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THE HELICAL TRANSFORM AND THE A.E.
CONVERGENCE OF FOURIER SERIES

I. ASSANI

Introduction

Let (X, r,/z, 0) be a dynamical system, tz being an invertible measure
preserving transformation on (X, r,/z). The helical transform Hf(x) of
f Ll(/.t,) is the limit a.e. of

n

Hf(x) _,’ f(qgx)e2’k
k

for each e fixed. The existence of the limit is known from the results of A.
Calder6n [3] and M. Cotlar [5]. (The notation E. means that we delete in the
sums the term corresponding to j 0.)

DEFINITION 1. A measurable function f satisfies the Wiener-Wintner
property (with respect to the dynamical system (X, z-,/z, o) if there exists a
single null set N X off which the limit Hf(x) exists for all e R.

DEFINITION 2. A measurable function f satisfies the strong Wiener-
Wintner property (with respect to (X, -,/x,0) if off a single null set
e - H,f(x) is a continuous function.

By taking an invariant function (i.e., f q f) the discontinuity property
at 0 of

E
eike
k

k

shows easily that not all functions satisfy the strong Wiener-Wintner property
(S.W.W.). This property (S.W.W.) is more likely to hold when we are outside
the Kronecker factor of o (i.e., the closure of the linear span of the
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124 I. ASSANI

eigenfunctions of q). In [2] we showed that the property S.W.W. for all
functions in ( I b) (Lp) for all 1 < p < is equivalent to the strong (p, p)
property for the maximal operator

fr eintf(t)sup dt
n -Tr

X--t

(Carleson-Hunt theorem [4], [6]). The space (I- 4))(LP) is the closure in
Lp of the set of functions f f q. The dynamical system in [1] was the shift
on [0, 1]z. We also proved in [1] that the Wiener-Wintner property fails in
L(Log Log L)’ for any 0 </3 < 1. One of the tools for these proofs is the
double maximal helical transform

H**f(x) sup sup
n e

n_,, f(q(x)) eikek
k-n

Its discrete analog is H**a defined by

H**a(j) sup sup
n

n eike
ak-j

k
k=-n

One way to study H**a is to study first the maximal discrete helical
transform H*a

H*a( j) sup
eikeak-j
k

In [2] we proved the formal equivalence of the L2 boundedness of the
maximal operators corresponding to the partial sums of Fourier series, the
range of a discrete helical walk, partial Fourier coefficients and the discrete
helical transform. In the same paper we proved that the maximal operator
associated to the partial Fourier coefficients I* is not strong (p, p) for
l<p<2.
We are going to prove here the formal equivalence of the strong type

(p, p) estimate of H**f, H**a, H’a, the partial sums of Fourier series of
L’ functions and the maximal operators used in the proofs of the main
results in [1] for 1 < p < . An estimate of the constant involved allows us to
"extrapolate" using a result of [8]. We show that H**f L if f L(Log L)4,
and give an exponential estimate of H**f for f L and prove that

H**f < o a.e. if f L(Log L)2 by a weak type inequality. This will allow us
to extend one of our previous results in [1]. We also prove that the property
S.W.W. in L Log L for the shift on [0, 1]z implies the a.e. convergence of
Fourier series of functions in L Log L.
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Let us say that the methods used to establish these equivalences are
certainly familiar to experts in harmonic analysis and Fourier series. As it
may not be the case for specialists in ergodic theory and dynamical systems
we give what we believe are self-contained proofs. At the same time we will
obtain an estimate of the constant (C(p6/(p 1)4) in L p, 1 < p < ) which
will allow us to "extrapolate" in the Lorentz spaces L(Log L). It did not
seem to the author that these connections are direct when we are dealing
with Lorentz spaces of the type L(Log L)(L(Log L)). More precisely, the
introduction of double supremum

sup sup lH,fl sup sup
n n

, f(kx)eike

k
k= -n

which in the case of the shift on Z translates to

H** (a)(j) sup sup
n E

n eikeak+j
k

k=-n

seems to give a more restrictive class than the single supremum

H**a(j) sup
a eike
k+j

k
k=

Knowing that the partial sums of the Fourier series of functions in one of the
spaces L(Log L)(L Log L)’ are bounded a.e., does this imply that H**(f)
is also bounded a.e. for f in L(Log L)’(L Log L)v. We have in mind here
the result of P. Sjolin [6] on the a.e. convergence of Fourier series in
L Log LLog Log L.
As pointed out by the referee, another interesting point about these

connections is their simplicity while each maximal inequality is so far difficult
to prove.

