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1. Introduction

Suppose that G is a solvable group, F a field, V a faithful FG-module, and
A

___
G a nilpotent subgroup of G. The action of G permutes the vectors of

V, and it is natural to ask under what conditions on G, A, F, and V, the
subgroup A is guaranteed to have a regular orbit on V. This question has
been studied extensively and, if F has characteristic relatively prime to the
order of A, definitive results have been obtained by T. R. Berger [2-8],
B. Hargraves [16] and others. (See [9] for an overview of known results.)
When char(F) divides IAI, the picture is much less clear. P. Hall and

G. Higman obtained the first related result in their renowned paper On the
p-length of p-soluble groups and reduction theorems for Burnside’s problem
[15]. They show there that if A is a cyclic p-group, R an extraspecial r-group
for some prime r 4 p, F a field of characteristic p that is also a splitting field
for R, and G a group of the form G AR, with A acting irreducibly and
faithfully on R/Z(R), then VIA always has a regular orbit. Although it
appears to be very special, the Hall-Higman configuration is extremely
important because it turns up regularly in minimal structures associated with
many theorems.
The noncoprime configuration has also been studied by A. Espuelas. In

[11] he studied the case in which A is a p-group and p char F. He proves
the following theorem:

THEOREM 1.1 (Espuelas [11], p. 4). Let G be a solvable group with
(G) 1 and let A be a p-subgroup of G, p a prime. Suppose that V is a

faithful FG-module with char(F) p. Ifp 2, assume that A is Z2 ZE-free.
Then V contains a regular A-orbit.

In this paper, Espuelas asks whether his theorem can be extended to A
nilpotent. It is the main purpose of this paper to extend Theorem 1.1 to allow
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A to be nilpotent under the additional hypothesis that G has odd order. In
particular, we prove:

THEOREM 1.2. Suppose that G is a solvable finite group and that p is a
prime such that p(G) 1. LetA be a nilpotent subgroup of G and Va faithful
FG-module over a field F of characteristic p. Assume that GI and p are both
odd.

Then A has at least two regular orbits on V.

In view of the work of Hargraves and Espuelas, it seems likely that this
theorem can be generalized to avoid restrictions on the order of the solvable
group or the characteristic of the field. The following conjecture seems
natural:

CONJECTURE 1.3. Suppose that G, A, F and V are, respectively, a finite
group, a subgroup of G, a field of characteristic p > 0, and a faithful
FG-module. Assume that (G, A, V) satisfies the following conditions:

(a) G is solvable;
(b) R(G)= 1;
(c) A is nilpotent; and
(d) A involves no wreath product Z Z for r 2 or r a Mersenne

prime.
Then A has a regular orbit on V.

Remark 1.4. The involvement of a wreath product often creates difficul-
ties in regular orbit theorems (see, e.g., Theorem 1.1 where the dihedral
group Z2 Z2 is explicitly forbidden). Thus, in particular, if G is permitted
to be of even order Theorem 1.2 fails if wreath products are not banned.
Consider, for example, that group G--GL(2,3). It is easy to see that G
contains a subgroup isomorphic to D8 that has no regular orbits.

The methods used here are somewhat different than those used in the
articles of Berger, Hargraves and Espuelas mentioned above, though the first
step is similar: One argues inductively that the result follows from the
quasiprimitive case. The reduction to the quasiprimitive case appears in 2,
below.
The main argument in the quasiprimitive case is a counting argument,

requiring a careful analysis of the size of the centralizers Cv(a) of elements
a of prime order in A and an investigation of the representations of a
minimal counterexample. The proof of the main theorem begins in 5.
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2. Preliminary reductions

To prove Theorem 1.2 we begin with a minimal counterexample. To that
end we formulate the following hypothesis.

HYPOTHESIS 2.1. Suppose that G, A, F and V are, respectively, a finite
group, a subgroup of G, a field of odd characteristic p > O, and a faithful
FG-module. Assume that (G, A, V) satisfies the following conditions:

(a) G is solvable of odd order;
(b) (G)= 1;
(c) A is nilpotent; and
(d) A has no regular orbit on V.

