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RNP AND CPCP IN LEBESGUE-BOCHNER
FUNCTION SPACES

ZHIBAO HU AND BOR-LUH LIN

In this paper we study the extremal structure of the unit ball of a Lebesgue
Bochner function space. Throughout, X will denote a Banach space, Bx the
unit ball, Sx the unit sphere, X* the dual space of X, (f, E,/) a positive
measure space, and 1 < p, q < oo with 1/p + 1/q 1.

Let K be a subset of X. A point x in K is a point of sequential continuity
of K if for every sequence (x) in K, weak-lim x x implies limllx xl[

0. The point of sequential continuity is a generalization of the point of
continuity. A space X has the Kadec-Klee property if every point x in Sx is
a point of sequential continuity of Bx.

It is well-known that if (l, E,/z) is not purely atomic, then L(/z, X) with
the Kadec-Klee property must be strictly convex. This result, due to M. Smith
and B. Turett [ST], is one of the most surprising results in the theory of
Lebesgue-Bochner function spaces. Our first main result (Theorem 2.2)
asserts that if (1, E,/z) is atom-free, then every point of sequential continuity
of BLp(Ix, X) must be an extreme point of BLp(#,x). This gives a local version
of the result of Smith and Turett.
Theorem 2.2 has several interesting consequences; for example, it implies

that if (f, E,/z) is not purely atomic then:
(i) The Radon-Nikodym Property (RNP) and the Convex Point of Conti-

nuity Property (CPCP) are equivalent for LP(Iz, X) and LP(Iz, X)*.
(ii) The super-RNP and the super-CPCP are equivalent for LP(tz, X) and

LP(/x, X)*.
Recall that the RNP implies the PCP (Point of Continuity Property) which,

in turn, implies the CPCP, and that RNP, PCP, and CPCP are distinct [BR],
[GMS1]. It follows that if X has the PCP but fails the RNP, and if (f,
is not purely atomic, then LP(I.t, X) does not have the CPCP. Consequently,
neither the PCP nor the CPCP can be "lifted" from X to LP(t.t, X). We
would like to mention (1) it is still an open problem whether the super-RNP
and the super-CPCP are equivalent in general, (2) the RNP and the CPCP
are equivalent for Banach spaces with the Krein-Milman Property [Sc], and
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(3) the RNP and the PCP are equivalent for Banach lattices not containing
isomorphic copies of co [GM].

Let f be a norm one element in L’(/z, X). The condition that for almost
all t in the support of f such that f(t)/llf(t)ll is an extreme point of Bx is
strictly stronger than the condition that f is an extreme point of the unit ball
of L’(/z, X) [G]. We do not know whether the conclusion of Theorem 2.2
can be strengthened so that f(t)/llf(t)ll is an extreme point of Bx for almost
all t in suppf. It is shown, however, that if (ll, E,/z) is atom-free and that f
is a r(L(ix, X), Lq(I, X*))-point of sequential continuity of B,,x, then
f(t)/llf(t)ll is a strongly extreme point of Bx for almost all in supp f, thus
f is in fact a strongly extreme point of B,,x in this case.

Another generalization of the point of continuity is the point of small
combination of slices (SCS-points, for short). It is known [GGMS] that X is
strongly regular if and only if every non-empty bounded closed convex set K
in X is contained in the norm-closure of SCS(K). Schachermayer [Sc] proved
that a Banach space has the RNP if and only if it is strongly regular and it
has the Krein-Milman Property. We will show that the "point-version" of this
result is also true; i.e., if K is a closed convex set in X and x K, then x is
a denting point of K if and only if x is both a SCS-point and an extreme
point of K. An example is given to show that we can not replace the point of
sequential continuity by the SCS-point in Theorem 2.2.
The main tool used in the proof of Theorem 2.2 is developed in Section I,

where we study the weak-convergence of sequences of vector-valued
Rademacher functions. The major part of Section II is devoted to the proof
of Theorem 2.2 and its consequences.

Section I

The usual Rademacher functions are associated with the dyadic partitions
of the unit interval. To define our "Rademacher functions" we use countable
partitions of II and a special index set.

Let T be the set consisting of all the finite sequences of positive integers
with the natural partial order; i.e., (i,...,im) < (Jl,’", in) if and only if
m < n and k Jk, k 1,..., m, and with the empty set b as the smallest
element in T. For a T, let I1 be the cardinality of P, where P,
{/3"/3 T,/3 < a} and let T {a: a T, lal n}, n > 0. If a (il,..., in)
and is a natural number, then we also use ai to denote (il,..., im, i).
We call a"’subset" {E} r of E a Rademacher tree of measurable sets if

it satisfies the following conditions"
For all k > 0 and a Tk, {E,,},a is a partition of E and (E2,_)

lx(Ea2n), and/x(E6) <
We say that a sequence {fk} of functions from l’l to X is Rademacher if

there are a Rademacher tree {E},,r in E and {x,}r in X, a T such
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that for k >_ O,

ot.Tk n>

Each fk is called a Rademacher function, and {E,,},,r is called a
Rademacher tree associated to {fk}, and {fk} is said to be determined by
{E,x} r. We use E(T) to denote the sub-tr-algebra of E generated by the
tree {E} r. It is obvious that each fk is E(T)-measurable.