The results

THEOREM 1. The following are equivalent for p real, 1 <
(i) Partial sums of Fourier series (Carleson-Hunt [4], [6]).
For f LP[ Tr, 7r let

S*f(x) sup
n

n

E ;(J) eijx
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Then there is a constant C such that

(ii) Maximal helical transform on
For a Iv(Z) and e R define

ei(j-k)eaj_k
Ha( j) E’ k

k=

and

H*a( j) sup na( j) l.
eR

There exists a constant C such that

IIH*alllp < Cllalllp for all a Iv(Z).

(iii) Double maximal helical transform on v.
For a Iv(Z) and e R define

H**a(j) sup sup
n t

n ei(j-k)eaJ-k
k

k=-n

Then there is a constant C such that for all a Iv(Z)

IH**all,(Z) <_ Clall,<Z).

(iv) Double maximal helical transform for a measure preserving transforma-
tion.

There is a constant C such that for all dynamical systems (X, r, I, q) and
all f LV(lz) we have

n

sup sup E’ f(qx ) eike < Clflpk
n e k=-n p

(v) Double maximal estimate for "the ergodic Fejer sums".
There is a constant C such that for all dynamical systems (X, r, tz, q) and

all f LV(ix) we have

Ilsupsup ’ (1
n e Ikl<n

Ik:l
n+l
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(v) Double maximal estimate for a measure preserving flow.
Let {Ts: - < s < } be a measuring preserving flow on a measure space

(X, , I). For f LP(X, , I) define

eisf(Tsx)
ds.dr**f(x) sup fNN,e < Is[ <I/N S

There is a constant C such that for all measure preserving flow we have

(vii) Carleson Hunt estimate.
For f L_=,=I define

f= eintf(t)e*f( x ) sup dt
nZ

_ x

There is a constant C such that for all f LP[-Tr, 7r]

liP*flip _< cIIfll,.

Proof We will prove the following implications: (i)** (vii), (iii) (iv),
(iv) (v), (iv) (vi), (vi) (vii), (iii) (ii), (ii) (vii), and (vii) (iii).

(i) * (vii) is certainly well known; (vii) (i) is a consequence of classical
calculations involving the Dirichlet kernel and the Hilbert transform (see [7]
for instance). The implication (i) (vii) can be proved by also using the fact
that for f LP[ zr, 7r]’

0 0

fl(x) E f(J) eijx and f2(x) , ;(j)eijx

j= j=0

are also LP[ r, r functions (L[ 7r, r admits projection).
(iii) (iv) can be obtained by a standard transference argument. For

ay f(qYx)we have positive integers N, L so that

(aN + I2’
"Xn<L e k= -n

k dx

nN

E’ ei(j-k)ef(oJ-kx )
p

E f sup sup k dx
j= -N"Xn<L e k= -n

N+L
<_ c E flf(  x)l ax

j= -N-L

C(2(g / L) / 1)llfll,.
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The result follows by dividing by (2N + 1), and letting N and then L go to
infinity.

(iv) (v). This is a consequence of the following equality and the well-
known strong (p, p) estimate for the ergodic averages. We have

n

( Ikl f(qkx) eike_,’ f(qkX) eik E’ 1 n + 1 k
k=-n

k
Ikl<n

1 n

n + 1 -" (f(pkx)eik (f(q -kx)e-ik"
k=0

(iv) (vi). We can approximate a flow by times t map of discrete measure
preserving transformation as we did in [2].