By a minimal triple satisfying Hypothesis 2.1, we will mean a triple
(G, A, V) that satisfies the hypothesis and for which [GI + dimv(V) is
minimal and, among such triples, one for which IA[ is as small as possible.
We begin with two lemmas that constrain the possible complexity of the

subgroup A and of the group G.

LEMMA 2.2. Suppose that (G, A, V) is a minimal triple satisfying Hypothe-
sis 2.1. Then A is generated by its elements ofprime order.

Proof. Suppose otherwise. Let B
___
A be the subgroup of A that is

generated by the elements of prime order in A. By hypothesis, B : A.
Clearly (G, B, V) satisfies all of the hypotheses of Hypothesis 2.1 except
possibly (d). Hence, by minimality of (G, A, V), the subgroup B has a regular
orbit on V. Let v generate such an orbit. If Ca(v): 1, then, by Cauchy’s
Theorem, Ca(v) has an element a of prime order. But then a B, which
contradicts the fact that v generates a regular B-orbit. ra

LEMMA 2.3. Suppose that (G, A, V) is a minimal triple satisfying Hypothe-
sis 2.1. Then G AF(G) and p f 7r(F(G)).

Proof. By minimality of the triple (G, A, V), it will suffice to prove that
the triple (AF(G), A, V) satisfies Hypothesis 2.1 and this in turn will be
obvious once we show that p(AF(G)) 1.

Since p(G) 1, it follows that F(G) is a p’-subgroup of G. (Otherwise, a
Sylow p-subgroup of F(G), being characteristic in F(G), would be a normal
p-subgroup of G.) Now, since G is solvable, Ca(F(G))

_
F(G). On the other

hand,

(AF(G)), F(G)] __C_ (AF(G)) F(G) 1.

Consequently, t’(AF(G)) centralizes F(G) and

t’( AF(G) ) c_ g(AF(G) ) F(G) 1.
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It is clear now that (AF(G), A, V) satisfies Hypothesis 2.1 and, by minimal-
ity, G AF(G), as desired. []

Next, we turn to the structure of the representation of G on V and some
consequences that restrict even more the possible structure of the group G.
The argument given here is similar to that in [11].

LEMMA 2.4. Suppose that (G, A, V) is a minimal triple satisfying Hypothe-
sis 2.1. Then V is an irreducible FG-module.

Proof First, we show for each a A that there exists an irreducible
FG-submodule V(a) of V that satisfies two conditions:

(a) if a A F(G), then (a) acts nontrivially on V(a); and
(b) if a F(G) then [a, F(G)] acts nontrivially on V(a).
Take a A#. If a A F(G), let Q= (a) and if a F(G), let Q=

[a,F(G)]. Since G is solvable, Cc(F(G))_ F(G) and if a q F(G), then
Q [a, F(G)] 4: 1. Thus, in both cases Q 4: 1. Since (IF(G)[, char(F)) 1,
Maschke’s Theorem allows us to decompose VIF(c) as the direct sum of
homogeneous components:

VIF(G) V1 V2 Vn.

For each i, let U/ be an irreducible FF(G)-submodule of V/. Then V/
contains every irreducible FF(G)-submodule of V that is isomorphic to U/.
Since G acts faithfully on V, it follows (in both cases) that Q does not
centralize all of the homogeneous components. Without loss of generality, we
can assume that Q acts nontrivially on V1. It follows from the homogeneity of
V that Q acts nontrivially on U1. Let

Since G AF(G), X is a FG-submodule of V. Let W be an irreducible
FG-submodule of X. Since W is F(G)-invariant and every irreducible
FF(G)-submodule of W is conjugate to an irreducible FF(G)-submodule of
V1, it follows that W contains an irreducible FF(G)-submodule that is
isomorphic to U1. Consequently, Q acts nontrivially on W. We can now let
V(a) W.