PROPOSITION 1.1. Every bounded Rademacher sequence in LP(Iz, X) is
null with respect to the tr(LP(tz, X), Lq(l, X*)) topology. In particular, if X
is an Asplund space, then every bounded Rademacher sequence in LP(l, X) is
weakly null.

Proof Suppose {fk} is a bounded Rademacher sequence in LP(/z, X).
Let {E,} r be a Rademacher tree associated to {fk}. For x* in X*, z Tm,
and k > m, we have

t)) dlx(t) =0.

Since span{x*xe,: x* X and - T} is dense in Lq(/z, (T), X*),

tr ( LP( tx X) Lq( Iz ,( T) X* ) ) hn fk O

Let P be the conditional expectation projection from Lq(/z, X*) onto
Lq(/z, E(T), X*) (see e.g. [Bi]), and suppose g Lq(/x, X*). Since fk is
E(T)-measurable,

ff(g(t), fk(t)) dtx(t) f(Pg(t), fk(t)) die(t).

Hence {fk} is tr(LP(ix, X), Lq(l, X* ))-null. Finally if X is an Asplund
space, then Lq(, X*) is the dual of LP(tz, X) [DU], so {fk} is weakly null.

QED

In general, it is not true that every bounded Rademacher sequence in
LP(/z, X) is weakly null as shown by Example 1.2. In Theorem 1.3, we give a
sufficient condition for a Rademacher sequence in LP(/, X) to be weakly
null.

Example 1.2. Let X be the space with the usual norm, and /z the
Lebesgue measure on [0, 1). If {rk} is the usual Rademacher sequence on
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[0, 1), and {ek} is the canonical basis for l 1. Define the X-valued sequence
{fk} by fk(t)= rk(t)ek/l for in [0, 1) and k > 0. Then {fk} is a bounded
Rademacher sequence in LE(/z, X). It is easy to check that co{fk} is a subset
of the unit sphere. So the weak closure of co{fk} still lies in the unit sphere.
Therefore {fk} is not weakly null.

THEOREM 1.3. Suppose {fk} is an X-valued Rademacher sequence deter-
mined by {E, x} r. If {x} is bounded and there is ek > 0 such that

limek 0 and IIx xll < ek for k > O, a Tk, and > a,
k

then {fk} is weakly null in LP(Iz, X), 1 < p <

Proof. Let Ok be the natural projection from Ui 0 Tk/i to Tk, i.e., for
each a Tk/i, Qk(a) is the unique element in Tk such that Qk(t) < a.

Claim. For all tf/,k> landi>0,

I[fk+i(t) Xo<) , (--1)nxe(t)ll <ekXe,(t)
ot - Tk n >

We only need to prove this for t E6. Note that {E,,n: a Tk+i, and
n >_ 1} is a partition of E6, so if t E6, then t Evs for some 3’ Tk /i and
s > 1. Thus fk+i(t) (--1)SXv and

E XQ()E (-1)"Xe.(t) (--1)Sg(tQ(r))
olTk+ n>

So we have

fk+l(t) E XQk(,O E (--1)nXFn(t)
otTk+ n

ekXe(t).

Assume that {fk} does not converge weakly to 0. Then there exists
F LP(Iz, X)* with IIFII-- 1, a subsequence {fk} of {f} and 8 > 0, such
that F(f,) > 8 for k > 1. It follows that for every h co{f,: k > 1},
Ilhll >_ F(h) > .
For k > 1, let hk= Y’.r,EI(--1)Xe. Then {hk} is a bounded

Rademacher sequence in L (/z). By Proposition 1.1, w-limkhk 0, so
w-limk hn, 0. Choose M > I(E)1/p such that IIxll _< M for all a T.
Then choose k0 > 1 with ek < i/3M. Since {h,} is weakly null,there exist
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h >_ 0, 1 _< _< m, with Eim= 1Ai 1 such that

E Aihnko+i < ".
i---1

Then

i=1

On the other hand,

’ifnkO+i "< Ai fnkO+i-
i---- i=l Ol . Tilko+i n >

m

E I
i----1

E XQnko(,) E (-- 1)"XE,,,,
ot Tnko+ n >

m

i=1

m

E XaXEan E Aihnko+i
aT iffilnk

E AiF-’nkold’( E)l/P .q_ E XotXEan E Aihnko+i
i=1 ot T, i---1

< EnkOId, ( E)
I/p

d- max IIx,ll ,ihnko+i
Ot Tnk

< - +Mwhich is impossible. Therefore {fk} does converge weakly to 0. QED

Next we consider a special construction of Rademacher tree of measurable
sets.

