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Introduction

In this paper we will develop generalized characteristic classes and (a part
of) the Hodge theory in the context of degenerate metrics (called sub-
Riemannian metrics). As an application, we study topological obstructions to
putting a connection on a fiber bundle over a Riemmanian manifold with
prescribed curvature. The novelty in the application is that we make no
assumption on the geometry of the fiber.

Roughly speaking, a sub-Riemannian metric on a manifold M is a fiber-
wise metric on a subbundle H c TM satisfying Hormander’s condition.
Associated with this metric is the distance between any two points, called
Carnot-Carathéodory distance, defined to be the minimum of the length
functional over the space of absolutely continuous curves tangent almost
everywhere to H and connecting the two points. This metric and the
corresponding distance have appeared in a number of different contexts (cf.
[2], [3], [7], [8], [9], [11], [13], [18], [20], [21], [22], [25], [27], [29D.

In §1 we first study the geometry of sub-Riemannian metrics. In particular,
we generalize the Gauss-Bonnet-Chern type formulas to sub-Riemannian
metrics, showing that certain global invariants of the underlying distribution
(certain “horizontal cohomology classes”) can be given by the data of the
sub-Riemannian metrics, in a slightly less canonical way in general. This
construction is canonical if H is contact.

One of the difficulties in the study of sub-Riemannian geometry is that so
far no intrinsic connection has been defined (cf. [27]) in general. However, if
we choose a complementary subbundle to H, we can develop an analogue of
the Levi-Civita connection, which enables us to parallel translate horizontal
tangent vectors along horizontal paths. This connection was encountered in
the study of collapsing of Riemannian metrics to sub-Riemannian metrics [9].
Similar connections in the context of principal bundles have been introduced
by Kamber and Tondeur (cf. [15], p. 14). However, unlike in the Riemannian
case, the curvature is not a tensor in the ordinary sense. In this paper we
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show that the curvature, modulo a differential ideal, is a tensor, and gives
rise, via the Chern-Weil homomorphism, to global characteristic classes
which are horizontal cohomology classes.

The global invariants of H here will be cohomology classes of a differential
complex associated with H. This differential complex is constructed as
follows. If H c TM, say, is locally defined by k 1-forms w; = -+ = w, =0,
then the differential ideal A, (M) c A(M) is locally generated by k 1-forms
w; = '+ =w; =0, then the differential ideal A, (M) c A(M) is locally
generated by w;,...,w;,dw,,...,dw,. Then the complex is the quotient
Ag(M) = A(M) /A (M), with the induced exterior differentiation d,
and the cohomology groups (to be called horizontal cohomology) is that of
the differential complex A (M). Though this cohomology group is easy to
define, until recently it has not been used much in geometry (see Rumin
[25]). Recently Ginzburg observed that if H is a contact distribution, then the
lower dimensional cohomology groups of A, (M) are isomorphic to the
de Rham cohomology groups (interestingly enough, a similar result on the
homology level was in Thom [28]). In §1.2. we generalize his result to certain
2-step generating distributions (i.e., H + [H, H] = TM).

Having developed the geometry of sub-Riemannian metrics, in §2 we will
develop a part of the Hodge theorem for sub-Riemannian metrics. To do
this, we assume that a volume form dv on M is given, in addition to the
sub-Riemannian metric. If H is contact, we can choose a canonical volume
form. Our main result in §2 is the proof of the hypoellipticity of A, = d;; 8y
+ 8ydy acting on A L,(M) under certain explicit condition on the tangent
cone. Here some identities obtained in §1 play a fundamental role. Our
results are inspired by a result of Rumin [25] for the case where M is
pseudo-hermitian. Also recall that if H is integrable, then there is a har-
monic integration theory due to Kamber-Tondeur [16], [17], Reinhart [23],
and Kacimi-Hector [14]. So the results in this paper can be considered as
generalizations of a part of their results.

The generalization of the Hodge theorem to degenerate metrics seems
particularly suitable for the study of the problem of putting a connection on a
fiber bundle M over an Riemannian manifold with a prescribed curvature,
since the sub-Laplacian AIH has a relatively simple form in this case. As an
application of Theorem 2.1, in §3 we study the case where M is the total
space of a fiber bundle over a Lie group

W-M->G

with a given connection which has an ‘“almost left invariant” curvature,
showing that if the curvature satisfies certain complicated but explicit in-
equalities, then the first Betti number of M must be zero (cf. Theorem 3.2
and the remarks following).
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1. Geometry of sub-Riemannian metrics and
generalized characteristics

1.1. Geometry of sub-Riemannian metrics

In this subsection we will recall some basic properties of sub-Riremannian
metrics and introduce a local invariant of the underlying distribution.

Let M be a connected, compact manifold, and H € TM a smooth subbun-
dle of TM. A sub-Riemannian metric on M is a symmetric positive bilinear
form (-, - ) on H,(-,:): H X H - R. If H satisfies Hormander’s condition,
there is a Carnot-Carathéodory distance between x, y € M, defined to be

12
dxy) = _min ([G i) a)

yEQuM(x,y

Here Q,(x, y) is the space of horizontal paths connecting x, y.

An important class of sub-Riemannian metrics are constructed as follows:
suppose that M is the total space of a fiber bundle W - M — B over a
Riemannian manifold, and H comes from a given connection, i.e., TM =
H & K where K is tangent to the fibers. Then define a sub-Riemannian
metric on M by horizontally lifting the Riemannian metric on B to H.

Now we introduce a local invariant of H which will play a most important
role in later developments. We will use a construction which is very similar to
the construction of a tangent cone (cf. [8],[9],[19],(24]). Let H, = H + [H, H]
be the subbundle of TM consisting of such elements ¢ which locally can be
written as ¢ = by + [by, b,], by, by, b, € C*(H). Then there is an antisym-
metric bilinear map u(-, - ),: H X H » H,/H defined by

pu(a,b), =[a,b] mod(H). (1.1)

It is easy to verify that (1.1) is well defined.

Note that if M is the total space of a principle fiber bundle and H comes
from a connection, then u is just the curvature of the connection.