Consider the FG-module

E
a cA#

Since U is the sum of irreducible FG-modules, U is completely reducible.
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Moreover, U is completely reducible as a module for G G/CG(U). There-
fore p(G) centralizes_ each direct summand and thus centralizes U. This
proves that (G)= 1.
Suppose that 1 4: a A N CG(U). Then both (a) and [a, F(G)] centralize

U, contrary to our construction of U. Thus, A C(U) 1.
Now suppose that G is not faithful on U and denote by A the image of A

in G. Then GI < GI and we know from the minimality of (G, A, I/), that
(, , V) cannot satisfy all of the conditions of Hypothesis 2.1. Clearly, the
only possibility is that A has a regular orbit on U and hence A has a regular
orbit on V, a contradiction. Thus, G is faithful on U and, again, by minimality
of (G, A, I/), we can conclude that U I/.

Since V is completely reducible, we can choose {aila A} so that

V= V(a,) V(a2) V(as).

For each a A, let K(a) C(V(a)).
If s > 1, then, for each i, dim(V(ai))< dim(V) and V(ai) is a faith-

ful, irreducible G/K(ai)-module. Thus, p(G/K(ai)) 1 and
(G/K(ai), AK(ai)/K(ai), V(ai)) satisfies each condition of Hypothesis 2.1
except possibly (d). Hence, by minimality, AK(ai)/K(ai) has a regular orbit
on V(ai). Take vi V(ai) such that CAK(ai)/K(ai)(Ui)-- 1. Then CA(v + u2

+ +vs)_K(al) qK(as)= 1, since G is faithful on V. Thus,
v / /v generates a regular A-orbit, contrary to our choice of G and V.
Therefore, s 1, V V(al) and V is irreducible, as desired, z1

Recall the following definition.

DEFINITION 2.5. An irreducible FG-module V is said to be quasiprimitive
if V[N is homogeneous for every N <1G.

In Lemma 2.12 we reduce our study to quasiprimitive modules. We will
need the following well-known theorems about regular orbits under the
"induced" action of a group (similar to representation of a group on an
induced module). Proofs of these theorems can be found in Appendix A of
[9]. First a definition:

DEFINITION 2.6. Suppose that A acts (on the right) on a set 12 with
kernel K C,(1). Let

O f" G --. ft f(ag) f( g)a-’ for each a A and g G}.
The induced action on G on IA is defined by

fS( x) f(xg-).
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Remark 2.7. Notice that for each k K, we have f(kg) f(g)k-’ f(g)
SO the functions in IIAa are constant on cosets K\ G. Moreover, each
function f IIAa is determined by its values on a (right) transversal to A in
G, that is, a choice of representatives of the cosets A \ G.

THEOREM 2.8. Suppose that A c_ G and that A acts on a set 12 with kernel
K Ca(f). Assume that 111 > 1. Let G act on aA via the induced action.
Then

CG(nG) KX=core(K).
xG

THEOREM 2.9. Suppose that A c__ G and that A acts on a set f with kernel
K Ca(). Assume that [f[ > 1. Let G act on laA via the induced action.
Let {1 Xo, x 1,..., Xn_ 1} be a fixed right transversal ofA in G.

(a) The map f (f(1), f(Xl),..., f(Xn_l)) is a bijection from f to 12n.
(b) Let 19: G- Sa, be the action on 1n corresponding to the induced

action of G on 12 and let

dp. S,, . K\A Sa,,

be the natural action of S K\A arising from the definition of the wreath
product. Then there is a homomorphism " G Sn K\A such that

(c) ker() core(K).

THEOREM 2.10. Suppose that G is a solvable group and let A , G be a
subgroup of G. Suppose W is an FA-module and V= indAa(W)--= WAa the
module described above. Let K CA(W) and C CI x a aKx. Suppose that
K \A has a regular orbit on W. Then either

(a) C \ G has a regular orbit on V, or
(b) G involves a wreath product Z Z for primes r and s.

Furthermore, in case (b), IF[ 1 divides IK \A and the primes r and s can be
chosen so that r divides [A \ G and s is a prime divisor of [F[ 1.

Remark 2.11. Some cases of the theorem above are of special interest. If
both char(F) and IK\AI are odd, then conclusion (a) always holds, as
IFI 1 does not divide IK\AI. If G is nilpotent, then G can never involve a
wreath product Z Zs for r s so one need only check for Z Zr.