LEMMA 1.4 [D, p. 154]. Suppose (l’l, E,/z) is atom-free. Then for any E in
with tz(E) < 0% there exists a partition {El, g2} of E such that /z(E1)

/.(E2).

Recall that an atom in E is a measurable set E in E such that for any
measurable subset F of E, either/z(F) 0 or/z(F)--/z(E). We say that
(f,E,/z) is atom-free if E does not contain any atoms of positive finite
measure.
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LEMMA 1.5. Suppose that (1, E, IX) is finite and .that fi is a separably
valued measurable function from 1 to Banach space X for 1 <_ <_ k. Then
for any e > O, there is a partition {En} of such that diam fi(En) < e,
1 <_ <_ k, n >_ 1. If, in addition, (1, ,, Ix) is atom-free, then we may also
require that Ix(EEn_ 1) Ix(EEn) > 0.

Proof. The first conclusion is obvious. To prove the second one, first we
choose a partition {F} of 12 such that /(F)> 0 and diam fi(Fn)< e,
1 < < k, n > 1, then by Lemma 1.4, we choose for each n > 1 a partition
{E2_ , E2} of F such that Ix(E2n_ 1) Ix(E2n). Then {En} is the partition
of 12 we wanted. QED

Using Lemma 1.5, it is easy to prove the following result.

PROPOSITION 1.6. Suppose that (ll, E, Ix) is atom-free and f is a separably
valued measurable function from 1 to Banach space X for 1 <_ <_ m. Then
for any ek > 0, k >_ O, and E in li, with 0 < Ix(E) < 0% there isa Rademacher
tree of measurable sets {E,}, r in 1 such that

E, E, /z(E,) > 0, diam fi(E) < ek

for l < < m, k > O, and a Tk.

Section II

Recall that X is said to have the Schur property if every weakly convergent
sequence in X is norm convergent. It is obvious that X has the Schur
property if and only if 0 is a point of sequential continuity of Bx. If K is a
subset of X, we use psc K (resp. ext K) to denote the set of points of
sequential continuity (resp. extreme points)of K.

LEMMA 2.1. Suppose that K is a bounded closed convex set in X and that
x psc K. Ifx 1/2(y + z) for some y and z in K, then both y and z are points
of sequential continuity of K. Thus ifXfails the Schur property and x is a point
of sequential continuity ofBx, then Ilxll 1,

Proof. We only need to show that y psc K. So let (yn) be a sequence in
K which converges weakly to y. Then w-lim. 1/2(y. + z) x and $(Yn + Z)
K, thus lim, 1/2(y. + z)= x-- 1/2(y + z). It follows that lim. y, y. Hence
y psc K. QED
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THEOREM 2.2. Suppose (12, E,/x) is atom-free. Then every point of sequen-
tial continuity of BLp(g, x) is an extreme point ofBLp(g, x).

Proof Let f psc BL<,,x). Since LP(/x, X) contains a copy of LP(/z)
which fails the Schur property, by Lemma 2.1, Ilfll 1. Assume f
ext BL,o,,x). There is g LP(, X) with Ilgll > 0 and Ill + gll-- 1. Since

Ilfll-- 1 ---Ill + gll and f [(f + g) + (f- g)], and since LP(/) is strictly
convex, we conclude that f(t) + g(t)ll II f(t)ll for almost all f. With-
out loss of generality we may assume that IIf(t) + g(t)ll IIf(t)ll for all
t fl and that both f(O) and g(f) are separable.

Since Ilgll > 0, there is M > 0 and E in such that /z(E)> 0 and
1/M < IIg(t)ll _< M for all t in E. Then/z(E) < oo. By Proposition 1.6, there
exists a Rademacher tree of measurable sets {E,},,r in such that for
k>0, andaTk,wehave

E, E, /z(E) > O, diam f(E,,) < 2-k and diam g(E,,) < 2 -k.

For each a T, pick an element t, E and define, for k >_ 0,

gk E g( t) E (-1)nXe,,,
ot.Tk n>

By Theorem 1.3, {gk} converges weakly to 0.

Claim. limkllf 4- gkll 1.