Suppose that the vector bundle H,/H is of rank k,, then u(,), is a
R*i-valued 2-form on H,, thus determines k, elements of A %(H,), which we
will denote by 6',...,6%. Thus we can write u, = (8',...,60%) in a non-
canonical way. Let 1.(8',...,0%) be the exterior algebraic ideal in A(H,)
generated by 01, ..., 0. Sometimes we will write 7,(8,...,08%") simply as I,.
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We say that H is of non-degeneracy r if 7 is the biggest number such that
for (r — 1)-forms ay...,a; on Hy,

ap AB 4 o ta, AR £ O

unless a; = - =a k= 0. Note that if H has non-degeneracy r > 0, then
the distribution H must be two-step bracket generating, ie., H, = H +
[H,H]=TM.

We will prove that H has non-degeneracy r > 0 if H is strongly bracket
generating (cf. [27]), i.e. for any v, € H,, v, # 0, the induced map H, —
™M./H,, v, = u(v,,v,) is a submersion. If M is the total space of a fiber
bundle and H comes from a connection, then H is strongly bracket generat-
ing iff M is a fat bundle (Weinstein [30]).

Lemma 1.1. If M is strongly bracket generating and (M, H) is not a
3-dimensional contact manifold, then H has non-degeneracy r > 0.

Proof. Assume otherwise, i.e., there are 1-forms a,,...,a,, which are
not all zero, such that

ap A O+ o +a, AR =0. (1.2)
Without loss of generality we assume that a,,. .., a, are linearly independent
at x € M. Choose a coordinate system {x,} such that a; = dx, ..., a, = dx,,

at x. Write

Oi = ZO;I( dx, AN Clxk,
Ik

then from (1.2) at x we have

Z G;kdxl/\dxk=0,

Ik, +1,k2k,+a
which is in contradiction with the fact that H is strongly bracket generating.

Remark. There are subbundles H which have non-degeneracy > 0 and
yet are not strongly bracket generating. For example, take (M, H) where
M = R*"*2 H is defined by two 1-forms

dzl - X dyl -t -‘xnl dynl = dZZ - xn1+1 dyn1+1 - T X, dyn =0.
Here (X, y1,---5 X, Yos 215 25) is @ coordinate system on R*"*2 2 <n; <

n — 2. Then it is easy to see that H is not strongly bracket generating but yet
has non-degeneracy > 0.
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We recall the definition of partial connections, which is a generalization of
the Levi Civita connection to sub-Riemannian metrics (cf. [8], [9]). To define
such a partial connection, we need to choose a subbundle K in TM comple-
mentary to H, TM = H & K, and denote 7: TM — H the projection. Then a
bilinear map

(a,b) eH, X C*(H) »D,b € H,,
depending smoothly on x, is a partial connection if
(1) D,(fb) =<df,a>b+fD,b, a,be C*(H), feC(M)
where { , ) is the dual bracket between T*M and TM.

2) D,b — D,a = w[a,bl, a,be C*(H),
3) a(b,c) = (D,b,c) + (b,D,c).

As an example, suppose that M is the total space of a fiber bundle
W — M — B over a Riemannian manifold and H comes from a connection
on the fiber bundle, then horizontally lifting the Levi-Civita connection on B
to H, we obtain a partial connection.

In [9] it is proved that for given H, K, and (-,-) on H, there exists a
unique partial connection.

An orthonormal frame e; for H is normal at a given point x, € M if
Deje,-(xo) = 0. In [9] it is proved that such a normal frame always exists. Note
that if e; is normal at x,, 7le;, ¢;1(x,) = 0.

The partial curvature of the partial connection is a trilinear map

R:C°(H) X C*(H) X C*(H) —» C*(H)
defined by

R(a,b)c = D,Dyc — D,D,c — Dy, 4iC-

ku

As the following result shows, unlike the curvature of the Levi-Civita
connection, R(a, b) is not a tensor in the “usual” sense.

Lemma 1.2. Let a, b, c be smooth horizontal vector fields on M and f a
smooth function. Then

R(fa,b)c = fR(a,b)c, R(a,b)fc = (u(a,b)f)c+ fR(a,b)c.

For a proof see [8].
In general there is no partial connection and volume form canonically
associated with the sub-Riemannian metric. However, if H is a contact
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distribution, then there is a natural volume form dv and a complementary
bundle K to H defined as follows: let @ be the 1-form such that a« =0
defines H and

(x,y) =da(x,Jy),x,y €H, (1.3)

where J is an endmorphism of H such that det J = 1. It is easy to see that
such a 1-form exists uniquely. Having determined «, then we define

K={x,da(x,") =0} (1.4)

and dv = a A (da)". In this case the induced partial connection D will be
called the canonical partial connection of the sub-Riemannian metric.

1.2. Horizontal cohomology

In this subsection we will define global invariants of H, the cohomology
groups of H (also called horizontal cohomology groups), and study their
properties.

Let A(M) = ® A*(M) be the sheaf of smooth differential forms on M,
and A, (M) be the subsheaf consisting of w such that if H is locally defined
by k 1-forms w; = -+ = @, = 0, then

w=Y(fihw +gAdw),

where f;, g; are smooth differential forms.

There is a natural filtration A, (M) = & A% (M), and d(A%(M)) c
AKFH(M). Ay (M) is both an algebraic and a differential ideal of A(M).
The k-th vertical cohomology is defined by

ker d¥,

H{ (M) = Tm kT

where dX: AK (M) - AXY1(M) is the restriction of the exterior differentia-
tion.

Let Ay, (M) be the quotient sheaf A(M)/A (M), defined by the exact
sequence

0 Ay(M) > A(M) = Ay(M) - 0. (1.5)

Ay (M) has a natural filtration A, (M) = & A% (M), and a natural opera-
tor

dy = dj;: Ng(M) > A '(M)
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defined in the following way: if p;: A(M) = A, (M) is the projection,
dypy(w) = py(dw).
DeriniTioN 1.1.  The k-th cohomology of H is

ker d%

k —
HACH) =yt

Later on we will need the following technical condition: we say that
A% (M) satisfies condition (L) if w € AX (M) satisfies w(x) = 0 for every
X € M (as a cross-section of A *(TM)) then w = 0.

Lemma 1.3. Suppose that H satisfies the following condition: there are

1-forms w,,...,w,, such that H is defined by w, = -+ = w, = 0 locally,
and dwy .y, ..., dw, can be uniquely written as

k ky
dwk1+,~= ij’/\wj+ Zg;dwj, i=1,....,k —kq,
i=1 i=1

where f}, g} are smooth forms, then A}; (M) satisfies condition (L).

