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HARMONIC AND ISOMETRIC ROTATIONS
AROUND A CURVE

L. NicoLopi! AND L. VANHECKE

1. Introduction

In this paper we initiate the study of local rotations around a smooth
embedded curve o: [a, b] —» (M, g) in a Riemannian manifold (M, g). These
transformations are local diffeomorphisms which generalize in a natural way
the rotations around a straight line in Euclidean space E". They are deter-
mined by means of a field of endomorphisms along the curve, (the so-called
rotation field), which for each m € o fix the tangent vectors of o and when
restricted to the fibers of the normal bundle of o behave like linear
isometries.

Reflections with respect to a curve provide a class of examples of such
rotations. We refer to [2], [16], [17], [18], [19] for further details about their
study.

When o reduces to a point we obtain the rotations around a point which
in turn generalize the geodesic symmetries. Such rotations are used to define
different classes of Riemannian manifolds, for example symmetric spaces,
generalized symmetric spaces and s-manifolds (see [6], [12], [18]). Moreover,
the properties of these rotations may be used to characterize some particular
classes of Riemannian spaces. For example, it is proved in [3] that harmonic
geodesic symmetries characterize locally symmetric spaces. This result has
been extended in [15] to s-regular manifolds by using a special class of
rotations around a point. Further, when (M, g, J) is an almost Hermitian
manifold, then the field J provides a natural rotation field. The properties of
the corresponding rotations may again be used to characterize special classes
of almost Hermitian manifolds as is done in [14]. (See also [18] for the use of
geodesic symmetries in Hermitian and symplectic geometry.)

In this paper we study similar problems for rotations around a curve o.
The main purpose is to study harmonic rotations. In Section 2 we give some
preliminaries. Then, in Section 3, we define rotations and derive, in the
analytic case, a set of necessary and sufficient conditions for isometric
rotations. We use this in Section 4 where we consider harmonic rotations and
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investigate their relationship with isometric rotations. In particular, we show
that for the so-called free rotations these two concepts coincide for locally
symmetric Einstein spaces. Up to now we do not know if this result can be
extended to general Riemannian spaces.

We wish to thank F. Tricerri for useful discussions.

2. Preliminaries

Let o: [a,b] —» (M, g) be a smooth embedded curve in a smooth Rie-
mannian manifold (M, g). Further, let No be the normal bundle of o and
denote by exp, the exponential map of this normal bundle. It is defined by

expa(o(t)’ U) = exp¢r(t) v

for any ¢ € [a, b] and for v € T g, 0, where T i, 0 denotes the fiber of No
over o(t), i.e., the orthogonal complement of the tangent space T,qo of o
at o(¢) in T, M.

Next, consider the tubular neighborhood U(s) of radius s about o, that is,

U(s) = {exp(,(,)vlv € Tyo, vl <s,a<t< b}.

Bi(s) = {v & T4ol vl <}

denote the (n — 1)-dimensional ball of radius s in 7,0 and consider

Na(s) = U BaJit)(s)’

t€la,b]

the open solid tube of radius s about the zero section of the normal bundle
No of o.

Since [a, b] is compact and since o: [a, b] > M is an embedding we can
choose s > 0 to be so small that exp, is a C* diffeomorphism of N,(s) onto
U(s) (see for example [10, p. 114)).

On any sufficiently small tubular neighborhood U of the curve o there is a
special type of coordinates, namely Fermi coordinates, which are particularly
convenient to study the geometry in a neighborhood of the curve. We briefly
describe such a system (see [8], [9], [17], [18] for more details).

So, let V be the Levi Civita connection and R the Riemann curvature
tensor defined by

Ryy = V[X,Y] - [VX’VY]
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for all tangent vectors X, Y. Further, let o: [a, b] > M be a unit speed curve
as above and let {e; = d(a), e,,...,¢,; n = dim M} be an orthonormal basis
of T,, M. Next, let E; be the unit tangent field ¢ and E,,..., E, the
normal vector fields along o which are parallel with respect to the normal
connection V+ of the normal bundle No and such that Efa) =e,, i =

2,...,n. Then the Fermi coordinates (x!,..., x™) with respect to o(a) and
the frame field (E,, ..., E,) are defined by

n
xl(exp(,(,) Y t’Ej) =t—a,
=2

n
xi(exp(,(,) Yy thj) =t, 2<i<n.
j=2

For p € U, we have p = exp,,, v, where

n .

