t < 1/3 [17]. This is clearly related to and perhaps presages the fact that
on the circle e -tL is bounded from L2 to L4 (even to L) for all whereas
on the line e -tL is unbounded from L2 to L4 if e -2t > 1/3 [33].
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