CoroLLARY 1.4. If H is two-step generating, then A% (M) satisfies condi-
tion (L).

Next we will determine the stalk of A% (M) over x € M, A% T.M explic-
itly. Obviously if k = 1 then A}, T,M = H_. However, for k > 2, A5, T.M is
not freely generated by H,.

Lemma 1.5. Suppose that the vector bundle H,/H is of rank k,, u, =
(0%, ...,0%1). Then the stalk of A% (M) over x € M is

AL T,(M) = A2(H,)[span(6',...,6%).

Proof. Select a subbundle V; in TM which is complementary to H.
Suppose that H, is spanned by e,,...,e,,, V; spanned by b,,..., b, and
[e;e](x) = Xcli(x)by(x) mod(ey,...,e,), cfj= —cj.

Then one can choose a local coordinate neighborhood {x, ..., x,,, ¥1,..., Y&}
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such that H is defined by w, = -+ = w, = 0, where
dy,— Ychix;de; + O(y* +x%), 1=1,... kg
w =
o2+ x2), L=k +1,...,k

Here O(x? + y?) denotes a 1-form L f; dx; + Lg; dy;, where f; = O(x* + y?),
f; = 0(x* +y?). So

— Zcfj de; Ndx; + O(lyl + Ixl), 1=1,...,k;
’={0(|y|+|x|), L=k +1,...,k

then it is easy to see that the lemma follows.

The above result can be easily generalized to k > 2,

LemMma 1.6.  The stalk of Ay, (M) over x € M is

AuT(M) = A(H,)/L(6",...,0%);
i.e., we have the exact sequence
01, A(H,) > AgT,.M - 0.

Following an idea of Ginzburg, consider the short exact sequence (1.5),
from which follows the long exact sequence

0~ HY(M) > H'(M) — Hj(M)

- HX(M) > H*(M) > Hi(M) > - . (1.6)
Ginzburg observed in certain important cases that Hi,(M) = 0, e.g., (M, H)
is a contact manifold of dimension 2r + 1; then HX(M) is isomorphic to

H*(M) for k=1,...,r — 1 (see also Rumin [25]). We will generalize his
result to certain 2-step generating subbundle H (cf. [27]). We first begin with:

Lemma 1.7.  If every x € M admits a neighborhood U such that H(U) = 0,
i=0,1,...,r + 1 <n, then H*(M) is isomorphic to H(M), i = 1,...,r.7

Proof. We have the commutative exact sequence

0— AWUUV) — AWU) & AV) — AUNV)—0

Py Pu lPH

0— A, UUV)— AL, Ay — AL,UNV)— 0
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SO

0— H WU V)—s HI(U)® H(V) — HWUNV)— HX (U U V)—> -

Py Pu PH l PH

00— HZ{U U V)—— HYU) ® HY(V)— HY(U N V)—— HZ(U U V)— ---
and by a standard argument (see Bott et al. [1]) we can prove the lemma.

Lemma 1.8.  If at every x € M, H, has non-degeneracy r, then HY(M) =
o = HL(M) = 0.

Proof. Fix a point p € M, then there is a coordinate system (x;, yj) and k
1-forms w;, ..., w, such that H is defined by w; = -+ = 0, = 0, where

w; =dy; — Y alx; dx, + O(le2 + %), ji=1,...,k,
and
do;= 0"+ 0(xI" + Iyl"), j=1,... k.

Now let a, be a closed s-form (s < r) of the form Lf; A w, + £g; A dw;.
Then

da, = ¥ df, Ao+ L ((=1)"7'f, + dg;) A do,

hence by the assumption we have (—1)°*"!f; + dg; = 0 mod{w}, where {w} is
the algebraic ideal generated by w;, ..., w,. Now we need only to prove that
for an s-form a =X, . .. ., i A@; At ANwy, da =0 iff @ =0. Here
J ="y i) f; is an (s — k)-form f; = Xhg ;.  ; ydx; Adx,
A e ANdx; . Now

de=Y dff Ao’ + L(-1)'7"f,Ado, A - Ao

i

+o A (DT T A A Ade, Aoy A

LIRS ls—k”

from which follows ., f1 2 . x-1,jy A do; = 0. Again by the assumption
that H has non-degeneracy r >s, we have f,, ;_;; =0. Similarly
f; = 0 for any J. So the lemma is proved.

CoroLLARY 1.9. Under the same condition as in Lemma 1.8, Hi(M) =
HM),i=1,...,r— 1

Before concluding this subsection, we look at the geometric meaning of the
cohomology of H.
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We say that a differentiable map f: N — M is horizontal if the pull back of
H* by f, f*(H*) is zero. Such maps have appeared in various contexts, such
as variations of Hodge structures (cf. Carlson and Toledo [3], Griffiths [10]).

Denote I?=[0,1] X --- X [0,1]. Let C(M ) be the free abelian group
generated by the g-singular cubes f: 19 - M, and C, (M) be the subgroup
generated by horizontal ones, and

C(M)=8Cy(M), Cy(M)=29C, y4(M).
Define the k-th horizontal singular homology group by

ker 8¢
Ho, w(M) = 4 5T

Here § is the restriction of the boundary operators to C,(M). There is a
well defined pairing between Hf(M) and H, ,(M). Suppose that f repre-
sents a k-th horizontal singular homology, and w represents a k-th horizon-
tal cohomology, then define

([fl[w) = /fw. (1.7)

LemmA 1.10.  The pairing (1.7) is well defined.

Proof. Let o (resp. f’) represents the same element as w (resp. f). So
there is a horizontal k such that f’ = f + §k. Without loss of generality we
assume that H is defined by k 1-forms e; = -+ = e, = 0 within the image
of f,f', k. Then &, = w + Lh; Ne;, + g; A de,,

/f,w’=fl(w'~—w)+f/w=//(w’—w)+j;cdw+'l;w. (1.8)
Now the first term above is
,[f,hi Ne,+g; Ade = ff'gi A de; = (—1)deg(g‘)ff’dg,- Ae; =0.

As for the second term in (1.8), note that by definition dw can be written as
do = Lh; Ne;, + g. A de,, so

fkdw=fkg;/\de,.=fkdg§/\e,.—(/f}—j})gﬁ/\ei=0.