LEMMA 2.12. Suppose that (G, A, V) is a minimal triple satisfying Hypoth-
esis 2.1. Then V is a quasiprimitive FG-module.
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Proof Let N<G and suppose VIN= VI Vn where the V/ are
homogeneous components of V with respect to N. Assume, for a contradic-
tion, that n > 1.
For each i, let N/= N(V/). Then it follows from one form of Clifford’s

Theorem ([21], Theorem 8.1.3, p. 210) that V/ is an irreducible Ni-module
and V Vi. Moreover, each V/ is a faithful, irreducible N,./CN(Vi) module,
so (Ni/Cui(Vi))= 1. Since dim(V,.) < dim(V), the minimality of (G, A, V)
tells us that

(Ni/CN,(Vi), ( A Ui)Ui/Cui(Vi), Vi)

cannot satisfy all the requirements of Hypothesis 2.1, and again only (d) of
Hypothesis 2.1 can fail. Hence the image of A q N,. in Ni/CNi(Vi) has a
regular orbit on V. That is,

(2.1) NA(V,.)CNi(Vi)/CNi(Vi) NA(Vi)ICA(Vi) has a regular orbit on V/.

The set 12 {V1,..., Vn} is permuted by A. Renumbering this set if
necessary, let {V1,..., Vt} be representatives of the A-orbits on and, for
each 1,..., t, let

i.e., the sum of the modules in the orbit of V/. Then each W/ is an
FN(W/)-module, A

_
N(W/), and V W1 Wt.

Suppose, for each {1,2,..., t}, that W has a regular A/CA(Wi)-orbit
and let u - W generate a regular orbit. Since A acts faithfully on V, the
element (Vl, Vz,..., vt) generates a regular A-orbit, a contradiction. There-
fore, for some index i, W/ has no regular A/CA(Wi)-orbit. Without loss of
generality, we can assume that W has no regular A/CA(W1)-orbit.

If A N NG(V1) then W V and, by (2.1), A/CA(W1) has a regular
orbit on W1. Therefore, A g: N(V1).

Let A0 NA(V1). Since A is nilpotent, we can choose subgroups A such
that the series below is part of a composition series of A"

NA(V1) =Ao _A
_

C_As_
_
A A.

Thus, for each i, Ai_ <1 A and, since A is nilpotent, [Zi Zi_ 1] Pi for
certain primes Pi r(A). For each define the module U/ by
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so, for example,

E via Wl.
aA

We will show by induction on that, for each i, Ai/fAi(Ui) has a regular
orbit on U/. For i= s this says that As/CA(U)= A/CA(W1) has a regular
orbit on W, contrary to our choice of W1.

For 0, U0 V1 and our conclusion says NA(V1)/CA(V1) has a regular
orbit on V1, which is precisely equation (2.1). This starts the induction.
Assume that Ai/CAi(Ui) has a regular orbit on U/and choose a transversal

{1 =Xo, Xl, X2,...,Xpi_l} to Z in Ai+ 1. We claim that

-= U/Ai/l --- (U/(R) 1) ( Ui (R) x ) ( Ui (R) X
pi_ ) Ui A +

FA

It suffices to check that the subspaces U/x; are pairwise disjoint, and this
follows since G permutes the homogeneous components V/and NA(V1) c_ Ai.

We now apply Theorem 2.10. Clearly, Ai+ is nilpotent and A <l Ai+ 1.

Moreover, by induction, Ai/CA.(Ui) has a regular orbit on U/. Also, both
and char(F) are odd. Hence (a holds: Ai+l/CAi+l(Vi+m) has a regular orbit
on U/+ 1. We need only check that CAi/I(U/+ 1) f’l xAi+CAi(Ui)x, and this
follows from Theorem 2.8 and Theorem 2.9.

This proves that A/CA(W1) has a regular orbit on W1, a contradiction.

LEMMA 2.13. Suppose that (G, A, V) is a minimal triple satisfying Hypoth-
esis 2.1. Then every normal abelian subgroup of G is cyclic.

Proof This is an immediate consequence of Lemma 2.12.

Remark 2.14. Lemma 2.13 requires only that V be faithful and
quasiprimitive.