v= Y xE(t) =ru € Ti0o

i=2

and

lull =1, r2= ¥ (x%)".

i=2
In general o is not a geodesic and we put

k, =8(d,u)

where
G(t) = (Va'(z)"")(t)

is the (mean) curvature vector of o normal to o at t. If u is chosen to be
parallel along o (with respect to V*), we have

Viu =g(Vu,d)0.
Therefore, since g(u, ) = 0, we have

V,u= —g(u,d)o = —«k,0o.
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In Section 4 we shall need the expressions of g and g~! with respect to
Fermi coordinates. Put

d d ..
8ii =8\ 55 axl )’ i,j=1,...,n.
Then we have (see for example [8], [18], [19]):

Lemma 2.1. Let m = o(t) and p = exp,,(ru), |lull = 1. With respect to
Fermi coordinates (x1,. .., x") we have

gu(p) =1-2«,(m)r + (ki — R1u1u)(m)’2

= 3(VuRuu1u — 4, Ryyy,) (m)r’ + O(r),
81a(P) = = 3Ryuau(m)r? = 5(3V,Ryyay = 4K, Ruye,) (m)r® + O(r%),
8as(P) = 84y = FRuaus(M)r? = §(VuRyaup) (m)r® + O(r*),
g (p) =1+ 2x,(m)r + 3k, + Ryyy,)(m)r?

+3(VuRyugy + 8k, Ry, + 12k3)(m)r® + O(r*),
8'%(P) = FRiuau(m)r* + 3(V,Ryiyay + 4%, Ryye,) (m)r® + O(r%),
8°°(P) = 8ap + 3Ruaup(M)1? + G(VuR,0up) (m) 1 + O(r%),

a,b=2,...,n. Here we let
R,;,j(m) = RuE,.(t)uE,(t)(o'(t)) = g(RuE,-(t)u’ Ej(’))("(’))’ etc.

fori,j=1,...,n.

3. Rotations and isometries of tubular neighborhoods
We start with some motivating considerations. Let f be an isometry of
(M,g) whose (totally geodesic) fixed point set has positive dimension and let
o be a curve as in Section 2 contained in this fixed point set. Then we have:

LemMma 3.1. On a sufficiently small tubular neighborhood U of o the
isometry f can be expressed by

(3.1) f= eXpa°f*|a°eXp;1-

Proof. For each point p € U there exists a unique geodesic y: [0,1] - M
of minimal length such that p = y(1) and o(¢t) = y(0) for some ¢ € [a, bl.
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Furthermore,
y(0) = exP;(lt)(P)-

Now, the curve f oy is also a geodesic emanating from the same point o (¢)
and with initial velocity f,,(7(0)). Hence

f(p) =f(y(1)) = eXpo(r)(f* |a(t)§'(0))'
This implies (3.1).

Remark. There are several examples of Riemannian manifolds endowed
with isometries as described above. For example, let (M, g) be a homoge-
neous Riemannian manifold and let K be the isotropy group at some point
of M. Since the linear isotropy representation of K in 7,M is faithful the
isotropy group at p can be identified with a subgroup of O(TpM ), the linear
isotropy group at p. Now, if we suppose that dim M is odd, then any
orientation-preserving element f,, of the linear isotropy group admits the
eigenvalue 1. Let v be a unit tangent vector corresponding to this eigenvalue
and consider the geodesic through p given by exp(tv). Then f(exp (1)) is
also a geodesic with the same initial conditions as those of exp,(tv) and
hence

f(exp,()) = exp,(w).

Motivated by these considerations, in particular by (3.1), we now turn to
the definition of rotations.

DeriNiTIONS.  Let S(¢) be a field of linear endomorphisms
S(t): T,;(yM = T, n,M

along the curve o such that S(¢) restricted to 7,0 is the identity map and
on each fiber Taf,)o- of the normal bundle No it is a linear isometry, that is,

S(t)a =0, g(S(t)x,S(t)y) =g(x,y)

for all x, y € T,(;yo. Then S(¢) is said to be a rotation field along o. (In what
follows we shall use the same notation S(¢) to indicate the operator on
T, M as well as its restriction to the fiber of No at o(2).)