Hence [0 = [po'.
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Now by the result of Thom [28]: if (M, H) is a contact (2r + 1)-manifold,
H, ;(M) is isomorphic to H/ (M), r=0,1,...,r — 1, we know that the
pairing (1.7) is nondegenerate modulo torsion elements.

1.3. Characteristic classes for horizontal connections

Let V' be a vector bundle over M, and H* c T*M the subbundle dual to
H. In this subsection we will study the geometric properties of a ‘““horizontal
connection” in which the connection is only defined for horizontal vector
fields. In particular, partial connections associated with sub-Riemannian
metrics are examples of horizontal connections. Our main goal here is to
generalize the classical theory of connections (cf. Chern [4]) to horizontal
connections.

DEerINITION 1.2. A horizontal connection is a linear smooth map
D:C*(V) > C*(H*®V)
which satisfies
D(fs) =dyf®s+fDs, feC*(M),se C(H).

Example 1. Let TM = H & K be a splitting, where K is a vector bundle
over M, and let py: TM — K be the projection onto K. Define D: C*(V) —
C*(H* ® V) by

Ds = Y pgls,e;] ® el, s € C?(K),
where e; is a local frame for K. It is easy to see that D is a horizontal
connection.

Example 2. 1If M is the total space of a fiber bundle W > M — B and H

comes from a connection, and Dy is the Levi-Civita connection on B, and D
the horizontal lift of Dy, then define

Ds = E(Beis) ®e,s € C*(H),

where e; is an orthonormal frame for H. It is easy to verify that D is a
horizontal connection.

Example 3. Let D,b, a € H, b € C*(H), be a partial connection for the
sub-Riemannian metric. Obviously the partial connection is an example of
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horizontal connection. If an orthogonal frame e; spans H, define a horizontal
connection D: C*(H) —» C*(H* ® H) by

Ds =3¢ ®D,(s), (1.9)

where e’ are the dual frame of e,. It is easy to check that (1.9) is well defined.
Now let D be a horizontal connection. Let (s, ..., s,) be a local frame for
V. Write s = Lf;s;, then

Ds =dyf; ® s; + fiw;; ®s;

where Ds; = w;; ® s;, and »;; € A}y (M). The connection 1-form relative to
the local frame s; is the matrix valued horizontal 1-form o = (w;;).

We choose another s’ frame for V, s} = h,;s;. Let h~' = (h;)”" represent
the inverse matrix, then we compute:

o =dyh -h™ '+ hoh !,

We extend D to be a derivation mapping

C* (A (M) @ V) = C (A (M) ® V)
by

D(0,®s)=du0 ®s+ (—1)76, A Ds.
Then
D*(fs) = D(dyf ® s + fDs)
=dif®s—dyf ADs+dyf A Ds + fD% = fD%.

Let D?(s)(xy) = Q(x,)s(x,). Q will be called the curvature for the horizon-
tal connection D. In terms of a local frame s;,

Q=dyw -0 Aw.

If we change to another local frame, s; = h;;s;, then )’ = hQh L
We say P: End(C*) - C is an invariant polynomial mapping, if

P(hAh~1') = P(A) for any h € GL(C*). Define P(D) = P(Q).

Tueorem 1.11. Let P be an invariant polynomial mapping.

(a) dyP(D) = 0.

(b) Given two connection D, and D,, we can define a differential form
TP(D,, D,) so that

P(D;) — P(Dy) = dH{TP(DDDO)}'
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Proof. Without loss of generality we assume that P is homogeneous of
order k. Let P(A,,..., A,) denote the complete polarization of P, so
dP(A) = P(dA, A, ..., A). Note that this implies d,P(A) =
P(dyA,A,..., A).

Let Dj: C*(V) - C(T*M X V), i = 0,1, be two connections such that
py(Dis) = D;s, i = 0,1, for s € C*(V'). Such connections exist at least lo-
cally. In fact, take a local frame s; for C*(V), and let w; be the connection
1-form for D;, i = 0,1. Now w; can also be considered as matrix-valued
1-forms on M. Then let D; be the connections whose connection 1-forms are
w; respectively.

Now let 2} be the curvature of D). Then

pu(Y)) = py(do; — 0; A w;)
=dypy(w;) —py(w;) Apy(w;) =€Q;, i=0,1.
Next let D, =tD’ + (1 — t)D}, with the connection 1-form &), = f + t6’
where 0' = | — wj,.

Define TP(D, Dy) = k[,P(0',(Y,,...,,) dt. Then, as is well known (cf.

(4D,

dP(D)) =0, i=0,1;
P(D,) — P(D,) = dP(0,%,,...,Q,).

Now
dyP(D;) =PH(dP(D§)) =0,

and

P(D,) — P(D,) = pu(P(D}) = P(Dy)) = py(dTP(D}, Dy))
= du(pu({TP(D1, DY)}))-

On the other hand,
1
pu(TP( D}, Dp)) =pH([0 P(O,CY,,...,Q) dt)

= j(;lP(pH(a’), PH(‘QIt)’ R pH(‘Qlt)) dt

= ['P(6,9,...,0,) dt = TP(D,, Dy).
0
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From the above proof we have:
Lemma 1.12. If D': C°(M) - C(T*M ® V') is a connection such that
py(D’'s) = Ds, s € C*(V'), and P is an invariant polynomial, then p,(P(D’))
= P(D).

If V' is a complex vector bundle, then as in standard vector bundle theory
[4], we define the total horizontal Chern class

¢(D) = det(1+ 50 = ¢(D) + (D) + -+

where ¢, (D) is the 2k-form, called the k-th horizontal Chern class. Similarly,
we define the total horizontal Chern character

ch(D) = Tr(exp(iQ}/27)).

If V is a real vector bundle with a fiberwise metric { -, - )y, then we say a
horizontal connection D is sub-Riemannian if

d(sl, S2>V= <Ds1, SZ>V+ <s1, Ds2>V, sl,S2e Cm(V).

If D is a sub-Riemannian connection, we define the total horizontal Pontra-
gin class as

p(D) = det(1+ %Q) =p(D) +p,(D) + -,

where p,(D) is the 4k-form, called the k-th horizontal Pontragin class.
Moreover, if the vector bundle V' has even rank 2r, then one can define the
Euler class (Q = (6;,))

_ (=
e(D) 297! Z LI '1'2 A oizr—lizr'

Similarly one can define secondary invariants.
In the following we will let P be an invariant homogeneous polynomial of
degree 4k.

