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THE STONE-WEIERSTRASS PROPERTY IN QUOTIENT
ALGEBRAS, AND SETS OF SPECTRAL RESOLUTION

MASAKO TAKAGI

1. Introduction

In 1960, Katznelson and Rudin, motivated by the Schwartz counterexam-
pie and Malliavin’s theorem, extended the notion of the Stone-Weierstrass
property to semi-simple commutative Banach algebras [9]. Since the Schwartz
counterexample to the spectral synthesis can easily be modified to an exam-
ple of a strongly separating self-adjoint subalgebra which is not dense in
A(R3), and since Malliavin showed, in 1959, that A(G) is an algebra
of synthesis if and only if the LCA group G is discrete [12], [13], [14],
Katznelson and Rudin were interested in investigating the Stone-Weierstrass
property in A(G). They concluded that A(G) is a Stone-Weierstrass algebra
if and only if G is totally disconnected [9], [16, Section 9.3]. Since every
discrete group is totally disconnected, we can observe that every algebra
A(G) of synthesis is a Stone-Weierstrass algebra, or equivalently, if A(G)
does not have the Stone-Weierstrass property, then G contains a non-S-set.
The converse is false.

In this paper we investigate the Stone-Weierstrass property in quotient
algebras A(E), where E is a closed subset of an LCA group. We define two
classes of sets, Stone-Weierstrass sets and idempotent sets, and observe the
relation between these sets and sets of spectral resolution. In this case the
situations are very different from the case of an LCA group. First, the
assumption "E is a set of spectral resolution" does not imply "E. is discrete."
A perfect Kronecker set in T (cf. [16, p. 99]) is a counterexample. If E is
discrete, however, E is a set of spectral resolution (cf. [16, p. 159]). Second,
even if A(E) is a Stone-Weierstrass algebra, E may not be totally discon-
nected. Helson curves in Tn, n > 2, constructed by Kahane and McGehee
serve as counterexamples [7], [15]. Third, even if E is totally disconnected,
A(E) may not be a Stone-Weierstrass algebra. Katznelson and Rudin con-
structed a counterexample [9, p. 257].
Our main results are as follows. First, every closed subset of an idempotent

set and a Stone-Weierstrass set is an idempotent set and a Stone-Weierstrass
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set respectively. Note that sets of spectral resolution also share the same
property: every closed subset of a set of spectral resolution is a set of spectral
resolution. Second, the product of Stone-Weierstrass sets need not be a
Stone-Weierstrass set although the product of idempotent sets is always an
idempotent set. Compare this property with the result by Varopoulos: the
product of S-sets is an S-set [20, p. 58]. Also it can be easily deduced from his
theorems that the product of sets of spectral resolution need not be a set of
spectral resolution. Third, the disjoint union of Stone-Weierstrass sets is a
Stone-Weierstrass set, and the disjoint union of idempotent sets is an
idempotent set. Fourth, we prove that, in finite-dimensional metrizable LCA
groups, every set of spectral resolution is a Stone-Weierstrass set. Equiva-
lently, if A(E) does not have the Stone-Weierstrass property, then E
contains a non-S-set. Fifth, we present, in T, three examples of non-S-sets
which are idempotent sets, and therefore, are Stone-Weierstrass sets. Using
the Herz scaffolding, these examples are easily modified to examples of
proper closed subsets which are Stone-Weierstrass S-sets containing non-S-
sets. Thus, we obtain the same conclusion as in the case of LCA groups: if E
is a closed subset of a finite-dimensional LCA group, then every algebra
A(E) of synthesis is a Stone-Weierstrass algebra, and the converse is false.
As a byproduct, we obtain an upper bound for the Helson constant of a

union of the type H u {H + x}. If the Helson constant of a compact Helson
set H is a, we conclude that the Helson constant of H u {H + x} is equal to
or less than 2a. Since the best previously known estimate is 33/2a3 due to
Varopoulos [22], [23], [24], (cf. [3, p. 48]), and a > 1 by the definition, hence,
our result is better in this special case of the union problem.

In the last section, we discuss the transfer method by Varopoulos. The
transfer is valid also for non-Stone-Weierstrass sets if the maximal ideal
space is not totally disconnected.