LEMMA 2.15. Suppose that (G, A, V) is a minimal triple satisfying Hypoth-
esis 2.1. Let F F(G), and, for each prime r zr(l:), let F be the @low
r-subgroup of F. Then F is the direct product of its Sylow subgroups. Moreover,
for each r zr(F), F E Cr, where E is either an extraspecial r-group of
exponent r or the identity group and C is cyclic. If E 4= 1, then the central
product is taken by identifying Z(Er) with l(Cr).

Proof Clearly, F char G. Hence, each characteristic abelian subgroup of
F is normal in G and, by Lemma 2.13, cyclic. Thus, F is of symplectic type
and, by P. Hall’s Theorem [14], Theorem 2.9, the result follows, t3
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Remark 2.16. Lemma 2.15 follows immediately from Philip Hall’s Theo-
rem and the fact that V is quasiprimitive: no other properties of the minimal
triple are required.

3. Representation theory

By the reductions in 2, the Fitting subgroup of a minimal counterexample
to Theorem 1.2 is a product of groups each of which is either cyclic, or the
product of a cyclic group and an extraspecial group. The representation
theory of extraspecial groups and of critical groups (defined below) are
therefore essential to our analysis.

DEFINITION 3.1. A group G is called critical if it satisfies the following
conditions:

(a) G has a normal, extraspecial r-subgroup R for some prime r;
(b) G has a cyclic, nonidentity r’-subgroup A such that G AR and

ANR=I;
(c) [A, Z(R)] 1 and each nonidentity element x A induces a fixed-

point free automorphism on R/Z(R).

The representation theory of critical groups is described in [17],
Satz V.17.13, p. 574 and [18], Theorem IX.2.6, p. 422. We reproduce these
theorems for reference, translating the first into the language of modules.

THEOREM 3.2 (Dade [17], Satz V.17.13, p. 574). Suppose that G AR is a
critical group, R is a normal, extraspecial r-group of order r 2e+1 and A (a)
is a cyclic group. Let K be an algebraically closed field of characteristic p such
that (IGI, p)--1 and let V be an irreducible KG-module on which R is
represented faithfully. Then V is an irreducible KR-module and dimK(V) r e.
Furthermore, either ]A divides re- 1 and

VIA s(K[A]) W,

where s (r e

r e q- 1 and
1)/IAI and W is an irreducible KA-module, or IAI divides

VIA .,s(K[A]) (K[A]/W),

where s ((r e _[_ 1)/IA I) 1 and W is an irreducible KA-module.

THEOREM 3.3 (Hall-Higman [18], Theorem IX.2.6, p. 422). Suppose that
G AR is a critical group, R is a normal, extraspecial r-group of order r 2e+1

and A (a) is a cyclic group of order pl. Let K be an algebraically closed
field of characteristic p and let V be an irreducible KG-module on which R is
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represented faithfully. Then V is an irreducible KR-module and dimK(V) r e.
Furthermore,

VIA =-- s(K[A]) P,

where P is indecomposable and either
(1) s--(re- 1)/IAI and dimK(P)= 1, or
(2) s ((r e + 1)/IAI)- 1 and dim(P)= pl_ 1.

The following fact is required in the proof of Lemma 5.3 below.

THEOREM 3.4. Suppose that H is isomorphic to the direct product of Sylow
subgroups, each of which is either cyclic or the central product of a cyclic group
and an extraspecial group. Let W be a faithful, irreducible FH-module. Let U
be an irreducible Z(H)-submodule of Wandf dimv(U) and e2 IH/Z(H)I.
Then

(a) dimv(HomvH(W, W)) f, and
(b) dimv(W) ef.

Proof See [9], Lemma 4.3.6. Slightly different versions of this theorem
with varying amounts of proof can be found in [11] and [20], Lemma 4.3.7,
p. 353. o

4. Quoted results

In this section we list several results from the literature that pertain to
regular orbits. The first two theorems provide the primary motivation for the
technique used in the proof of Theorem 1.2.