Lemma 1.13. Let D, be a family of horizontal connections on V, let
¢ =9D_ /it and

V(r) = foltk—lp((p,n(f),n(f),...,Q(f))dt.
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Then

S-TP(D,, Dy) = k(k = 1) dV(r) + hP($, (7),...,(r)). (1.10)

Proof. Suppose that D.: C(V) —» C™(M X V') is a connection such that
D.(s) = py(D.s), s € I'(V), and

Vi(r) = /(;ltk"lP(d)’,Q'(T),Q'(T),...,Q’(T)) dt,

where ¢ = 4D, /dr and ¥'(7) is the curvature of D.. Then V(7) = p,(V'(1)),
and

J-TP(D,, Dy) = pu( 3= TP(DL, DY)
=pu(k(k —1)dV'(7)) + kP(¢, ¥ (7),..., Q2 (7)).
= k(k = Dy (py(V'(1)))
+KP(2(8), Da(X)(7), o, P(X)(7)):

Observe that if o'(7) and Q'(r) are the connection 1-form and the
curvature of D! respectively, then the connection 1-form for D, is w(7) =
p(@/(7)), and

(1) = dy(pu(@' (7)) = Pu(' (7)) A pu(@' (7)) =Pu(X(7));

hence (1.10) is proved.
The next theorem follows immediately from the lemma.

THEOREM 1.14. Let P be an invariant polynomial mapping. Let D_ be a
family of horizontal connections with curvatures Q(7), which satisfy

pu(P(Q(7),...,Q(7))) =0,

pH(P(%,Q(T),...,Q(T))) ~o0.

Then the horizontal cohomology class TP(D,, D,) € Hy,(M) is independent
of T.

1.4. Curvature for sub-Riemannian metrics

In this sub-section we will apply the results in §1.3 to sub-Riemannian
metrics.
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Let D be the partial connection associated with a splitting TM = H @ K.
We have seen that the partial connection is an example of horizontal
connection (see §1.3). Now we compute its curvature.

Let e; be an orthonormal frame for H.

Tueorem 1.15.  Suppose that A% (M) satisfies the condition (L). Then the
curvature of the horizontal connection (1.19) can be expressed in terms of the
partial curvature as follows:

Qs = Y pu(e' A el ® R(e;, ¢))s). (1.11)

i<j

Moreover, if p,, P, are the k-th Pontragian class of H — M and k-th Pontra-
gian polynomial respectively, then

P (Q) =py(py)-

Proof. By the condition (L), we only need to prove (1.11) at a point x,,.
Note that the right hand side of (1.11) is defined independent of a local
frame e;. So we need only to prove (1.11) for a local frame e; normal at x,,.
Now

Qs(x9) = Lpu(due' ® D,s)(xo) + Le' Ael ®R(e;, e))s(x)).

i<j
We need to prove de'(e;, e, X(x,) = 0. In fact,

de'(e;,e;) = %(ej(ei(ek)) - ek(ei(ej)) - ei([ej, ek]))(xo) = 0.
So (dy e’ ® D, sXx,) = 0.

Remark. 1If I, is generated by 6',...,0% which are orthonormal with
respect to the inner product on A 2(H),

0" =Y 6/ Ne,
i
where e; is an orthonormal frame for H, then (1.11) can be written as

Q=Y (R(ei,ej) - ZR(e,,ek)Ol’kO{j) ®e Ael.
i lkr

So we see that

R(ei’ej) - Z ZelrkairjR(el’ek) (1.12)
r lk
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is a tensor. However, in view of the importance of (1.12), we will prove that
(1.12) is a tensor without condition (L).

Lemma 1.16. (1.12) is a tensor.

Proof. In view of Lemma 1.2, we need only to prove that

u(e;e;) — Z Zelrkeirj/"(el’ek) =0. (1.13)
Ik

r

If H is given by 1-forms w; = -+ = w, = 0, where
dw; = 6 mod (e’)
then [e;, ;] = 2 6/;n, mod (e,), where n, is the dual vector field to w,. So
u(e,e) =23 00n,;
r
thus

#(eiaej) - Z Eolrkeirj:u'(el’ e) = Zzoirjnr - 22 Z Zelrkeirjoltknt
r lk r lk t

= ZZO{jn, -2y ) ZS,,O{J-n, = 0.

r Ik t

Now by the results in §1.3, we can express the horizontal Pontragin classes
in terms of the 2-nd jets of the sub-Riemannian metric, moreover, if H is
contact, the construction is canonical and the lower horizontal Pontragin
classes are in fact the Pontragin classes of H (see Gromov [12], p. 65, for a
related problem).

Define a tri-linear map T: H ® H ® H - H by

T(x,y,z) =R(x,y)z— Y, 3(0", X AF)(0",¢' A e))R(e;, €)z.
Here X denotes the dual of x € H in H*.

LemmMma 1.17. T is a well defined tensor.

Proof. Observe 0], = (6", ¢’ A e’)/2, expand x = (x,e)e; + -+ +
(x,e,)e,, and similarly expand y, and using Lemma 1.16, we prove the
lemma.
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2. The Hodge theory of H'(M) for degenerate metrics

The classical Hodge theorem says that on a Riemannian manifold the k-th
de Rham cohomology group is isomorphic to the kernel of the Laplacian
acting on k-forms. In this section we will generalize a part of the Hodge
theorem to degenerate metrics (sub-Riemannian metrics).

Throughout this section, without loss of generality, we will work in the
following setting. Let Q be a Riemannian metric on M which agrees with the
sub-Riemannian metric (-, - ) on H, K = H* be the subbundle orthogonal
to H, and let D be the (unique) partial connection associated with the
splitting TM = H & K.