(vi) = (vii). It is enough to consider the particular case of the flow of
translation on the real line.

(iii) (ii). Obvious (take a with finite support).

(ii) (vii). It is enough to show that there is a constant C such that

eietf( x ) I"f sup f t
dt dx < C. f(t)lp dt

-ooO<e_<l

for step functions of the following type"

1 1
f= ak" ltk/U,(k+l)/V], 0 < - < -.

These functions are dense in L’(R):

f sup f eietf(x--t) dt dx

fO /Nsup E eike/N fl/2m eietf(x + (j k)/N t)
= / t + kiN

dt dx

fo1/3N sup E eik/Uf1/2N eietf(x -!- (j k)/N- t)
k=-oo "-1/2N + k/N dt dx

+
"1/3N supe E eik/Nf1/2N eietf(x + (j k)lN- t) "

k=-oo -1/2N +k/N dt dr

+
-’1/2N Supe

_, eik/N fl/2N eietf(x + (j- k)/N- t)
P

k=-oo -1/2N + k/N dt dr
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We will treat the first term and show how to get similar estimates for the
two others.

fl/3Nsup
"0

ei/vfl/2N eitf(x + (j- k)/N- t)
P

k= -1/2N +k/N dt dx

E fO1/3Nsup

E fO1/3Nsup

_, eik/v fl/3N eietf(x + (j k)/N- t)
P

k= 1/3N + k/N dt dx

fO1/3Nsup

_
eiek/N f-1/3Neietf(x + (j- k)/N- t)

P

k= 1/2N + k/N dt dx

eiei,/N fl/eietf(x + (j k)/N t)
P

k=-oo l/3N + k/N dt dx

Here again we will treat only the first term in detail; it is less than

C 1/3Nsup
j= --oo"0 e

eiek/N ay-k 1/3N eite dt dx’-/ f-1/3N
E fo1/3Nlaylp" sup

j’ E

1/3N eit [PL /3N
dx

fl/3N
sup

j= -oo"0 e

eiek /N a I"E’ N kft__/3N, eiet

k=-oo -/ 1/3N + k/N dr.

(1)

(2)

(3)

(1) is less than

1 ] supC’-- =_oo

aj_k [sin(e/3N) IPNp
k "sup

k= e 18

1 [P<_ C- , lak CIIfll.
k=

For (2), a direct computation shows that

/3N
sup

0<e<l

1/3N eiet [P Cf_
/3N

d dx <_ -Notice that f 1/3N eie-1/3N tit dtl is taken in the principal value sense: it is equal
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to

lim
1/3N eiet e

t

--iet

dt =C" lim
sin et

dt

For (3) we have

1/3Nsup , eik ay_ fl/3N iett

k K/Iv 1/3N t + k/N

C

and

C , la._l " C
lal, C. Ilfll.

k=-oo k2

The other two terms can be treated similarly (by the same splitting).
It remains to show how to estimate

and

f11/2Nsup/3N e

_, eik/g f1/2N ei*tf(
k-- -1/2N

x+ (j- k)/N- t)
t + kiN dt

/N
sup

/2N e
E eik/f1/2N eitf(x + (j k)/N- t)

k= 1/2N + k/N dt dx

The control of these terms is similar. Again picking the first we can split

eietf(x + (j- k)/N- t)
1/2N t + k/N dt

into two terms, fx 1/2N and fx1/2N. Then we treat the corresponding terms as
we just did. For the first integral, x- is positive and we have a similar
situation; for the second integral, x t is negative and the resulting actions
is a shift of the sequence (ai) to (a/_l). This proves (ii) (vii).
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(vii) (iii). We need some notation. Let

1 f f(t)Hf(x) -rtan(x- t)
1 f f(t) dtdt, Hnf(x) - n<lx_tl<zrtan( x- t)

1
x) sup

eQ

r eitf(t)
tan(x t)

dt

in fact, H*f(x) is equal to

l f-_ eietf(t)sup
tan(x t)eR 7r

dt,

see Lemma 4. For f LP[-Tr, Tr] and H.f(x) SUPo<n< Hnf(x) we
have (see [7], p. 120)