Now, let U be a tubular neighborhood of o with sufficiently small radius.
Then the local diffeomorphism s, defined by

5, = €exp, ° Soexp,’
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is called a (local) S-rotation around o. Moreover, if S — I is non-singular in
the normal bundle, we say that s, is a free S-rotation.

For § = —1, s, defines the reflection with respect to .

Note that we have

s,: U —> Uiexp,(o(t),v) = exp,(a(t),S(t)v).

Furthermore, o is contained in the fixed point set of s,.
The analytic expressions of s, follow easily by using a system of Fermi
coordinates. We have

(32) xtos, =x!, x'os,=Six/

where Sj(t) are the components of S(¢) at o(¢) with respect to the basis
{E(1),..., E, ()} defined in Section 2. Moreover, we have s, ., = S(¢) for
all ¢t € [a, b].

From the expressions (3.2) it is clear that the study of S-rotations is
different from and somewhat more complicated than that of rotations around
a point due to the special role played by the x!-coordinate.

Remark. Note that S is parallel along o if and only if S is parallel with
respect to V+ and S& = &. In this case it follows that each higher order
derivative of o is also an eigenvector of S with eigenvalue +1, that is,

So® = g®, k€ N,.

So, once a parallel rotation field S is given, we have restrictions on ¢. For
example, if S defines a reflection, i.e. § = —1I in No, then ¢ = 0 and hence,
o is a geodesic. The same holds when S is a free rotation field.

Note that Lemma 3.1. yields that each isometry f is a rotation around any
curve o contained in the fixed point set and its rotation field is f ,. As may
be checked directly, this rotation field is parallel. We stress the fact that the
isometric rotations around o are exactly the isometries which have a (totally
geodesic) fixed point set of positive dimension containing o and this is the
only relation between the curve and the isometry.

Now, we will look for the conditions under which a rotation field S along o
defines an isometric rotation. This criterion will be used in Section 4.

THEOREM 3.2. Let o: [a,b] > M be a C* embedded curve in a Rie-

mannian manifold (M, g) and suppose that the S-rotation s, is an isometry.
Then

(3.3) S is parallel along o
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and

(34) (Vuk uR)uxuy = (Vsl'cu SuR)SquSuSy

forallu € T yo,allx,y € T, )M, allt €[a,bl and all k € N.
Conversely, if (M, g) is analytic and S is a rotation field along o such that
(3.3) and (3.4) hold, then the corresponding S-rotation is an isometry.

Proof.  First, let s, be an isometry. Then s, 4, is parallel along o and
since $, 4, =S, S is parallel. Finally, (3.4) follows since any isometry
preserves the curvature tensor and its covariant derivatives.

To prove the converse one may use one of the methods, as developed in
[8], [18] (see also [9]), to write down power series expansions for the
components of analytic tensor fields with respect to a Fermi coordinate
system. Then it is not difficult to see that the coefficients in the expansions of
the components of the metric tensor g only depend on the subset

{(VE..R), u, ueTio, keN]|

of the set of all covariant derivatives of the curvature tensor R and on the
(mean) curvature vector & of o. Then

S¢ = ¢

since So = ¢ and S is parallel and this together with (3.4) shows that s, is
an isometry. This finishes the proof.

Remark. A similar theorem has been proved in [13] by using an alterna-
tive method for rotations around a point. That result is an immediate weaker
version of the classical theorem of Cartan concerning the existence of local
isometries on normal neighborhoods. Theorem 3.2 may be viewed as a
generalization of Cartan’s theorem to rotations around a curve.

The criterion given in Theorem 3.2 becomes considerably simpler for
locally symmetric spaces. In this case we have:

CoroLLARY 3.3. Let (M, g) be a locally symmetric Riemannian manifold
and o a curve as in Theorem 3.2. Then the S-rotation s, is an isometry if and
only if

(3.5) S is parallel along o
and
(3'6) Ruxuy = RSquSuSy

forallu € T yo, allx,y € T, M and all t € [a, b].
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To finish this section we shall apply this criterion to consider isometric
rotations in real, complex and quaternionic space forms.
(a) First, let (M, g) be a space of constant curvature c. Since

Ryyzw = c{g(X,Z)g(Y,W) -8(X,W)g(Y,2)},

we see that (3.6) is always satisfied. Hence s, is an isometry if and only if the
rotation field S is parallel.