2. Definitions and prerequisite theorems

In this section, we introduce basic definitions, two theorems, and a corol-
lary which are needed in the remaining sections.
G denotes an LCA group. Tn denotes the n-dimensional torus, and Zn is

its dual group. A(G) is the Fourier algebra on G, and C(G) is the space of
continuous functions on G. The n-dimensional Euclidian space is denoted by
R

Let A be a semi-simple commutative Banach algebra with maximal ideal
space A. For a closed subset E in A,

I(E) {f A: f= 0 on E},
and J(E) is the closure of the ideal

j(E) {f A: f 0 on some neighborhood of E}.
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If A is regular and I(E) J(E), E is said to be an S-set. E is called a set of
spectral resolution if every closed subset of E is an S-set. A(E) is the
quotient algebra A(G)/I(E)with quotient norm. If A(E) C(E), E is said
to be a Helson set. The Helson constant is defined by the supremum of
{llfll(e)/llfllc(>}, where f is a non-zero function in A(E). If every continu-
ous function of absolute value 1 on E can be uniformly approximated on E
by characters, E is called a Kronecker set. It is a well-known fact that every
Kronecker set is a Helson set. PM(G) denotes the dual space of A(G), the
space of pseudomeasures on G. PM(E) is the space of pseudomeasures
supported in E, and N(E) is the dual of A(E), where E is a closed subset of
G. We call A an algebra of synthesis if A does not contain any non-S-set.

For a subalgebra B of A, B is said to be strongly separating if, for any
distinct elements x and y in A, there exists some f in B such that f(x) 1
and f(y) 0. If the complex conjugate function of f belongs to B whenever

f is in B, we call B self-adjoint. A is said to have a Stone-Weierstrass
property if every strongly separating self-adjoint subalgebra of A is dense in
A with norm employed in A. In this case, A is said to be a Stone-Weierstrass
algebra.
The following theorem shows the embedding of A(K) into C(K) C(K),

where K is a compact abelian group. This was first discussed by Varopoulos
[21], and later, Herz [5] simplified the idea by introducing the maps M and P.

THEOREM 2.1 (VAROPOULOS AND HERZ).
abelian group. Let

Assume that K & a compact

M: C( K) - C(K X K) and P: C(K K) - C(K)

be defined by Mf(x, y) f(x + y), and Pf(z) fKf(Z X, X)dx respectively.
Then:

(1) M maps A(K) isometrically into C(K) C(K).
(2) P maps C(K) C(K) onto A(K) and the norm of this mapping is one.

Using the ilov idempotent theorem (cf. [1, p. 88]), Katznelson and Rudin
proved the following.

THEOREM 2.2 (KATZNELSON AND RUDIN [9, P. 257]). Let B be the closure
of a strongly separating self-adjoint subalgebra ofA. Then every idempotent in A
belongs to B.

COROLLARY 2.3 (KATZNELSON AND RUDIN [9, P. 257]). If a semi-simple
commutative Banach algebra A is spanned by its set of idempotents, then A has
the Stone-Weierstrass property.
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3. The Stone-Weierstrass property in quotient algebras

In this section, we study the Stone-Weierstrass property in quotient alge-
bras A(E), where E is a closed subset of a finite dimensional metrizable
LCA group. We call E an idempotent set or an IA-set if A(E) is spanned by
its set of idempotents, and a Stone-Weierstrass set or an SW-set if A(E) is a
Stone-Weierstrass algebra. The empty set is an IA-set and an SW-set. By
Corollary 2.3 above, every idempotent set is a Stone-Weierstrass set. The
following theorems, which remind us of sets of spectral resolution, are valid
also for infinite dimensional LCA groups.

PROPOSITION 3.1.
Stone-Weierstrass set.

Every closed subset of a Stone-Weierstrass set is a

Proof Suppose that E is an SW-set and that F is an arbitrary closed
subset of E. Let 7r be the canonical quotient map from A(E) onto A(F).
For a strongly separating self-adjoint subalgebra B of A(F), we define a
subalgebra H of A(E) by H 7r-l(B), the inverse image of B in A(E).
Then, H is a strongly separating self-adjoint subalgebra of A(E), and
therefore, the closure of H is A(E). Thus, B must be dense in A(F). m

PROPOSITION 3.2.
set.