H,f(x) < C(Mf(x) + M(Hf)(x))

where M is the Hardy-Littlewood maximal function. So

(4)

and

H,(eietf)(x) <_ C(M(Ifl)(x) + M(IHl(eitf)(x))
<_ C(M(Ifl)(x) + M(IH*fl)(x))

[] supn,(eif)l[< CIIfll,
eQ P

because (vii) implies that H*f is strong type (p, p)

1 1
tan(x -t) x

We have also

sup sup - x
rl e.Q rl< Ix-tl <zr p

if. eietf(t) dtl[ <Cllfllpsup sup x-----t
rl eR < Ix-tlx <r p

This can now be extended to LP(R) (by change of variables and functions, for
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instance) to obtain

As

f sup sup

we deduce that

"- < Ix-tl x-t at dx<C If(t) dt.

1 f eietf(t) dt L(R)sup x

Now we take

<lx-tl <
eitf(t) dt dx<C If(t) dt

f(t) ( akO if k -1/8 <_ <_ k + l/8, k Z

We get

I/,(z)

otherwise.

[ eitf(t) dt dxo< Ij+x-tl <J + Xfo sup sup

< Ix-tl <n

eietf( t) dt dxx--tf sup sup

fo sup sup
j=-oo e r/

eiet
< Ij/x-tl <rt

fl/8 sup sup
j_-_o"O -l<e<l ?

fo1/8 sup sup
j=- -l<e<l r/

akltk-1/8, k+l/8](t) dt dr
k

E ak
Ik-jl

.eikefl/8 eiet

-/8J + x k

akeike
j-k

ik-jl <[]

fl/8 fl/8 eiet(x --t) de))< eike dt
-1/8 -1/8 x / J k

W eiJea [1/8 eiet

J- 1/8 X’----t dt dx.

p

dt dx
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Because

f01/8 sup
-1<e<1

1/8 eiet
p

L1/8x dt dx

is a finite absolute constant and f l__/18/8eike dt is bounded below by an absolute
constant the result follows from noting that for x [0, 1/8],

sup sup
j=-oo -l<e<l Ik-jl-<[7]

j k [_1/8 x + j k

_< C sup sup
j=- -1<e<1 r

sup

Ik-l [n]
Ij kl -1/8 ix / j k tl

, lakl 1’Ik-jl_<tnllj--kl 2 <Cy=_ sup la,+Ylk’2

p

COROLLARY 2. For
(X, z-, I, q) we have

all p, 1 < p < , and all dynamical systems

n k (p 1)4
Ilfll,

e =-n p

for all f LP(tz).
(The constant C does not depend on p or any particular dynamical system.)
The same estimate holds for invertible measure preserving flow; we have

eiSf(Tsx)
dsfN<_ Isl <I/N S

p6
p ( p 1)4 Ilfll,.

for all f L"(tx) and all measure preserving flows T on (X,

Proof In [6] Hunt proved that the maximal operator P*f(x) in (vii) of
the previous theorem satisfies a strong type (p, p) estimate with a constant

constant.

A look at the proof of Theorem 1 and keeping track of the constant shows
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that the constant in (iii) is the same as the one for H**f(x), the double
maximal helical transform. The constant in (iii) is less than

constant
p6

(P 1)4

because of the Hardy Littlewood maximal function M (inequality (4) in the
proof of (vii) = (iii)). The same conclusion also holds for measure preserving
flow by again using discrete approximations of the flow by times/ map.