If e f \ E, then (f + gk)(t) f(t), SO II(f + gk)(t)ll IIf(t)ll. If e E,
then for k > 1, there is a Tk and n > 1 such that Ean. Thus gk(t)
(-- 1)"g(t,). Since

diamf(E)<2-k, tE,, tE, and f(t.) _+ g(t,) f(t,) II,

we have

Therefore Ill d: gkll < Ilfll + 2-k+ltz(E)l/P. It follows that limk Ill :i: gkll
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Since limk[[f + gk[I 1 and weak-limk(f + gk) ----f WC have

lim(f + gk) f,
k

i.e., limkllgkll 0. On the other hand, since Ilg(t)ll 1/M for E, we
have Ilgkll > (1/M)lz(E)1/v > 0, which is impossible. Therefore f
ext BL,,(g,x). QED

We say that (f, E,/z) is not purely atomic if there is E in E such that
0 </z(E) < oo, and E contains no atoms, that is, (E, Ee,/ze) is atom-free,
where/ze be the restriction of/x to Ee {F: F E and F c E}.

COROLLARY 2.3 [ST]. Suppose that (l’l, ,/x) is not purely atomic. If
LV(ix, X) has the Kadec-Klee property, then X is strictly convex.

Proof. Since (f, E,/) is not purely atomic, there is E in E such that
0 < tt(E)< oo and (E, Ee,/ze) is atom-free. Since LV(tze, X) is isometri-
cally isomorphic to a subspace of LV(/x, X), the space L(/ze, X) has the
Kadec-Klee property. By Theorem 2.2, every unit vector in L(/ze, X) is an
extreme point of the unit ball, thus L(tze, X) is strictly convex. Therefore X
is also strictly convex. QED

If K c X, the slice of K determined by the functional x* in X* and 8 > 0
is the subset of K given by

S(x*,r,a) {x r: x*(x) > sup x*(r)

Let x K. Then x is called a denting point of K if the family of all slices of
K containing x is a neighborhood base of x with respect to the relative norm
topology on K. And x is said to be a point of continuity of K if the relative
weak and norm topologies on K coincide at x. If K c X*, K 4= , then
weak* slices, weak* denting points, and weak* points of continuity of K are
defined similarly. We use dent K (resp. pc K, w* dent, w*-pc K) to denote
the set of denting points (resp. points of continuity, weak* denting points,
weak* points of continuity) of K.
By definition, a denting point is a point of continuity, and a point of

continuity is a point of sequential continuity. It is known that x dent K if
and only if xpcK and xextK [LLT]. Thus by Theorem 2.2, the
following assertion follows.

COROLLARY 2.4. Suppose that (, E,/z)/s atom-free and f in LV(/x, X).
Then f is a point of continuity ofBLv(/z, X) if and only iff is a denting point of

X).
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A Banach space X has the RNP if every non-empty bounded closed set K
in X has a denting point. X has the CPCP (resp. PCP) if for every
non-empty bounded closed convex (resp. bounded closed) set K in X,
pc K 4: b. It is obvious that the RNP implies the PCP, and the PCP implies
the CPCP, but these three properties are distinct. The dual version of PCP,
in which one considers weak* point of continuity, is the same as the
corresponding dual version of RNP, which in turn is the same as RNP itself
[St]. However, the dual version of CPCP, denoted by C* PCP, is distinct from
RNP [GMS2]. It is clear that C*PCP implies CPCP, though the converse is
not true [DGHZ].

COROLLARY 2.5. Suppose (f, E,/x) is not purely atomic. Then the RNP
and the CPCP are equivalent in both L’(i., X) and L’(tx, X)*.

Proof Suppose that L’(/z, X) has the CPCP. Let be an equivalent
norm on X. Choose E in E such that 0 < tz(E)< oo and (E, e, tze) is
atom-free. Since L’(/x, X) has the CPCP, the space L’(tze, (X, I)) which
is isomorphic to a subspace of LP(/z, X) also has the CPCP. Hence there
exists f in pc Blp,e,x, I))" Then f must be a denting point of BLpe,(x,i I))
following Corollary 2.4. By a result in [LL], it follows that f(t)/If(t)l
dent Bx,i i) for almost all supp f. Thus dent Bx,i i) is not empty. There-
fore X has the RNP (see e.g.p. 30 [Bi]), and hence L’(/z, X) has the RNP
[DU]. The converse is obvious.
Now suppose that LP(/z, X)* has the CPCP. The spaceLq(, X*), being a

subspace of L’(/z, X)*, also has the CPCP. As a consequence of the
previous paragraph, the space Lq(/x, X*) has the RNP. Thus X* has the
RNP, which implies that L’(/z, X)* has the RNP [DU]. The converse is also
obvious. QED

Recall that a normed space Y is said to be finitely representable in a
normed space E, if for each e > 0 and finite dimensional subspace F of Y,
there is a 1-1 linear operator

T" F T(F) c E with Ilrll lIT-111 1 + e.

If (P) is a property defined for Banach spaces, X is said to have the property
"Super (P)" if every Banach space finitely representable in X has the
property (P). It is known that X is super-reflexive if and only if it is
super-Radon-Nikodym. It is an open problem whether super-RNP and
super-PCP are equivalent.