Every closed subset of an idempotent set is an idempotent

Proof Suppose that E is an IA-set and that F is an arbitrary closed
subset of E. Since E is an IA-set, there exists a set {fx}xA in A(E) such
that (fx)2 fx for all A, and the linear combinations of elements in {fx}x A
span A(E). Then, 7r(fx) is an idempotent for each A, where 7r is the
canonical quotient map from A(E)onto A(F), and the linear combinations
of {Tr(f,)}, cA span A(F).

3.1. Idempotent sets and Stone-Weierstrass sets in one-dimensional
metrizable LCA groups. The following theorem for T was proved by
Kahane [6]. Since R is tr-compact, we can extend this result as follows:

THEOREM 3.3.
an idempotent set.

If the Haar measure of a closed subset E in R is 0, then E is

Note. Theorem 3.3 does not hold if R is replaced by Rn, n > 2. Take, for
example, E {(t, 0): T}.

If E is a closed subset of a one-dimensional metrizable LCA group, by the
structure theorem, we may assume that E is a closed subset of either R, T or
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a discrete group. Therefore, in either case, if the Haar measure of E is zero,
we can conclude that E is an idempotent set.

THEOREM 3.4. If the Haar measure of a closed subset E of a one-dimen-
sional metrizable LCA group is O, then E is an idempotent set.

The following theorem, which indicates that sets with Haar measure zero
are not the only idempotent sets, is derived from Zygmund’s result [25,
p. 35].

THEOREM 3.5 (ZYGMUND).
and E is an idempotent set.

Them exists a set E c_ R such that m(E) > 0

3.2. Idempotent sets and Stone-Weierstrass sets in n-dimensional metriz-
able LCA groups, where n >_ 2. The following theorem is a useful tool to
find some idempotent sets and thus, Stone-Weierstrass sets. The relation
between the tensor norm and the Ll-norm was observed by a number of
mathematicians in the fifties in France. We refer the reader, for example, to
Schwartz [19, Expos6 n4, p. 4, Th6orme 3] and Grothendieck [4, p. 59,
Th6orme 2]. Since the tensor product structure is preserved by the Fourier
transform, it implies that the tensor norm and the A-norm are related as
appears in Varopoulos [20, p. 58 and p. 71]:

THEOREM 3.6 (VAROPOULOS). Let Ej be a closed subset of an LCA group
Gj, j 1, 2,..., n. Then A(E1 En) is isometrically isomorphic to
A(E1) A(En).

As a corollary, the product of idempotent sets is an idempotent set:

COROLLARY 3.7. If E is an idempotent set in an LCA group Gi, j
1, 2,..., n, then E En is an idempotent set.

Note that, in this corollary, each G does not need to be finite-dimensional.
Combining this corollary with Proposition 3.2, we obtain the following:

COROLLARY 3.8. Let Gi, j 1,..., n, be one-dimensional metrizable LCA
groups. If E is a closed subset of G Gn, and m(zrj(E))= 0 for
j 1,..., n, where Try(E) denotes the projection of E to the j-th coordinate of
G1 Gn, then E is an idempotent set.

COROLLARY 3.9.
Rn

There exists an idempotent set ofpositive Haar measure in
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This is a consequence of Theorem 3.5 and Corollary,3.7.
Now, we list the following two theorems in order to prove that the product

of Stone-Weierstrass sets need not be a Stone-Weierstrass set.

THEOREM 3.10 (LusT [11]).
Weierstrass property.

C(T) C(T) does not have the Stone-

THEOREM 3.11 (KAHANE AND MCGEHEE [7], [15]).
Helson set E c R such that E is a continuous curve.

For n > 2, there is a

By Theorem 3.11, we can observe that the class of idempotent sets and the
class of Stone-Weierstrass sets are not equal in non-discrete metrizable LCA
groups which are more than one-dimensional because a Helson curve is a
Stone-Weierstrass set that is not an idempotent set. For one-dimensional
LCA groups, the question is still open.
Now, we prove:

THEOREM 3.12.
Weierstrass set.

The product of Stone-Weierstrass sets need not be a Stone-

Proof Let E and F be continuous Helson curves in Rn. Then they are
SW-sets, but E F is not an SW-set according to Theorem 3.6 and Theorem
3.10. m

To compare Stone-Weierstrass sets with sets of spectral resolution, we
mention the following property of sets of spectral resolution.