THEOREM 3. (i) For all dynamical systems (X, -,/z, q) (/z(X) 1), (resp.
all measure preserving flows), we have, for each f LI(/z) such that
fx[f(x)[ ln+4lf(x)l d/x < +,

f sup sup
n

n

E’ f(kX) ikee
k-n

resp. sup sup
n e

t" eietf(Ttx)
dt

/+;< ltl <,l

(ii) There exist positive constants A, K, C such that for all dynamical systems
(X, ,9r,/x, q), (/x(X) 1) we have, for all f L,

and

fexp(xlsup sup[ 1/2) d/x _< K

SUPn supe f(qkx)eike

k
k= -n

>A <Cexp -Cllfll loo/

Proof. (i) and the first part of (ii) are direct consequences of Corollary 2
and the extrapolation result found in [8, vol. II, p. 119]. (The proof in [8]
works also for sublinear operators.)

For the second part of (ii) we use Corollary 2 and some ideas in [8, p. 119].
We have

sup sup
n

E’ eilef( Olx )
S

I11 <n
Cp211fll

p
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for, say, p > 2. Then for k an integer, k > 2, we have

Aktz{x "l H**f(x)l > A) _< fln**fl <_ Ilfllk. Ck kEg

and

A+kllfllzkc-kk-2k{x "ln**f(x)l > A) < 1.

As k-2k >_ e -2k 22k((2k)!) -1 we have

A+kf-kllfllooe 2k

k--2 (2k)! "1 n**f(x)l > x) _< E 2
K=2

and

-2k

k=2 (2k)!

-2ke
/z{ x" In**f(x)l > A} _< 1

The conclusion follows by noting that for h > h0,

-2k

k=2 (2k)!

-2ke
>_ exp(V-" (/-"[[f[[loo/2)-l)

and for 0 < h < h0, the same type of inequality holds.

The last proposition already allows us to improve one of our results [1] on
the shift on [0, 1]z for functions in L(Log L)4. More exactly, we can show
that for this shift and f L(Log L)4 when f satisfies W.W. and f- ffdlzz
satisfies S.W.W. We want to prove that these W.W. properties hold in fact
for functions in L(Log L)2. To achieve this goal we need to extend Hunt’s
basic inequality. But before that, to avoid any measurability problem by
dealing with a supremum on an uncountable set of measurable functions we
will prove the following lemma:

LEMMA 4.
set of which

For all p, 1 < p < oo, and all f LP(R), there exists a single null

fo eitf( ) dt exists for all e R.Hf(x) x- t

(In other words, the flow of translation on the real line satisfies W.W.)
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Proof. There are several ways to prove this lemma. One way is to exhibit
a dense set of functions where the property W.W. holds and then use the
strong (p, p) estimate of H**f. The dense set is easily provided by the
continuous differentiable functions with compact support. Now let us take gj
such that Ill- gillp --* O, gi continuous differentiable with compact support.
We have

X sup ( lim sup fixe y0 -t[ >y

eitf(t) dt lim inff
X y---O JIx-tl >y

suPe lim sup
y 0 --tl >y

eit(f -gj)(t)
x-t

dt

lim inf/
yO JIx-tl >y

eit( f gi)(t)
dtx--t

eietf(t)x--t dt))

for each j

flx-tl >’O

eiet(f --gj)(t)
x--t

dt

and

lin/z { x" 2 sup supv iet(f --gj)(t)e

>’o X
dt =0

because of the strong type property of H**. 3

We can now extend Hunt’s inequality

PROPOSITION 5. ForA r, zr let

H*IA(X) sup
eR

eietlA(t)
dt

Then them exists a constant C such that

C p2 )P/,{x(--rr, rr);H*lA(X ) >h} < h p- 1 /z(A)

for all A c (-Tr, zr).
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Proof. Hunt’s basic inequality says that

,{x (-rr, rr)" sup
nZ

rr eint 1A(t)
dt

rr X
> h <_ Cp 1 A-Plz( A)

for all A (-rr, rr) and all p, 1 < p < 2.
From this we deduce first that

(1’) /z(x R" sup
nZ

[.rr e int 1A(t)
dt > h <_ Cp 1 ,-Plx( A)