PROPOSITION 2.6. Suppose X p X is finitely representable in Xfor some p.
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Then X has the super-RNP if and only ifX has the super-CPCP.

Proof. Suppose X has the super-CPCP. Let Y be a Banach space finitely
representable in X. Then lP(Yn), where Yn--Y, n >_ 1, is finitely repre-
sentable in lP(X), where X X. Let be the Lebesgue measure on [0, 1).
Then/ is atom-free.

Claim. L(/, Y) is finitely representable in X.

Let E be the linear span of simple functions in L(/, Y). Since E is dense
in L(/, Y), the space L(/x, Y) is finitely representable in E. It is obvious
that E is finitely representable in l’(Yn), in fact, every finite dimensional
subspace G of E is isometric to a subspace of U’(Y). Thus LP(I,Y) is
finitely representable in l(X). Since X X is finitely representable in X,
it follows that l(X) is also finitely representable in X. Thus L(/, Y) is
finitely representable in X.

Since X has the super-CPCP, the space L(I,Y) has the CPCP. By
Corollary 2.5, L’(/, Y) has the RNP. Thus Y has the RNP. Therefore X
has the super-RNP. The converse is obvious. QED

COROLLARY 2.7. Suppose that (f, E,/x) is a measure space which is not
purely atomic or which contains infinitely many atoms offinite positive measure.
Then in both LP(iz, X) and L(tz, X)*, super-RNP and super-CPCP are
equivalent.

Proof. In each case, L(/, X) L’(/x, X) is finitely representable in
Lu(I,X). Thus L(I,X) has the super-RNP if and only if it has the
super-CPCP.
Now suppose that L’(/, X)* has the super-CPCP, then Lq(, X*), being

a subspace of L(/x, X)*, also has the super-CPCP. Thus Lq(/, X*) has the
super-RNP, and in particular X* has the RNP. Therefore LP(, X)*=
L(/, X*) [DU], and so L(/z, X)* has the super-RNP. The converse is
obvious. QED

Suppose K is a subset of X and x K. For a given e > 0, we say that x is
an e-strongly extreme point in K if there is a i > 0 such that for any y in X,
the conditions d(x + y, K) < and d(x y, K) < imply that Ilyll < e,
where d(x, K) is the distance between x and K. Then x is called a strongly
extreme point of K if x is an e-strongly extreme point in K for all e > 0. We
use str-ext K to denote the set of the strongly extreme points of K. By
definition, strongly extreme points are extreme points, but the converse is not
true [M]. It is obvious that if K is convex and d(x + y, K) < i then for any
0 _< A _< 1, we have d(x + A y, K) < i. Thus if K is convex and x is not
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e-strongly extreme in K, then for any 6 > 0, there exists y in X such that
d(x + y, K) < 6 and Ilyll e.

THEOREM 2.8. Suppose that (fl, ,,Ix) is atom-free and f is
tr(L’(lz, X), Lq(lx, X*))-point of sequential continuity of Bz,(I, X), i.e.,

limfk, =f if tr ( LP ( Ix X) Lq( Ix X* ) ) lha fk f

and (fk} is in B.p(tz, X). Then Ilfll- 1 and f(t)/llf(t)ll str-ext Bx for
almost all t in supp f Thus f is a strongly extreme point of BLp(Iz, X).

Proof By Theorem 2.2, the norm Ilfll 1. Without loss of generality, we
may assume that f(II) is separable. Define

D= { t" t supp f and f(t) str-ext BxlIIf(t)ll

and define, for each rn > 1, the set

f(t) isnott" t D, Ilf(t)ll > I/m, and

1/m-strongly extreme in Bx}.
Then D is the union of Dm. Assume that it is not true that f(t)/l[f(t)l[

str-ext Bx for almost all t in supp f, that is, /x*(D)> 0, where /x* is the
outer measure associated to /x. Then there is rn such that iz*(Dm) > O.
Choose a measurable set E c supp f with/z(E) tz*(Dm) and Dm E. It is
obvious that /z(E) < oo. By Proposition 1.6, there is a Rademacher tree of
measurable sets {E,},T in l’l such that for 1 < < m, k > 0, and a T,
we have

E,=E, /z(E) >0, and diamf(E,) <2-k.