THEOREM 3.13. The product of sets of spectral resolution need not be a set

of spectral resolution.

We use two results by Varopoulos to prove Theorem 3.13.

THEOREM 3.14 (VAROPOULOS [21, PP. 5167-5168]). Let G be an LCA
group, and K and L be compact subsets of G. If K N L t and K U L is a

Kronecker set, then A(K + L) C(K) C(L). If, in addition, K L is
totally disconnected, this identification is isometric.

PROPOSITION 3.15 (VAROPOULOS [20, P. 102, THEOREM 9.2.3]). Let G be a
compact metrizable abelian group, and let K and L be perfect subsets of G.
Then K + L contains a closed set of non-synthesis.

Proof of Theorem 3.13. Let K and L be non-empty closed subsets of T
such that KL is a perfect Kronecker set and KNL=. Then, by
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Theorem 3.6 and Theorem 3.14, A(K L) is isometrically isomorphic to
A(K + L). Proposition 3.15 implies that there exists a non-S-set E in K + L.
Then, it can be verified, using the Herz maps M and P in Theorem 2.1, that
the closed set F in K L defined by F {(x, y): x + y E} is a non-S-set.

Finally, we prove the following:

THEOREM 3.16. Every non-Stone-Weierstrass set E in a finite-dimensional
metrizable LCA group G contains a non-S-set.

Proof. By the structure theorem, and by the fact that every closed subset
of a discrete space is an SW-set, we may assume that G Rn. Let E.
{Tr.(x): x E}, where zrj is the canonical projection map from Rn on the
j-th coordinate of Rn. Then Corollary 3.8 implies that one of E., j 1,..., n,
must have a positive Haar measure. Assume that the Haar measure of Ek is
positive. Then the function f(xl,..., xn) on E defined by f(xl,... xn)
Ie(xk), where Ie is the characteristic function of E, is a pseudofunction.
Therefore, E is a set of multiplicity. Since every set of multiplicity in a
non-discrete metrizable LCA group contains a non-S-set according to Saeki
[17], E contains a non-S-set.

Thus, every set of spectral resolution is a Stone-Weierstrass set.

4. A partial converse of Theorem 3.16

The converse of Theorem 3.16 does not hold as we can observe in some
counterexamples in Section 6. However, the following can be said for a
regular semi-simple commutative Banach Algebra:

THEOREM 4.1. If an S-set E in the maximal ideal space A of a regular
semi-simple commutative Banach algebra A contains a compact non-S-set, then
A/I(E) contains a strongly separating subspace (not necessarily a subalgebra)
that is not dense in A/I(E).

Proof. Let E be a compact non-S-subset of E. Then, there exist S
I(E) and h A/I(E) such that supp S c El, h 0 on E1, and (h, S) a
> O. Let B {f All(E): (f,S)= 0}. Now, the following three lemmas
complete the proof.

LEMMA 4.2. For all x E \ E1, and for all y E with x 4: y, there exists
an f B such that f(x) 1 and f(y) O.
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_Proof. Select neighborhoods U(x), V(y), and W(E1) such that N P ,
U q W . By the regularity of A/I(E), there exists an f A/I(E) such
that 0 _< f _< 1 and

1 on some compact neighborhood H(x) c U,
on U.

This f has the properties in the lemma, m

LEMMA 4.3. For all x El, and for all y E with x 4: y, there exists an
element p B such that q(x ) 1 and p(y) O.

Proof. Choose a neighborhood U of x such that
f A/I(E) such that 0 < f < 1 and

y U. Select an

1 on some compact neighborhood H(x) c U,
on Uc.

If (f, S) 0, this f will do the job in the lemma. Otherwise, let (f, S)
/3 4:0 and o f- (fl/a)h. This o has the desired properties, m

LEMMA 4.4. For all x El, and for all y E \
such that p(x) 1 and (y) O.