Q is called an extension of the sub-Riemannian metric. In general there is
no canonical extension, however, if H is contact, there is a canonical way to
extend the sub-Riemannian metric to a Riemannian metric on M: if « is the
canonical 1-form in (1.3), then we take Q such that « has norm 1, i.e.,

Q(a +b,a +b) =da(a,Ja) + (a,b)’, a€H,bek.
2.1. Main results
We first introduce some notations.
To begin with, let D? be the Levi Civita connection of (M, Q). The

relation between the Levi Civita connection of Q and the partial connection
of the sub-Riemannian metric is (cf. [9])

Db =wDb, acH,be C(H), (2.1)

where 7: TM — H is the projection.
If w;, w, are two horizontal forms of the same degree, their inner product
is

(@, 0)0 = f (@, @), dv
M

where (-, - ), is the inner product induced on A(H,). Define &, to be the
dual of d; with respect to (-, - ), and define

Ay =dydy + 8ydy.

If o € Ay (M), its weighted Sobolev norm (cf. [24]) will be denoted by

loll} = (@,0); = [ (D, Do) do(x)
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where e; is an orthonormal frame on H. In the following we suppose that I,
is generated by 6, ..., 6%, which are orthonormal with respect to the induced
inner product on A 2(H).

Lemma 2.1. If e; is an orthonormal frame, y,,...,y, is an orthonormal
frame for K = H* | then if w is a horizontal 1-form or 2-form,

dyw

YeADw- ¥ (0’, Yein Deiw)o’, (22)
i i

On

- Li(e;)D,, — D, (2.3)
i
where D° is the 0-order operator

D° = ZpH(i( y;) D). (2.4)

J

Remark. D° only depends on dv, Q, and K. In particular, if H is contact,
then D is a canonically defined tensor, thus is another invariant of the
sub-Riemannian metric.

Proof. Let p;: A(M) - A(H) and p,: A(H) > Ay (M) be the orthog-

onal projections respectively, then py = p,° p, and define d = p,d. Then,
using (2.1), we can rewrite d as

d=YeAD,, (2.5)

thus when acting on horizontal 1-forms or 2-forms,

dyw =p,do =do — Y, (0",dw)0".

So (2.2) is proved. Now we compute 8,. Let 62 be the adjoint of d with
respect to Q,
80 =p,6%
=p(Li(e;) DGw +i(y;) Dw)
= Yi(e;) D0 + py(i(y;) DEw).

Lemma 2.2. If forany x,y € C*(H*), D8y € C*(H *), then D° = 0.
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Remark. 1f H* is an integrable distribution (e.g., H is contact), then
D° = 0 if every leaf of H * is totally geodesic with respect to Q.

Lemma 2.3. If w is a horizontal 1-form,

—Ayw=3YD,D,w—Dp, 0+ Ye ANi(e;)R(D,,D,)o+DyY.e AD,
i ' if i

+Yel A D, Dyw — ze,.(or, Yei A Deiw)i(ej)()’
i rj i

-y (0', Yetn Deiw)i(ej)DejG’. (2.6)
r i

Proof.  Select an orthonormal frame e; which is normal at x, € M. Using
(2.5),

Ayow = (dé + 8d)w — 6(2(&5,0')9’).

The last term above is the last two terms in (2.6), while the first term above is
easily seen to be equal to (cf. Wu [31])

D,D,w — D o+ Y.e' Ni(e,)R(D,,D,)o +DyY.e' AD,.
i i

If M is the total space of a fiber bundle, then Al, takes a much simpler
form

CoroLLARY 2.4. If M is the total space of a fiber bundle W — M — B over
a Riemannian manifold with totally geodesic fibers, and the sub-Riemannian
metric is the horizontal lifting of the Riemannian metric on B, then

AL = ZDe,»De,-w —Dp 0+ YA i(ej)R(Dei, Dei)w
i ' ij

- Ze,.(o', Z_e" A Deiw)i(ej)é)’ - (0', Zei A Deiw)i(ej)DejO’, (2.7)

rj r
where D is the horizontal lift of the Leuvi Civita connection on B.

To state our main result, we need to define some quantities associated with
H. To begin with, suppose that I, is generated by 81,..., 0%

0" =Y 8¢ nel, 8],= —0].
i
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Without loss of generality we assume that they are orthonormal:

Z Otsjett] = Bst'
i

Define
A(x) = max Z Zzijstoirjesrt(usi’ utj) - Ezijstoirjosrt(”sn uij) (2.8)
r Zsilusil
Yins05:07,0%05 (U, u
AZ(X) = max Z ijlkstVijV1lkYst llg sj tk) (29)
ru Zsilusil

Lemma 2.5. A(x),A,(x) only depend on I, (and not on the choice of
0'...,0%,e,...,¢,).

Proof. We first prove that A, A, are independent of e;. Suppose that e; is
another orthonormal frame, e, = X, a;; ¢; ; then we have

ro_ ar
0” = Z oiljlailiajlj.
1

Now define a transformation u;; — u;; by u;; =L, ;4,;a,;a;; which is
orthogonal with respect to X (u,;, u,,).
Now we compute the various terms in (2.8). The first term in (2.8) is

ror _ r = (=
x 0705 (U u,;) = x eiljlailiajljesltl(usziz’ utziz)aszsaiziatztajzi
= Z oirjosrt(ﬁsi’ ﬁtj)‘
Similarly, we can prove that other terms are invariant under the transforma-
tions e' — &', u;; — u;;. Hence (2.9) is independent of the choice of e,. Next

we prove that A;, A, are independent of the choice of 6. If 6’ = b, 6"
where 6" is another orthogonal frame, then

Y. 056;, = Lb, b, 07672 = 108,670 = 1 6/6,,,

hence (2.8) is independent of the choice of 6”. Similarly we can prove that
(2.9) is independent of e’, 6”.

THEOREM 2.6. If at every point x € M, 1 — A(x) — 2A,(x) > 0, then Al
is hypoelliptic.
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CoroLLARY 2.7. If H has non-degeneracy > 0, and 1 — A (x) — 2A,(x)
> 0, then

H' (M) ={we ANy(M),dyo =840 = 0.}
Now l@t us lopk at the case where H is a contact manifold, and we assume
6 =X, Ae"/n'/2 This sub-Riemannian metric is usually called an al-
most Heisenberg metric. Then we compute A, < 3/2n, A, < 1/2n? Thus if

n>1,1-2(x) — 2x,(x) > 0, so (compare [25]).

CoRroLLARY 2.8. If M is a 2n + 1)-dimensional almost Heisenberg mani-
fold, n > 1, then A\, is hypoelliptic.