As a consequence of this we see that a reflection is an isometry if and only
if o is a geodesic. (This result was also obtained in [2], [16].) To see this, we
first suppose that s, is an isometry. Then the result follows from the second
remark in this section. Conversely, suppose o is a geodesic. Then So = ¢
gives

So = 0.

Moreover, for u € Taf,)cr we have Su = —u. Hence

Su=-Si—-u=u-u=0

and hence S is parallel.
(b) Next, let (M, g,J) be a Kihler manifold of constant holomorphic
sectional curvature ¢ # 0. Then we have

Ryyzw = %c{g(X,Z)g(Y,W) -8(X,W)g(Y,2)
+g(JX,Z)g(JY,W) —g(JX,W)g(JY,Z)
+2g(JX,Y)g(JZ,W)}.

From this we easily derive that (3.6) is equivalent to the following conditions
for the rotation field S:

(3.7) SIg =J¢ and SIu =JSu
or
(3.8) Slo = —J¢ and Shu= —JSu

for all u orthogonal to o.

When s, is a reflection we derive from (3.7) and (3.8) that s, can never be
an isometry except when dim M = 2 in which case (M, g) has constant
curvature and we return to the case (a).

(c) Finally, let (M, g) be a quaternionic Kihler manifold of constant
quaternionic sectional curvature ¢ # 0. In this case the Riemannian curva-



ROTATIONS AROUND A CURVE 93

ture tensor has the special form

Ryvzw = ic{8(X,Z)g(Y, W) —g(X,W)g(Y,Z)
3
+ Y [8(0.X,Z)e(1Y, W) —g(J,X,W)g(J,Y,Z)
a=1

+2g(1,X,Y)g(J,Z,W)]
(see [11]). From this one derives that (3.6) is equivalent to
3
ST,= Y a,pJsS, a=1,2,3,
=1

where 4 = (a,5) € SO(3) and a,, are functions of .

As for the complex case one derives that, when s, is a reflection with
respect to a geodesic, then it can never be an isometry except for dim M = 4
in which case we have again a space of constant curvature and hence again
case (a).

4. Harmonic rotations

Let (M, g) and (N, h) be Riemannian manifolds with metrics g and 4 and
let

¢:(M,g) > (N, h)

be a smooth map. The covariant differential V(¢ ) is a symmetric tensor of
order two which is called the second fundamental form of ¢. The trace of
V(g,) is denoted by 7(¢) and is called the tension field of ¢. A harmonic
map ¢ is a map with vanishing 7(¢) (see [4], [5]).

To express this condition analytically, let U € M be a domain with coordi-
nates (x!,...,x™) and V € N a domain with coordinates (y?,..., y") such
that @(U) C V. Then ¢ can be locally represented by y® = ¢*(x!,..., x™),
a = 1,..., n. Further, we have

o7 90” do® doP
vy _ (% _ M99 N L_‘P_
(4_1) V(‘P*)U = 6xi8xj ij axk + FJB((P) axi axj )

i,j=1,...,mand y = 1,..., n. Here “I}¥ and “T?; denote the Christoffel
symbols for (M, g) and (N, h), respectively. Hence, ¢ is harmonic if and only
if

(4.2) 7(¢)" = 8"(V(¢x))ij = 0.
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In the rest of this section we focus on harmonic S-rotations around a curve.
Our aim is to prove:

THEOREM 4.1. Let o: [a,b] - (M, g) be a smooth embedded curve in a
Riemannian manifold M and s, an S-rotation around o. If s, is harmonic,
then S is parallel along o. Moreover, if s, is a free S-rotation, then o is a
geodesic.

THEOREM 4.2. Let s, be a harmonic free rotation on a locally symmetric
space such that the Ricci tensor is S-invariant. Then s, is an isometry and
conversely.

Then we get easily the following corollaries.

CorOLLARY 4.3. A free rotation s, on a locally symmetric Einstein space is
harmonic if and only if it is an isometry.

CorOLLARY 4.4. A rotation around a geodesic in a locally symmetric
Einstein space is harmonic if and only if it is an isometry.