El, there exists an element

Proof Choose neighborhoods V(y), W(E1) compact neighborhoods
K(E1), and U(x) such that U c K c W and P t. Then, again by the
regularity, we may select an f A/I(E) such that

1 on some compact neighborhood H(x) c U,
on Uc,

and 0 < f < 1. If (f, S)= 0, let f 0, and we are done. Otherwise let
(f, S) =/3 4: 0. By regularity, we may choose, g A/I(E) such that g 1
on K, g 0 on Wc, and 0 < g < 1. Let o f- (/a)gh. This o will do the
job.

By the above lemmas, B is strongly separating. Also, it can be easily
verified that B is a subspace of A/I(E). Since S is a non-zero functional and
S annihilates B, B is not dense in A/I(E). This completes the proof of
Theorem 4.1.
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5. Idempotent sets and Stone-Weierstrass sets in
infinite-dimensional metrizable LCA groups

Although many theorems we proved in Section 3 remain true for infinite-
dimensional groups, we deal with this case separately for the following two
reasons: First, our proof of Theorem 3.16 is valid only for finite-dimensional
G. The second reason is the following theorem. If K and L are non-empty
closed sets, K N L , and K U L is a Kronecker set, then we call K + L a
disjoint Kronecker sum.

THEOREM 5.1. If G is finite-dimensional, a disjoint Kronecker sum is
an idempotent set. If G is infinite-dimensional, however, there is a disjoint
Kronecker sum which is not a Stone-Weierstrass set.

Proof. By Theorem 3.14, A(K + L) C(K) C(L). If G is finite-
dimensional, K and L are totally disconnected by Rudin [16, Theorem 5.1.4
and Theorem 5.2.9]. Thus, according to Lust [11], C(K) C(L) is spanned
by idempotents. Therefore, K + L is an idempotent set.

In order to prove the second part of the theorem, let G To’. Now, define

K {(2,rt,27rt 2 ) X < t < g} and L {(27rs 2"trs 2 ) - < s < -]}

Then K and L are Kronecker sets [16, Theorem 5.2.7, p. 103], so that A(K)
and A(L) have the Stone-Weierstrass property. However, from Theorem
3.14, we have A(K + L)=-C(T) C(T), which does not have the Stone-
Weierstrass property by Theorem 3.10. m

Because of the isometry between A(E x x E,,) and A(EI)
A(E,,), Theorem 3.6 can be naturally extended to the countably infinite
product. Thus, we have the following theorems:

THEOREM 5.2. IfEj is an idempotent set in an LCA group Gj, j 1, 2,...,
then E )< E2 >( is an idempotent set.

THEOREM 5.3. Let G, j 1,..., be one-dimensional metrizable LCA
groups. If E is a closed subset of G G2 ..., and m(zri(E))= 0 for
j 1,..., n, where 7rj(E) denotes the projection of E to the j-th coordinate of
G x G2 x ..., then E is an idempotent set.

THEOREM 5.4.
in T

There exists an idempotent set of positive Haar measure

Theorem 5.4 is a consequence of Theorem 3.5 and Theorem 5.2.
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6. Examples of non-S-sets which are Stone-Weierstrass sets

In this section, we present three examples of non-S-sets which are Stone-
Weierstrass sets in T. These examples have Haar measure zero, and thus,
they are idempotent sets. By the Herz scaffolding, these sets can be modified
to Stone-Weierstrass S-sets which contain non-S-sets.

Example 6.1. By K6rner [10], there exists a Helson set which is not an
S-set. This set is an SW-set.

Example 6.2. Let X and Y be perfect disjoint subsets of T such that
X u is a Kronecker set. Then X + Y is an SW-set by Theorem 5.1. From
Proposition 3.15, X + Y contains a closed set E that is not an S-set. By
Proposition 3.1, this E is an SW-set.

In order to present the third example, we employ the following set.

DEFINITION 6.3.
numbers such that

Let {tj)y__l be a decreasing sequence of positive real

tj+l

and tj > E=/+ tk for all j. Let E {E)= 18j tj: 8j 0 or 1 for 1 < j < o}.
Then E is called an ultrathin symmetric set (cf. [18]).

Example 6.4. Let E be an ultrathin symmetric set. Then, it contains a
subset F that is not an S-set [8, Theorem 7]. This F has a measure zero, and
thus, by Theorem 3.3 and Corollary 2.3, F is an SW-set.