It is obvious that for each a T,/z*(A N E) =/z(E). For each a T,
pick an element t, A N E and choose x X such that

IIxll 1/m and f(t,)I1 + x, < 1 + 21,---5
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For each k > 0, define

gk E f(t, )IIx E (- 1)nXEn
a.Tk n>

Claim. For k > 1, IIgll 31lfll + 2-k+2tz(E)l/v and limgllf +/- gkll Ilfll
1.
If t II \ E, then (f + gk)(t) f(t), SO II(f + gk)(t)ll IIf(t)ll. If t E,

then for k > 1, there is a Tk and n > 1 such that E,,,. Thus gk(t)
(--1)llf(t)llx, and so we have

Therefore Ill +/- gkll (1 + 2-k)llfll / 2-k+21(E)I/P. It follows that

Ilgkll < 311fll + 2-k+21z(E)I/P and limllf d: gkll Ilfll 1.
k

Since {gk} is a bounded Rademacher sequence in L’(/z, X), by Proposi-
tion 1.1, it is tr(L’(tz, X), Lq(p,, X*))-null. Thus

tr(L’(tz, X),L(p,,X*)) lha f + gk f and limllfk + gkll Ilfll 1,

Since f is a o-(L’(, X), Lq(lz, X*))-point of sequential continuity of
Bz,(/z, X), we conclude that limk f + gk f. Thus limkllgkll 0. On the
other hand, since Ilg(t)ll > 1/m2 for t E, the norm

IIgkll > (1/m2)(E)/" > 0,

which is a impossible. Therefore

f(t)/Ill(t) II str-ext Bx

for almost all t in supp f. Hence f is a strongly extreme point of BLp(tz, X)
[Sm2]. QED
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In addition to its sequential generalization, the point of continuity has a
"slice generalization", namely, the point of small combination of slices
(SCS-point). Let K be a convex set of X, the point x K is called a
SCS-point of K [GGMS] if for each e > 0, there exist slices S of K and

Ai > 0, 1,...,n with Ein=lAi--- 1 such that diamF.,’=hiS < e and x
".in= liiSi. Let SCS(K) denote the set of all SCS-points of K. If K is in X*, a
w*-SCS-point of K is defined similarly except the slices S of K are weak*
slices. It is clear that pc K SCS(K) (resp. w*-pc K w*-SCS(K)) for all
convex sets K in X (resp. X*).

It is known [GGMS], [R1] that X (resp. dual space X*) is strongly (resp.
w*-strongly) regular if and only if every non-empty bounded closed convex
set K in X (resp. X*) is contained in the norm-closure (resp. weak* closure)
of SCS(K) (resp. w*-SCS(K)). Schachermayer [Sc] proved that a Banach
space has the RNP if and only if it is strongly regular and it has the
Krein-Milman Property. The "point-version" of this result is also true and it
extends the result in [LLT].

PROPOSITION 2.9. Let t( be a closed convex set in X* and let K* be the
weak* closure of K. Then:

(1) w*-pc K w*-pc K*.
(2) w*-SCS(K) w*-SCS(K* ).
(3) w*-dent K* w*-dent K (w*-pc K) Next K w*-SCS(K) ( ext K.

Proof. (1) Let x* w*-pc K*. Since the weak* and norm topologies on
K* coincide at x*, we have x* K K. Thus x* w*-pc K.

Conversely, if x* w*-pc K, then for each e > 0, there are Xl,..., xn in
X and > 0 such that diam V < e, where

V= {y*’y* K,(y*,x) > (x*,x) -B,i= 1,...,n}.

Let

U= {y*" y* g*, (y*,x) > (x*,x) -B,i 1,...,n}.

Then U is a w*-neighborhood of x* in K* and V is weak* dense in U. Thus
diam U diam V < e. So x* w*-pc K*.

(2) Let x* w*-SCS(/’*). It is obvious that every weak* slice of *
contains a point of K. Hence, by the definition of w*-SCS-points, x* K
K. Therefore x* w*-SCS(K).

Conversely, if x* w*-SCS(K), then for each e > 0, there exist w*-slices
Sy of K and A > 0, 1,..., n with ".in= 1Ai 1 such that diam ".in= 1AiSi < e.
We assume S S(xi, K,i) for some x in X and i > 0. Since
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n.,in=lAiS(xi, K*, is a subset of the weak* closure of ,i=lAiSi, we have
diam E=lAiS(xi, K*, 6i) < e. Hence x* w*-SCS K*.

(3) It is obvious that

w*-dent K* c w*-dent K c (w*-pc K) N ext K w*-SCS(K) N ext K.

To complete the proof we only need to show

(w*-SCS K) tq ext K c w*-dent K*.

So let x* w*-SCS(K) t ext K. For each e > 0, there exist weak* slices S
of K and A > 0, 1,..., n with )-’.in__lAi 1 such that diam Ein_lAiSi
and x* in=lAiSi Since x* ext K, x* must belong to f’llSi Thus

n Sif’l S is a weak* neighborhood of x* Note that diamj

diam Ei% AiSi < e, so x* w*-pc K.
Next we show that x* ext K*. Assume x* ---(y* + z*)/2 for some

y*, z* in K*. Since x* w*-pc K w*-pc K*, it follows that y*, z* w*-
pc K* (see the proof of Lemma 2.1). By (1), y*, z* K. Thus x* y* z*
because x* ext K. So x* ext K*. Since x* is a weak* point of continu-
ity and an extreme point of the weak* compact convex set K* f’l Bx,(X, 1),
the weak* slices of K* c Bx,(X, 1) containing x* is a norm neighborhood
base at x*. Therefore x* w*-dent K* Bx,(X, 1). Hence x* w*-
dent K* [B]. QED

COROLLARY 2.10. Let K be a closed convex set in X and let K* be the
weak* closure ofK in X**. Then:

(1) pc K w*-pc K*.
(2) w*-dent K* dent K pc K ext K SCS(K) t ext K.