2.2. The proof of Theorem 2.6
By definition, we need to prove that there is a positive §, > 0 such that
(Ayo,0)y = 8)(w,0); — N(,w),. (2.10)
Now
(Ayw,0) = (dyo,dyw)y + (g0, 8,0),
= (do, dw)o — Y (d0,07)g + (840, 8,0),

= (48 + 8d)w, w), - Z(dw 6)z.

Modulo a 0-order operators, &, = ¥,i(e)D,, hence modulo first order
operators,

dé +8d = }.D, D, + Y. ¢ Ni(e)R(D,, D)
)

i

Let w = X,u,e’. In what follows we will use O, to denote a sum of terms of

the form (D,u j» U)o, Which is bounded (for any positive ¢ > 0) by

|0(@)], < ellolli + N,loll.

Now we have

(0", dw)’ = (z‘,e'D u; )2 +0,.

ij = e
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Thus

(Agw,w)q = Z(D Mi> Do u; ) + (R(Dei’Dej)u"’uf)o

ij ij

2
- Z(Zo;jpeiuj) + 0,. (2.11)
r i

0

By integration by parts the second term above is

L (R(D.,, D Yupu;) = £ L (0505R(Dy,» D, Juis ), + O

i gy Ik
=2).05,6/(D,u;, D,u;), + O;. (2.12)

Here we have made use of the fact (cf. Lemma 1.16) that modulo 0-order
operators,

R(D D, ) ZO,,J)UR( > Dek). (2.13)
Now, using integration by parts repeatedly, the third term in (2.11) is

2
Z(ZDeiuj) = olk(De j’Deluk)O
r y

0 ijlkr

Z Z 9 olk(De, J’Deiuk)o

rf ijlkr

~ X 6,67, (R(D,,, D, )u;, u;.), + O,
ijlkr

Z Z oljolk(De[ J? Deiuk)o

r igjlkr

- X o;je;ke;;o;‘,(R(Des, Det)uj’uk)o + 0y
ijlkru

Z 20 olk( e ]’D uk)o

r ijlkr

~ X 0],6;,6:504(D, u;, D, uy),
ijlkru

+ Y 0/,67.0504(D, u;, D, uy), + O, (2.14)
ijlkru
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Here we have used (2.13) again. Inserting (2.12) and (2.14) into (2.11), we
obtain

(Ayo,0)o = ¥ (D u;, D,u;), = 2. 07,6/(D,u;> D u;),

e i
i

+Z 20 Blk( e J’D uk)o

r ijlkr

- Z T H z( e u;, D, ”k)
jlkru

+ 2 0/,0,0/104(D,u;, Duy ), + O,
glkru

e; )

> (1= A, = 2A,) X (D, u;, Dyu;), + O,
=

Hence we have proved (2.10).

3. Application: A vanishing theorem

In this section we will apply Theorem 2.6 to the case where M is the total
space of a fiber bundle over a Lie group with a connection whose curvature is
“almost left-invariant”, showing that if the curvature satisfies certain inequal-
ities, then the 1-st Betti number of the total space must be zero. The novelty
here is that no assumption on the fiber is made.

For the problem of finding a connection with prescribed curvature, in
general very little is known. Weinstein [30] proved that a fat bundle is not
flat. For the special case where M is the total space of a 3-sphere bundle
over the 4-sphere, Derdzinski and Rigas [6], using the theory of self-dual
connections, showed that if M is a fat bundle, then the fiber bundle must be
the Hopf-fibration §3 — $7 — §*.

3.1. Vanishing theorem for a connection on M with prescribed curvature

In this subsection we will first state our main result of this section.

Let W - M — G be a Riemannian submersion, where G is a Lie group
with a left-invariant metric and fibers are totally geodesic. The horizontal
bundle is obtained as follows: if K is the subbundle of M tangent to the
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fibers, then H = K * is the orthogonal complement. Let e; be a left invariant
orthonormal frame for TG, then e; can be lifted to be an orthonormal frame
for H, which we still denote by e;. Such an orthonormal frame on M will be
called a lifted left invariant orthonormal frame.

DeriNiTioN 3.1, We say that H has left invariant curvature if p(-,-):
H X H — TM/H can be generated by 0',...,0", such that with respect to a
lifted left invariant orthonormal frame e; for H,

0" =) 0/ Ae (3.1
i

where €,(8];) = 0.

Remark. 1If H is Hormander, then 6;; is constant.

Without loss of generality we will assume that 6" are orthonormal.

We first define some quantities associated with H and the left invariant
metric on the Lie group G.

Let

D,e; = LTje,. (3.2)
ij

In the following formula v, v, will denote elements of g, the Lie algebra of
G, w = Y,u;e'. Define

Ry(0) = %(ei A i(e))(R(D,, D,) = 804 R(D,,, D,,))o, )
i

+ Z airjo;t(ulri]l'rstmum - ulr‘itlrs];num)
ijlmst

+ ) 07,65,6565 (T — i) Lo (u,,u,)
ijlkrstu

+ Z oirjgsrt(r}ls - F.s'li)(rl};num’ ut) -2 Z 0;, esrtoil;orkrzj;numrliu“w

j
ijlrst ijkimrstuv

(3.3)
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and
Ry(w)
w0 ey (34)

2y ( N N i(ej))vk,v)

ijlkr

+ 2 (0507(Tk — T e' A i(€;)0,,,0)
ijlkr

/{(1 — $)(v,0) + ¢;(v,,v,)2}, (3.5)

vy, = max

Bi(¢) = max

Y 0;0;, ouolk{zuljrlzuuv + 2uktrl{num}

stUis
ijklmrstu

- X 07;05,0:500 (i — Tit) (tpmj> )

jlkrstuv

- Z otrjosrt(rtls - 1—‘sli)ulj’ ut)

ijlrst

B,(¢) = max

ror t . o)
Z 0 os{ tlu Ut + I‘Iulu Fslulusj Iﬂsluluit}‘

ijlstr
Jla-orgirozu) o)
i i
Here ¢ is a fixed number, 0 < ¢ < 1.

Lemma 3.1, By(¢), By(d), v, (0 < ¢ < 1) are independent of the choice of
the left invariant frame e;, 6’.

Proof. The proof is similar to that of Lemma 2.5.