If A is a finite group and V is an FA-module, then an element v V
generates a regular A-orbit precisely when v is moved by every element of
A; thus, v generates a regular A orbit if v lies outside the centralizer of every
element a A. Clearly, if v is fixed by an element a A, it is fixed by all
powers of a, and, in particular, by an element of prime order in A. Thus, v
generates a regular orbit if and only if it lies outside of the union of the
centralizers in V of the elements of prime order in A. Of course, Cv(a) is a
subspace of V. Theorem 4.1 exploits this argument in a straight-forward way:
Since an infinite vector space cannot be written as the union of proper
subspaces, the union of the centralizers of elements of the finite group A
cannot cover V. Theorem 4.2 uses the same idea, requiring a careful
accounting of vectors centralized by elements of prime order in A. These two
theorems appear with proof as Theorem 3.1.2 and Theorem 3.1.4 of [9].

THEOREM 4.1. Suppose that A is any finite group and V is a faithful
FA-module with no regular A-orbits. Then F is finite.
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THEOREM 4.2. Suppose that A is any finite group and V is a faithful
FA-module with no regular A-orbits. Assume that IF[ q pS and let m be
the number of minimal subgroups ofA. Then m > q and [A[ > q.

The next result is a new theorem of A. Espuelas, the culmination of a long
study of actions of groups on symplectic modules. If R is an extraspecial
p-group, then R/Z(R) has a natural structure as a symplectic space, with
symplectic inner product given by the commutator operation in R (see, e.g.,
[1], (23.10), p. 109). If R <1G and G centralizes Z(R), then the action of G
on R/Z(R) induced by conjugation preserves the symplectic form on
R/Z(R), and R/Z(R) becomes a symplectic module for G.

Espuelas’ Theorem is crucial in the proof of Theorem 5.2, below. Since, by
Theorem 2.15, the Fitting subgroup of a minimal counterexample to Theo-
rem 1.2 is (usually) built up from extraspecial groups. Espuelas’ Theorem
provides a mechanism by which we are able to compare IF(G)I and IA I.

THEOREM 4.3 (Espuelas [12], Theorem 1, p. 1). Let G be a group of odd
order that acts on an extraspecial r-group R, for r an odd prime. Suppose that
R/Z(R) is a faithful and completely reducible G-module. Then R/Z(R)
contains at least two regular G-orbits.

If the Fitting subgroup of a minimal counterexample to Theorem 1.2 is
abelian, we need an alternate route to the conclusion. The two theorems
below, which appeared in the dissertation of A. Turull, [22], are used in
Lemma 5.4 to analyze this situation. We begin with some required notation.

Notation 4.4. Let K=GF(pn) and F___K the prime field of K. Set
G Gal(K/F)< K#. Suppose that q is a prime that divides Gal(K/F)I
and let Q be the subgroup of Gal(K/F)I of order q. Define

N= (x K#1 l-I x= 1} and GN(1 pn,q)=QNN,
o’Q

so GN(1, pn, q)
_

G. We can view K as a one-dimensional vector space over
the field K. There is a natural action of G on K, with the normal subgroup
K# acting by field multiplication and Gal(K/F) acting via its natural Galois
automorphisms.

THEOREM 4.5 (Turull [22], Proposition 1.4, p. 52). Let G be given above
with its natural action on K and suppose that A

_
G. Then A has a regular

orbit on K# if and only if for every prime q which divides [GaI(K/F)I, the
group GN(1, pn, q) is not conjugate in G to a subgroup ofA.
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THEOREM 4.6 (Turull [22], Proposition 1.2(6), p. 49). If the group
GN(1, pn, q) is nilpotent, then either (a) p 2 or (b) q 2 and GN(1, pn, q)
has even order.