This is because

/z{x R" H*IA(x ) > h}_, l*{x (-rr + 2krr, rr + 2krr)’H*lA(x ) > h}
k=

oo( L. eintlA(t)}/z x(-rr, rr)" sup dt >a
k=- neZ x + 2kr-

and for kl > 2 we have

frr f-_ eintlA(t)eintlA(t)
dt- 2krr x + 2krr-t dt

so

/,{x e (-rr, rr)" sup
[k[>2 nZ

eintlA(t)
_x + 2krr- dt

-< E ,(x (-,r)" sup
Ikl>2 nZ

"rr eint 1A(t)
dt

, 2krr

/,{x(-rr rr)’CIL 1A(t)
Ikl >_2 rr k2rr

dt

<_ C _, I(aA ) 1 P p2 Plz(A)
k=-oo Ikrrl

<_ Cp_ 1 hp

The case k=0 is clear. For k= 1 or k=-1 we can use a periodic
extension of 1A. Hunt’s basic estimate holds for periodic functions. Now for
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any set B c [-k07r k0zr], k0 positive integer, we have

(2’) (x R" sup
nZ

eintlB(t)
dt > A < Cp 1 A-----As 1B(k0t) is the characteristic function of a set included in (-r, 7r), by (1’)

we have

/z{x R" sup
nZ

[.oo eintlB(kot)
dt >A <_A -p Cp_ 1

P

1B(k0t) dt

and

/zx R" sup
nZ

1.o ein(t/kO)lB( kot)
x- t/ko

dt

< A -p Cp 1 l(k0t ) dt.

This implies that

x R: sup
n’Z

ein(t/ko)l( kot)
X- t/ko

dt_
A -p p2 )P r

Cp 1 f l,(kot) dt.

The conclusion in (2) follows by the change of variables x’ kox. Now the
conclusion of Proposition 5 follows easily. It is enough to show that for each
m positive integer

/.,{x R" sup
kz

ei(k /2m) 1A(t) >h < Cp_ 1 m(A)

But this is now an easy consequence of (1) and (2) (after changes of variable
u t/2m, x’ 2mx). We have the following corollary:

COROLLARY 6. There exists a constant C such that

sup
7reaR fw eietf(t) dt dr < C(1 + fl[( x) ln+2l f( x) dx)

for all f L(Log L)2.
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Proof We can use the Lorentz spaces L(p, q) as R. Hunt did in his
remarks (p. 235-236). They are a modification of [8, p. 119].

THEOREM 7. Let (X, r,/x, q) be a dynamical system on a probability
measure space. There exists a constant C such that for all f L(Log L)2 we
have

x{x" IH**f(x)l > A} _< T - 1 + flf(x)lln f(x)ld

Proof Using Corollary 6 we can get the inequality

(3’) fo eitf(t) dttz x(-zr, zr)" sup sup
0<r/<Tr eR < [x-tl <rl X t

C fill dtz+ C( flfl(x)lln+2 )<- T T 1 + Ifl ( x )l dt

for all A > 0. This, because of the following inequality we already used:

sup sup
0<’r/<r eR fo eitf( ) dt

< Ix-tl <’o X

<_ C ( M(Ifl ) ( ( f=x) + M sup

where M is the Hardy-Littlewood maximal function. We want to transfer (3’)
to the ergodic setting.

Let (aj)’ljl < J be a sequence of real numbers and

J

f(t) ., ajl(_,18J+,SlJ.,lSj+,jlj)(t ).
j=-J

Let

V= x+ j j t <r/ gff’8--ff

By (3) we have

x 0, sup sup x + k/J- j/J-

CC
lasl + 1 + lasl ln+llasl= - y= -

dt
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Now we have the following properties"

(4) /z X 0, jj
0<n<r lel <J j=-J

_< g{x (O,,r/) sup sup
0</<Tr eR

eiet eier(J/J)aj
x + kzr/J- jzr/J-

eitf(t) dt

< Ix-tl < X

Tr/8J eiet eiezr(J/J)aj
/8 x -; -/7 : 7-47-]/J

dtf/8J eiet

-r/8] kzr/J jTr/J

dt

f=/8J
-/8 [ kzr

J

dt

eiet( x t)
jTr + X t][)[ kTr j

dt

and

inf(6)
lel <J

’n’/8J eiet dt
zr/8J

>y
eiet ( x t)