THeEOREM 3.2.  If at every point H has non-degeneracy r > 0,1 — Ay — 2A,
> 0 and the following inequalities are satisfied for some 0 < ¢ < 1,

1= A =24, — ¢(Bi(@) + By(0)) =0, (3.7

yi— (1 - ¢)(B1(¢) + Bz(d’)) >0, (3-8)

then dim H'(M) < m. Moreover, if the inequality (3.8) is strict, then H'(M)
=0.

Remark 1. Note that no assumption on the fiber is made.

Remark 2. AL, acts on Al (M), the space of smooth cross-sections of
H*. Observe that A}, (M) has a description independent of H: if p;: M - B
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is the projection of the fiber bundle, then H* can be identified with the
pulled back bundle pF¥T*B, so A}, (M) is the space of smooth cross-sections
of p¥T*B.

Remark 3. 1If H' is a connection whose curvature is not left invariant but
sufficiently close to the curvature of a left invariant connection H satisfying
the conditions in Theorem 3.2, in particular, satisfying the strict inequality
(3.8), then H'(M) = 0 (cf. Corollary 3.7).

Now we look at the simplest case.

CorOLLARY 3.3. Let M be the total space a fiber bundle W - M — T™
over a flat m-dimensional tori, H a connection on M with left invariant
curvature satisfying 1 — A, — 21, > 0, then dim H'(M) < m.

Proof. In this case B, = B, = 0, so the conclusion follows from Theo-
rem 3.2.

3.2. Proof of Theorem 3.2

To prove the theorem, we need to compute (A}, w, w), which is quite
involved.

Lemma 3.4. If w is a horizontal 1-form,

Y (0’0,ke A i(e;)R(D,, ek)w,w)

ijlkr
= =2 (6/05¢' A i(e;)D, 0, D, o)
ijlkr
-2 ( 05D, (e Aie; ))Dekw,w)
ijlkr
~ X (0500(Tik = T €' Ai(e)) D, @, 0). (3.9)
ijimkr

Proof. Using the integration by parts, we have

) (B’O,ke Ai(e;)R(D,, D, )w, a))

ijlkr
= =2 (0/,0¢’ A i(e;) D, 0, D, o)
ijlker
-2 ( [0 D, (e A i(ej))Dekw,w)
ijlkr

— X (0505 Aie))(Tp =T D, , 0).

jlmkr

In the following let w = T,ue’, u;; = eu;) + L,Tju;, so D, » = Lu,e’.
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LemMmAa 3.5.

Y (6", dw)’ = fZB’B’u u,;

ijstr

+/ Z 0r0r 0”0,k{u,]ukt 2uljl_']£uuv - 2uktl-‘l];num

jklmrstu

+ Zrlj;numrlivuu>

f Z olrjesrteuolk(rlk rl:’;){(umj’ut) _( molby> U )}

ijlkrstu

t — T
+[ Z 011 st{ lu Ug + Flulu l"slulusj I‘_\'luluit}
ilstr

Zoret(ul Fstmu ulrtl sml )

ijlmst

Proof. By definition,

(0' dw)’ = = [65u,05u

ijij
= fZ{atjutto Lt Z 01} (ul sm m ul[‘itlrs‘];num)}

rijst ijlmst

+f Z 91} (ule (ut) ull-‘itlDeu

ijlrst

+uThe(u;) — ule u,))
+ [ L0500 (ei(u)en(u,) — ei(u,)e,(u)))

=1, +1,+1,. (3.10)

The second term in (3.10) is

120’0' (n(e; e )uj,u,) fZB,’,OS’,(w[ei,es]uj,u,) =1, + I,.

ijrst ijrst

Using the formula

w[ei’es] = De,«es - Desei = Z(Ftls - Fsli)el’
1
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we have

Iy = [ X 6500(Th = Ty u) = [ X 6505(TL = T4 (Tt ).

ilrst ijlrst

(3.11)

On the other hand, using (1.13),

=2f ¥ 0;0:0505 (ex(w), ex(u))

jlkrstu

"f > ozjesrtofselk(ﬂ'[etaek]”j’”t)

jjlkrstu

f Y 60,0105 (T — rl?ll)(em(uj) + eriwuua“)

jlkrstu

Y. 0]6.,6505 (T — Ti7)(T,u,, u,)

ijlkrstuv

+2f X 0000800 (up ) —2f X 0707,0860 (uy T )

ijlkrstumv ijlmkrstuv

—2f X 05050508 (Tntt> )

ijlmkrstuv

+2f X 07050805 (To ot ,)- (3.12)

jlmkrstuv

Now we compute the third term in (3.10):

I = fzou st ules(ut)rtl uII‘i';Desuj + ulrsjlei(uj) - ulrsjlei(ut)}

ijrst

—fzouost{(ul’ st)l—‘zl (ul ll’u )+ (ulrstl’uij) - (ulF;;’uit)>

ijrst

rer{( lul’rstmum) - (E’?ul’ m) + ( slul’ Jr.num)

—(Tju,, Thu,,)} (3.13)

Insert (3.11), (3.12), (3.13) into (3.10), we prove the lemma.
Now we can write (Al (w), ®) explicitly.
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COROLLARY 3.6. If w = Lu,e’,
(Ayo,0) = (0, 0); + Z(e" A i(ef)((R(Dei’Dej))
ijlk
~ 07,6, R(D,, Dek))w, w)

~ 2% (6;65.¢' Ai(e;)D, 0, D, 0)
ilkr

-22( 00D, (e /\t(e))Dekw,w)

ijlkr

- ¥ (0505(Tir — T e Aie))D, 0, ) fZ)o'a'u uy;

ilmkr ijstr

-f 2 ozrjoszouetk{uljukt 2uljrlfrvuv

ijklmrstu

= 2uy, I u, + zrllmumrlzvuu}

Y 6767,(Th = Th){Cuggo ) = (Tt )

ilrst

f Z Otrjosrtauolk(rlk l){ Upjr U _Fr{w(uu’ut)}

ilrstuv

s K
ijlstr

+ [ X 656 (w T, — wiTiTu,,).

ijlmst

The following inequality, which is an easy consequence of Corollary 3.6,
will complete the proof of Theorem 3.2.

CoroLLARY 3.7. We have the following inequality:

(Apow,0) 2 (1 — A= 2A, = ¢(B1(¢) + Bz(d’)))(“”w)l
+(v1 = (1 = @) (B(®) + Ba9)))(w, ®),.
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