From (4.2) and (3.2) we get that s, is harmonic if and only if
(43) 7(5,)°(P) = {€"(Vs, 4 )11 + 28" (s, 4) 10 + 8°( V5, 4) 0} (P)

0,
(44) 7(5,)'(P) = {8 (s, 411 + 28"(V55 5 )10 + (V5,4 ) up} (D)
=0,

with a,b,c = 2,. » P = €xp,»(ru), llull =1 and where
(4.5)
(Vsa*)il(p) = "F111(P) + Tip(sa(p))sﬁsﬁxsx“ + F;l(sa'(p))s'gxs
+ Fl‘ﬁ(sa(p))sfx# + rlll(sa( P)),
(V54 :)1a(P) = —T1(p) + Tla(s,(p))SSEx” + Tis(s,(p))SE,
(Vo x)as(P) = —Th(D) + The(s,(P))SISE,
(Vs, 4)11(P) = $¢x7 — T{y( p)S5x® — TH(p) Sk
+ T2a(s5,(p))Sa8Ex#x" + Ty(s,(p))SexH
+ Ta(s,( p))Sfx” + TH(s.(P)),
(V5, 4)5a(P) = S5 — T (p) S — TL(p)Scx* + Tee(s,(p))S2SExH
+ T'fa(s,(p))SE,
(Vs, )ap(P) = —TE(D)S; — Tlp(p)Scx* + Ta(s,(p))SESE.
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Next, we put
3
(4.6) 7(s,)(p) = L Ar' + O(r*), c¢=2,...,n,
t=0
3
(4.7) 7(s,)'(p) = L Alr' + 0(r*).
t=0

Then (4.3) and (4.4) give the following necessary conditions to have a
harmonic rotation s, :

(4.8) AS=0, A'=0, t=0,1,2,3, c=2,...,n.
Hence, we have to compute the expressions for 45 and A4!. To do this we use

the classical formula for the Christoffel symbols in terms of the components
of the metric tensor:

(p)=—{i {2 @—ﬁ)}()

ax’ ax’

Now, using the expressions in Lemma 2.1, (4.5) and (4.3), (4.4), we get the
desired coefficients A4S and A}, c=2,...,n. (We omit the lengthy but
straightforward computations.) Then we are ready for the proofs.

Proof of Theorem 4.1. Using A§,c = 2,...,n, we obtain

g(¢,E,) —g(¢,SE,)) =0, c=2,...,n.
This yields
(‘'S - I)é = ko

for some k. On the other hand, (‘S — I)¢ is orthogonal to ¢ and hence
(4.9 So = ¢.

Next, from the conditions 4§ = 0, we obtain, taking into account (4.9),

(4.10) g(.§u,E ) = (Ruas-te — Risute)

-3 Z (Ruas tea RSuSacSa) =0

a==2



96 L. NICOLODI AND L. VANHECKE

or, equivalently,
(4.11) g(.§u, SEc) = (Ryute — Risuise)

2 n
- § Z (Ruaca - RSuSaScSa) =0
a=2
where Sc and S~ !c denote the vectors

(8(3/9x°))(o(t)) and (S~'(9/9x°))(o (1)),
respectively, for ¢ = 2,...,n. Now, put E, = u in (4.11). Then we obtain

.. 22
(4‘12) g(su’Su) - (Rlulu - RlSulSu) -3 Z (Ruaua - RSuSaSuSa) =0.
a=2

Since |lull = 1 we have g(Su, Su) = 0. Differentiating once again we get

(413)  0=g(Su,Su) + g(Su, Su) + g(Su, Su) + g(Su, Stt)
= g(Su, Su) + g(Su, Su) + g("SS +'S$)u, i)
= g(§u, Su) + g(Su, S'u)

because ‘SS +‘SS = 0 on normal vectors to o. Using this in (4.12), then
putting u = E_ and summing up with respect to ¢ = 2,...,n, we get with
So =0,

. 7
"Sllz + 3 Z (Rcaca - RScSaScSa) = 0.
a,c=2
This implies
V.S = 0;i.e., Sis parallel.

Finally, it is clear from (4.9) that, if s, is free, then ¢ = 0 and this finishes
the proof.