Proof This follows immediately from Proposition 2.9 and the facts that
w*-dent K dent K, w*-pc K pc K, and w*-SCS(K) SCS(K), QED

Note that for any f Lq(/x, X*) and g LP(I., X), the action of f on g
is defined by

(f, g) ff(f(t), g(t)) dtx(t) [DU].

It is obvious that the space Lq(lx, X*) is a subspace of LP(/z, X)*, and that
Lq(ix, X*) norms L’(Iz, X). So if K=Bz<,x,), then K* =B.,<,.x),.
Hence the following result is a corollary of Proposition 2.9.



RNP AND CPCP IN LEBESGUE-BOCHNER SPACES 343

COROLLARY 2.11. The following assertions are true"
(1) w*-pc Blq(,x. w*-pc BLP(I,X),.
(2) w*-SCS BLO.,x. w*-SCS BL,,(,,x)..
(3) w*-dent B..(., x)* w*-dent Bzo(., x*) w*-SCS(B.o(., x*)) c

ext BL,(t, X*)"

If (fl, E,/x) is atom-flee, then every weak* point of continuity f of
BLq(,x, is an extreme point of BLq(,,x,. (Corollary 2.4), by Corollary 2.11,
it is a weak* denting point of B,x,. Thus we have the following result.

COROLLARY 2.12. Suppose that (f, ,/x) is atom-free and f in LP(/z, X)*.
Then f is a weak* point of continuity of Bp,x). if and only if f is a weak*
denting point of BIopSy, x)*.

The next example shows that we can not replace the point of sequential
continuity by SCS-point in Theorem 2.2.

Example 2.13. Let Y be a Banach space such that it contains no copies of
11 but its dual Y* does not have the RNP [GMS2]. Let X Y* and let
K--Bz,,x). By taking equivalent norms, we may assume that w*-dent
By, b [Bi]. Let/x be the Lebesque measure on [0, 1). Since Y contains no
copy of 11, the space Lq(/z, X) also contains no copy of 11 [P]. By a result of
J. Bourgain [Ba], Lq(/z, Y)* is weak* strongly regular. Thus K is contained
in the weak* closure of w*-SCS(K). So the weak* closure of the w*-SCS-
points is BLq(,y).. Were a w*-SCS point f an extreme point, that point f
would be a weak* denting point of BL,Oz, y. by Corollary 2.11. But then by a
result in [HL], for almost all in the support of f, f(t)/llf(t)ll would be a
weak* denting point of By., which contradicts the fact that w*-dent By.
Therefore none of these w*-SCS-points is an extreme point of K. By
definition, w*-SCS(K) c SCS(K), so in Theorem 2.2 we can not replace the
point of sequential continuity by the SCS-point.

If (fl, E, tz) is purely atomic and finite, then there exists an at most
countable partition 7r of fl such that every element in r is an atom of
positive measure. For each E in 7r, let Xe be the space X. Define mapping
T from LP(Iz, X)to IP(XF)e. by

T(f)(E) Ix(E) I/p fJ(t) dl(t).

Thus T(f)(E) Iz(E)l/pf(t) for almost all t in E. It is obvious that T is an
isometric embedding. Partly because of this, in the rest of this section we will
consider the space l’(Xi), instead of L’(/x, X) with (fl, ,/z) being purely
atomic.
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PROPOSITION 2.14. Let {Xi}i be a family of Banach spaces and let
f (f(i)) be a unit vector in lP(Xi). Then f psc Blpx) (resp. pc Blpx);
ext Blpxi); or dent Blpx)) if and only if f(i)/llf(i)ll psc Bx (resp. pc Bx;
ext Bxi; or dent Bx) for suppf.
Moreover, the weak* version of this statement is also true.

Proof. Suppose f psc nl,(xD. Fix I with f(i) O. We use Bx(x, r)
to denote the ball in X with center x and radius r. Let {x} be a sequence in

nx,(O, II f(i)ll) such that w-lim x f(i). For each n define

ff(j) if j =g=
fn(J) x,, if j i"

Then f= Bp,(xi) and weak-lim f f. Hence lim= Ill= fll 0 and so

lim IIx= -f(i)ll--- 0. Therefore f(i) psc Bx(O, IIf(i)ll) which is equivalent
to f(i)/llf(i)ll psc nx,.