7. The union problem for Stone-Weierstrass sets and idempotent sets

We prove, in this section, that the disjoint union of Stone-Weierstrass sets
is a Stone-Weierstrass set and that the disjoint union of idempotent sets is an
idempotent set. For the non-disjoint case, the question is still open.

THEOREM 7.1. Assume that E and E2 are disjoint compact Stone-
Weierstrass sets. Then, E E2 is a Stone-Weierstrass set.

Proof Let f be an arbitrary element in A(E t3 E2) and e be any
positive number. Assume that B is the closure of a strongly separating
self-adjoint subalgebra of A(E E2). By the assumptions on B, it follows
that the restriction algebras Ba {fle: f B} and B2 {fiE2: f B} are
strongly separating self-adjoint subalgebras of A(Ex) and A(E2) respectively.
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Since E and E2 are SW-sets, there exist h and h2 in B such that
Ilfle- hiIellA(e)-< e, and lille2- hzIEzIIA(E2) < e. Since E and Ez are
compact, and E q Ez 0, therefore B contains functions g and k such
that g-- 1 on El, g--0 on E2, k 0 on E1, and k 1 on E2 according to
Theorem 2.2 and the ilov Idempotent Theorem (cf. Gamelin [1, p. 88]).
Since B is an algebra, we have hlg + h2k B, and

[If- (hlg + h2k)ll < Ilfg- hlgll + Ilfk- h2kll <

where the norm is taken in A(E t.j Ez). Thus, B is equal to A(E U E2).

THEOREM 7.2. If E and E2 are disjoint compact idempotent sets, E L) E2
is an idempotent set.

Proof Let Gx A(G) such that Gx ]El is an idempotent in A(E1) and
the family {Gxlel}x of all such idempotents spans A(E1), Similarly, let

IA(G) such that Hgle. is an idempotent in A(Ez), and the family
H.le}. spans A(E2). By the regularity of the Fourier algebras [2, p. 123],
there exists an 1IA(G) such that 11= 1 on El, and 11=0 on E2.

Similarly, there exists an 12 A(G) such that 12 0 on El, and 12 1 on
E2. Then, Gxllleiue and HI2IEIUE2 are idempotents, and

generates A(E E2). 1

8. Applications

In this section, we prove that the Helson constant for H {H + x}, where
H is a compact Helson set with Helson constant a, is less than or equal to 2a
and that C(K + L) C(K L)where K and L are disjoint, and K L is a
compact Kronecker set.

LEMMA 8.1. Let X and Y be Helson sets. If the Helson constants for X and
Y are a and fl respectively, we have

Ilfllcx)6cY) < IlfllAxxY) < llfllcx)6c<Y)

for all f A(X Y) C(X) C(Y). In particular, if the Helson constants

for X and Y are 1, the two norms are equal.
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Proof For all f C(X) C(Y) and for all e > 0, there exist fj C(Y)
and & C(Y) such that

f f1 (R) gJ and Ilfllcx)&cY) + /[3 > IIf.llcx)ll&llcY).
j=l j=l

Thus

j=l

Since e is arbitrary, we have f A(X x Y) and
for all f.

Since C(X Y) C(X) C(Y) if and only if X or Y is a finite set, we
can observe the following together with Theorem 3.6:

LEMMA 8.2. Let Xand Ybe Helson sets in G. Then X Y is a Helson set if
and only if either X or Y is a finite set.

LEMMA 8.3. If Y consists of n points, we have

for all f C(X) C(Y) C(X Y).

Proof. The first inequality follows from the definitions of the norms. For
the second inequality, let Y (y,..., y) and f C(X Y). Now, for each
fixed yi, write fi(x) f(x, y), j 1, 2,..., n. Therefore, the function f can
be expressed as f(x, y) f(x)Iy(y) + +f(x)Ir,(y), where Ie de-
notes the characteristic function of E. Thus, Ilfllcxr’ max,= n(llf" II }.
We can complete the proof by observing that Ilfllcxco’ < IIfll +""
/ Ilfnll < nllfllc(xr).