Proof of Theorem 4.2. Since any isometry is harmonic we only have to
prove the direct part of the theorem. So, let s, be harmonic. Following
Theorem 3.2 we have to prove

Rlulu = RlSulSu’ Rluau = RlSuSaSu’ Raubu = RSaSquSu’
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From (4.12) and the fact that S is parallel we get
2
(414) Rlulu - RlSulSu + 3 Z (Ruaua - RSuSaSuSa) =0
a=2

and since p is S-invariant this yields at once

(4-15) Riutu = Risuisu

for all u € T,0.
Further, we consider the conditions A4§ = 0. Since s, is free, o is a
geodesic. By putting S~ ¢ = u, the conditions becomes

n n
(4‘16) — 60 Z Rluau(Rluau - RlSuSaSu) + 36 Z (R%uau - R%SuSaSu)

a=2 a=2

n
+6 ) (RZaus — Riusasuss)
a,b=2

n
- 10 Z Ruaub(Ruaub - RSuSaSqu) = 0.
a,b=2

To handle this condition we integrate (4.16) over the unit sphere $”~2(1) in
T, o (See [1], [7], [8], [9] for more details.) First, note that the integrals of
n n
Z (R%uau - R%SuSaSu) and Z (Rgaub - RguSuSqu)
a=2 a=2

are zero. Next, let

n
A= Z Rluau(Rluau - RlSuSaSu)?
a=2
n
B = Z Ruaub(Ruuub - RSuSaSqu)
a,b=2

and let

(n — 1)mg~b/2
Cn-2= n—1),
(=)

denote the volume of the unit sphere in Euclidean space E"~'. Then we
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have

n

[Rliaileaj + Rlialeiaj + Rlialejai
a,i,j=2

C
Adu = n-2
‘[S""z(l) (n—-1(n+1)

_RliaiRISjSaSj - RliajRISiSaSj - RlialeSjSaSi]

C n n
(n - 1)(n +1) a§1 ‘”22( laaj RlaajRISaSaSj)
n n
+ Z Z (RlaaBRlﬂaa - RlaaBRISﬁSaSa)]
a=2a,B=1
= 2 Y (R3.p, + Rigpy R
(n—=1)(n+1) wpo=1 laBy laBy M lyBa

_RlaByRISaSBS'y - RlaByR IS'ySﬁSa)

n
-3 Z (R%aIB_RlaIBRISQISB) .
a,B=1

Now we use the following identities [7]:

n 1 n
(4.17) )» RiupyRiypa = b3 ) R%aB'y’
a,B,y=1 a’Br7=l
n 1 n
(4-18) BZ lRlaB'yRIS'ySBSa ) BZ lRlaB'yRISaSBSy
a,B,y= a,B,y=
to obtain
3cn—2
(4‘19) [s‘"-2(1)A du = 2(n - 1)(11 + 1) Z Rlaﬂ-y(RlaB'y - RlSaSBSy)‘

a,B,y=1

Further, we use the same procedure to compute the integral of B. We get

c
Bdu = n2 R +3 Y R
/;,,_2(1) (n— 1) (n + 1) E (Pab — lalb) l ;Zz iajb

3
_(pab - Rlalb)(pSaSb - RlSale) + Z RtanRStSaSJSb
i,j=2
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Using (4.15) and the S-invariance of p we obtain

(4.20)

3cn—2 -
fsn_z(l)Bd“ T2n-D(n+1) Y Rujp(Riajp — Rsisasiss)-

a,b,i,j=2

Finally, (4.16), (4.19) and (4.20) yield

n n
6 X Ri.py(Riapy — Risaspsy) T+ h Rizjo(Risjp — Rsisasisp) = 0
a,B,y=1 a,b,i,j=2

and hence also
(4.21)
n

n
2 2
6 2 (Riagy — Risaspsy) T Y (Rijp — Rsisusiss) = 0.

a,B,y=1 a,b,i,j=2
So, this gives

Ri.py = Risaspsys a,B,y=1,...,n,

Rijb = Rgisasisps  ©sJ,a,b=2,...,n.
Hence the required result is obtained.

Remark. In our theorems we restricted to the case of locally symmetric
spaces with S-invariant Ricci tensor because in the more general case the
conditions A4S = 0, A} = 0 become more complicated and up to now we do
not know if our results can be extended to the case of general Riemannian
manifolds.
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