Conversely, suppose f Bl(X) with weak-limf =f. Then weak-

lim= f(i)=f(i), i I and w-lim= 1/2(f= + f)=f. Since Ilfll--1 we must
have lim 111/2(llf=(’)ll / IIf(’)ll)ll 1 in lr(I). By the uniform convexity of
U’(I), lim= II IIf=(’)ll- IIf(’)ll II 0. So for each I, lim IIf(i)ll IIf(i)ll.
Using the fact that f(i) psc Bx,(0, II f(i)ll), we can conclude that lim IIf=(i)
-f(i)ll 0. Hence limn IIf -fll 0, and so f psc Blu(Xi).
The proofs for pc, w*-psc and w*-pc points are similar while that for

extreme points can be found in [Sml]. The conclusion for denting (resp.
w*-denting) points follows from Proposition 2.9. QED

As a corollary of Proposition 2.14, if (II, ,/z) is purely atomic and f is a
unit vector in L’(/z, X), then f psc Bz(g,x (resp. pc Bz,(g,x);
dent B,(,,x)) if and only if f(t)/llf(t)[[ psc Bx (resp. pc Bx; dent Bx) for
almost all t in supp f.
For the proof of our next result, we need the following facts: X has the

CPCP (resp. PCP) if and only if given e > 0 and any non-empty bounded
convex (resp. bounded) set K in X, there is a relatively weakly open set V in
K with diameter less than e; X* has the C*PCP if and only if given e > 0
and any non-empty bounded convex set K in X*, there is a relatively weak*
open set V in K with diameter less than e (see [R2]).

THEOREM 2.15. Let {Xi, I} be a family of Banach spaces. Then:
(1) lP(Xi) has the CPCP (resp. PCP) if and only if each X has the CPCP

(resp. PCP).
(2) lP(Xi)* which can be identified as lq(X) has the C*PCP if and only if

each X has the C*PCP.
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Proof. Assume that each X has the CPCP and I {1,2}. Since the
CPCP is an isomorphic invariant, it suffices to show that the space

X= {(xl,xE)’xiXi,i= 1,2,

has the CPCP.
Let .4 be a non-empty bounded convex set in X and let Pi: X--, Xi,

1, 2, be the natural projection. Let .41 PI(A) Since X has the CPCP,
there exist x, aj > 0, j 1,...,n such that diam FI’]=IS(x,AI, aj)< e.
Let

A2=P2 A n N S(x7,
=1

Then .42 is a non-empty bounded convex set in X2. Since X2 has the CPCP
there are y, bk > O, k 1,..., m such that diam f’l =IS(Y,-42, bk) < e.
Put

V= {(Xl, x2)" (Xl, x2) A, xT(xl) > sup xT(A1) ai, y’(x2)

>supy(A2)-bk, j= 1,...,n,k= 1,...,m}.
Then V is a weakly open set in A with diameter less than e. Therefore X
has the CPCP.
To prove the general case, let E P(Xi) and let A be a non-empty

bounded closed convex set in E. Without loss of generality, assume that
sup{llxll, x A} 1. Given e > 0, we can choose 0 < e < 1- [1-
(e/3)]1/p and x (xi)i I in A with IlxllP > ,1- ex. Then there exists

k I, k 1,..., n, such that ET,=lllxgll p > 1 e. For each k 1,...,n,
choose x’ in X such that Itx’ll-- IIxll and (x,x)= IIx.ll p. Let
x* (x’)i i where x’ 0 for all 4: k, k 1,..., n. Then x* Klq(XT),
IIx*ll--< 1 and (x*, x)

Let E lP(Xil,..., Xin), E2 lP(Xi: I, 4 k, k 1,..., n) and let
P: E E be the natural projection. Without loss of generality, we may
regard E and E2 as subspaces of E. Let 8 sup x*(A) 1 + e 1. Then for
any y (Yi)i i in S(x*, A, ) we have

Ileyll >- (x*, ey) (x*, y) > 1 el > [1 (e/3)’] /’.

Hence

Ily Pyll- (IlYll" -IIPYll") /" < e/3.

By the first part of the proof, E has the CPCP. So there is a weakly open set
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V in E with

diam{V N P[ S(x*, A, a)]} < e/3.

Let V (V E2) f S(x*, A, 8). Then V is non-empty and weakly open in
A and for any y and z in V, we have

Ily zll Ily eyll + Iley ezll + Ilez zll < e.

Hence the diameter of V is less than or equal to e and so E has the CPCP.
The proofs of the remaining assertions are similar. QED

Remark 2.16. The PCP is a three-space property; i.e., if Y is a subspace
of X such that both Y and X/Y have the PCP, then X also has the PCP
[R2], and this fact implies that lP(Xi)il has the PCP if I is finite and X
has the PCP for every I. However it is unknown whether CPCP or
C*PCP is a three-space property.
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