THEOREM 8.4. Let X and Y be compact Helson sets in an LCA group G.
Suppose that A(X Y) C(X Y). Thus, by Lemma 8.2, we may assume
that Y contains only n points. Then A(X + Y) C(X + Y), and a(X + Y) <
a(X Y) <_ na(X)a(Y), where a(E) denotes the Helson constant for E.
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Proof. Assume that f A(X Y). By Lemmas 8.1, 8.2, and 8.3, we have

ilfllx(xv)-< ( g)(Y)llfllc(x)6c(v) <- na( g)a(Y)llfllc(xv>.

Therefore, the Helson constant for X Y is less than or equal to
na(X)a(Y).
Now, let M be the Herz map described in Theorem 2.1. Since A(X + Y)

c_ C(X + Y), we have

M(A(X + Y))
_
M(C(X + Y)).

Since M(A(X + Y)) is a strongly separating self-adjoint subalgebra of
M(C(X + Y)), and the A(X Y)- and C(X Y)-norms are equivalent, it
follows from the Stone-Weierstrass property that

M( A(X + Y))A(XV) M(C(X + y))C(Xy)
Since M(A(X + Y)) is closed in A(X Y), and M(C(X + Y)) is closed in
C(X Y), we have

M(A(X + Y)) M(C(X + Y)).

Since M is one-to-one, we obtain A(X + Y)--C(X + Y). The Helson
constant for X + Y is less than or equal to that of X Y because the map
M preserves the A-norm and the C-norm. m

COROLLARY 8.5. The union of a compact Helson set X with Helson con-
stant a and a translate ofX is a Helson set with Helson constant less than or
equal to 2a.

Proof. Let Y={0, y}, y=0, yG in Theorem 8.4. Then we have
a(X + Y) <_ a(X Y) <_ 2a.

Thus, we obtain a new proof for a special case of the union problem for
Helson sets.

If we take Y to be an independent set having n elements {yj}n= 1, we have
1, and hence, by Theorem 8.4, a(X+Y)=a({X+yl}tJ tJ

{X + y,,}) < a(X Y) < nee.

PROPOSITION 8.6. IfX and Y are compact disjoint subsets of G and X u Y
is a Kronecker set, then C(X Y) is isomorphic to C(X + Y).

Proof. From Theorems 3.6 and 3.14, we have A(X Y)= A(X + Y).
Thus, we obtain C(X Y) C(X + Y) by taking the supremum norm.
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9. Non-Stone-Weierstrass sets and the transfer method
by Varopoulos

Unlike non-S-sets, non-Stone-Weierstrass sets for A(G), where G is not
totally disconnected, cannot be transferred to non-Stone-Weierstrass sets for
A(D) or C(D) C(D), where D is the Cantor group. This is because D is
totally disconnected, and therefore, every closed subset of their maximal
ideal spaces is a Stone-Weierstrass set. However, non-Stone-Weierstrass sets
for A(G) are transferred to non-Stone-Weierstrass sets for C(G) C(G),
since G is not totally disconnected.

THEOREM 9.1. IfE is a non-Stone-Weierstrass set for A(G), then the closed
set F in G G defined by

F= {(x,y):x+y E}

is a non-Stone-Weierstrass set for C(G) C(G).

Note. IfI={fC(T)C(T):f(x,y)=0,(x,y) T E} where E is
a finite set, then

c(r) c(e)

Thus, the quotient has the Stone-Weierstrass property. Therefore, the hy-
potheses in the above theorem have important roles.

Proof. Let B be a proper, closed, strongly separating self-adjoint sub-
algebra of A(E), and I be the ideal in C(G) C(G) defined by I
{f C(G) C(G): f 0 on F}. Let B be an algebra in C(G) C(G)/I
spanned by Mf(x, y)3"(y) + I, where [f] B and 3’ . Then, B is
strongly separating in C(G) C(G)/I, and B is self-adjoint because B is
self-adjoint. B is not dense in C(G) C(G)/I because P(C(G)
C(G)/I) A(E), P(B) nl, and B is not dense in A(E). Here, M and P
are the Herz maps as in Theorem 2.1. Thus, C(G) C(G)/I does not have
the Stone-Weierstrass property, m

The converse of Theorem 9.1 also holds. Thus, we state as follows:

THEOREM 9.2. For a closed subset E in G, define the closed subset F as in
Theorem 9.1. Then, E is a Stone-Weierstrass set for A(G) if and only if F is a
Stone-Weierstrass set for C(G) C(G).
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