/8J ( kr J
jTr ) ( kTr J jTr +x-t)

f/8J Ix- tl
< C-/8 ( k" j

j2

(k _j)2

dt

for k : j and x (0, 7r/8J). Finally

(A) xe O, "sup sup
j=-J n <J le’l <1

(B) +

eie’Joi
k-j

Ik-jl <n

C
la.l" +-A- 1 + la-Iln-21ayl<

j=_j j=-j

] /x x 0,j "sup
k= -J n<J

lei’Yl I%,1
t-l ,, (k j

(D) + xe O, sup sup
k= -J 0<r/<Tr le’l <1

eie’t_Uj
x_t

dt

where Z {(Ix- tl < r/)t (-Tr/8J, Tr/8J)} and a and /3 are constants
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independent of J, k, j and A. We have

(B) 8]card(k (-J, J)"

and

C
(D) < T

J

E lal 2j
j=-J

+ -X- 1 + lajl ln+21ayl
j=-J

Then by (3) and the equality

(D)= p, x -f-, j sup sup
k=-J 0<r/<Tr le’l <1

ie’taj
dt--t

where

{W= (Ix-tl <n) n -g-+--rrj rr (j+l)rr}}J’8J J

we have

J ( (jTr (j+ 1)7r
lx x -]-, j sup sup

0<r/<zr [e’l <1 fix eie’tf(t) dt
-tl < X

sup sup
0<7 <" le’[ <1

eie’tf( ) dt
-tl <7 X

where

So

f(t)
J

ail -g-f--l---
"n’j "rr rrj )j, 8--] + -]- (t).

(E)
zr {g-] card k ( -J, J)" sup sup

0< <r Igl _<1

eie’Jai
k-j

Ik-jl <_J

<2(A) + gTcard ke (-J,J)"
lajl

Ik-jl <J (k j



142 I. ASSANI

Now suppose (X, -,/z, q) is a dynamical system and f L(Log L)2. If

then

a f(qix) for Ijl < J,

0 otherwise,

card k (-J,J)" sup sup >aA
n<Nle’l<l Ill<n

C if(y(x)ln+21f(Yx)l

"{ eie’lf(l+kx)
+card k(-J,J)" >flA

lllJ

for each fixed integer N < J.
By integrating both sides of the inequality with respect to/x we get

8--txx card{(x, k) Hf(x) >

Cflfld+ C( +1 )<_ l + flf(x)lln f(x)ld

+;f E If(l+x)l d(x)"2

because q is measure preserving (card is the counting measure on Z),

iYx) sup sup
n<N Igl <1

eie’lf(l+kx)E
Ilion

As

the conclusion of Theorem 6 now follows easily.
As an application of Theorem 6 we can improve one of our results in [1] on

the shift on [0, 1]z.
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COROLLARY 8. Let q be the shift on ([0,1]z, B[0, 1]z),/.z). For any

f Ll(/zz) such that

f If(x)lln+ 2l f(x)l dx <

we have the following"
(i) f satisfies W.W.;
(ii) f- ffdtzz satisfies S.W.W.

Proof. (i) We know by [1, Theorem 7] that any f LP(/xz) satisfies W.W.
and f- ffdtxz then satisfies S.W.W. Let f, LP(/xz) be such that f-f,- ,0 a.e. For each positive integer k we have

( n )sup lim .,’ -ef(qkx ) ’ lim ’ ef(qkx ) ik

e n k= -n n k= -n

_< 2 sup sup
n

(f- f)(dx)e

So

x" sup iim E’ f(qx) eik lim ’ f(qx) eike > 0
n k=

k k
-n n k= -n

SUPn sup
n

E ( f fk)(lx) ei > O} for each k.

But

x 2 sup sup
n E

n

E’ Ol
( f fk)(lx)

eile

l= -n

2wof f f dlz + - 1 + f,lf- f,,I ln+2alf fkl dlz)
for each a > 0 fixed.

Letting k go to infinity, for p h/a we get

lim /z x 2 sup sup
k n e

n

E’ ( f fk)(q)lx) eile
l=--n

2C
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Now letting a go to infinity we obtain

limb x 2 sup sup
k n e

n

e >p}, =0.

This proves that

x’sup lim E’ f(qX)k eiklim ’ f(cpkX)eikek
e k -n k -n

is a null set and f satisfies W.W.

(ii) The function g’f- ffdz belongs to

( I th) ( zl(/-/,z ) (closure in Z of the set ( I ) ( zl(/.z )))
{g g oq; g Ll(Z)}.

As (I- )(LP(/zz)) is dense in Z norm in (I- b)(Ll(/xz)) we can find
functions gn (I b)(LP(/xz)) such that g g,, --> a.e. As g satisfies W.W.,
for each n and 8 > 0 we can make sense of the following inequality:

sup ]ng(x) H,g(x)]
le-e’l <6

< sup (Ig(g-gn(X)l+lH,(g-gn)(X)l+l(H-Hg)gn(X)l).
le-e’l <6

We have

In(g gn(X)l + Ine(g gn)(X)l <_ 2sup sup
m e

(g gn)(qkx) ike

k e

Using analogous arguments as in (i), we get that off a single null set

lim sup
n je-e’l <6

[IH(g gn(X)l + IHe(g gn)(X)l] O.

For the last we use the continuity of e ne(gn)(X). Finally we have

IHg(x) Heg(x)l <- 0(1) + 0

which proves (ii).
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Remark 9. We do not know if the partial sums of the Fourier series of
L Log L functions converge a.e.

PROPOSITION 10. Let . be the space L Log L and ([0, 1]z, B[O, 1]z),/zz, q)
the dynamical system where q is the shift on [0, 1]z. If for f .’, g

f ffdtzz satisfies S.W.W. then the partial sums of the Fourier series of
functions in . converges a.e.

Proof. As in [1], S.W.W. holds for functions g f ffdlzz where
implies that

sup sup
n_,, h(qkx ) eikk < a.e. forall h ’.

This follows from the uniform convergence of the "ergodic F6jer sums" and
the Wiener-Wintner property for the Cesaro averages. They are related to
the helical transform by the formula

E’ h(qkX ) eik .,, 1 n + 1 k
k=-n

k
Ikl<n

1 n

.,’ f(qkx)eikn+l
k=-n

On ,= L Log L we can define a norm II II, where

1
"f[’, folf*(t) log(’)dt fo )7 *(s) ds dt

where f*(t) is the decreasing rearrangement of f defined on [0, ]. We have

f*(t) inf{A /xf(A) < t}, > Owith/xf(A) tx{If(x)l > A}.

By Banach’s principle there exists a decreasing function C(A) defined on
[0, ], C(A) 0, , such that

SUPn sup
n

E’ f(kX ) ike-----e
k=-n

The shift y being aperiodic by the well-known conjugacy lemma, the conju-
gate SqqS of q are dense in the weak topology. Since IIfS 111, IIfSqll,

[[f[[ ,, for all dynamical systems on a probability (f, a, q, v) measure
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space isomorphic to ([0, 1]z, B[0, 1]z),/xz) this gives

SUPn sup
n

_,’ f(kx) eikek
k=-n

Approximating again a flow by times 8 map gives the same type of inequality
for any measure preserving flow. In the particular case of the flow of
translation on the real line this implies that

v ( x -zr, r ]" sup sup eitf(x t) at
/ Itl <r/

> AIIfll, ) _<

and then

v{x [-’,w]’sup eintf(t) dt > AIIfll ,} _< (A).

This gives the a.e. convergence of the partial sums Snf.

Remarks 11. (a) Another consequence of Proposition 5 is an improve-
ment of (i) in Theorem 3. We can prove that H**f L if f L(Log L)3.

(b) At the present time we do not know if H**f< if f
L Log L Log Log L.
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