5. The main result

In this final section we prove Theorem 1.2. The proof requires a care-
ful counting argument reminiscent of the proofs of Theorem 4.1 and
Theorem 4.2. In essence, these theorems show that if a finite group .4 acts
faithfully on a vector space V and the vector space V is large, then it
must contain a regular orbit. The following observation is crucial: A vector
v V generates a regular A-orbit if v is not centralized by any element of
prime order in A. In Theorem 4.1 it is shown that a vector space over an
infinite field cannot be written as the union of proper subspaces; hence the
subspaces of fixed points of elements of prime order in A cannot cover V,
thereby leaving a vector v that generates a regular orbit. The argument is
sharpened in the proof of Theorem 4.2 by crudely estimating the number of
elements centralized by the elements of prime order in A; if V is large
enough, some vector is left over and generates a regular A-orbit.
We begin with a careful examination of the fixed points of elements of

prime order in a nilpotent subgroup A of a group G satisfying the hypothe-
ses of Theorem 1.2 and the properties of a minimal counterexample enumer-
ated in 2. By comparing our count of such fixed points to vI, we are able to
show (in most cases) that at least one vector v remains and, therefore, that V
has a regular A-orbit. Of course, if v generates a regular A-orbit, then -v
also generates a regular A-orbit and, since A has odd order, v and -v lie in
different orbits. Thus A has two regular orbits.

In our analysis we use a new theorem of A. Espuelas to produce regular
orbits of sections of A on sections of F(G) and thereby bound IAI as a
function of VI, This effectively forces V to be large enough to have regular
A-orbits. In one final configuration we apply two theorems of A. Turull that
examine the natural action on a extension field K of the semidirect product
of the Galois group, Gal(K/F), with the multiplicative group, K#.

Naturally, the proof of Theorem 1.2 requires several lemmas. To begin, we
bound the sizes of the centralizers of elements of prime order in A.

LEMMA 5.1. Suppose that G is a finite solvable group of odd order and V is
a faithful, quasiprimitive FG module. Suppose that A is a nilpotent subgroup of
G and a A an element ofprime order q. Then

(a) dim(Cv(a)) <_ (3/7)dim(V) and ICv(a)l < IvI 3/7,
Moreover, if a A F(G), then

(b) dim(Cv(a)) < (1/3)dim(V) and ICv(a)l < IWl 1/3.
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Proof Let K
___
F be a finite extension of F to a splitting field for G and

let VI-- V (R)F K. Then

(5.1) dimK(Cy( a)) dimF(Cy( a)).

Now, VK M M2 M for some Galois conjugate irreducible
KG-modules M (see, e.g., [18], Theorem VII.1.20, p. 23 and [19],
Theorem 9.21, p. 154). Since the M are Galois conjugate, dim(CMl(a))=
dim(CMi(a)) for each and hence it suffices to prove (a) and (b)with M in
place of V. Moreover, the Galois conjugacy implies that G is faithful on each
summand Mi. Thus, for the purposes of this lemma, we may assume that F is
a splitting field for G and V VK.
We examine the two cases a F(G) and a F(G) separately.

Case 1. aF(G)
Step 1. There exists an a-invariant r-subgroup Q

_
F(G), for some prime

r q, such that
(a) Q is either cyclic ofprime order or extraspecial;
(b) [Q, (a)] Q;
(c) [(a), (a)] 1;
(d) Z(Q), G; and
(e) the action of a on Q/Z(Q) is fixed-point free.

Proof Suppose that a CA(,(F(G)) and let Aq be the Sylow q-sub-
group of A. Then a CA(,(F(G)). Since q(F(G))<IG and G
AF(G),CA(,(F(G)))(F(G)<G. But CA(,(F(G)))(F(G))is a q-

group, so a CA (,(F(G)))(F(G)) F(G), a contradiction.
Thus, [a, (F(G))] 4:1 for some prime r 4: q. Let R (F(G)). By

Remark 2.16 and Lemma 2.15, R has the form R E C, where either
E 1 or E is extraspecial and C is cyclic.

If E 1, then R C and is cyclic. In this case take Q 11(C). By [14],
Theorem 5.3.10, if a centralizes Q, then a centralizes C, contrary to our
choice of R. Properties (a), (b), (c), (d), and, trivially, (e) follow immediately.

Next, assume that E is extraspecial. If [(a), Z(R)] 4: 1, then let Q Z(E)
I(Z(R)). Again, (a), (b), (c), (d), and (e) are immediate.
Finally suppose that E is extraspecial and [(a), Z(E)] 1. Now, E

I(R), so E char R. Let Q [(a), E]. Since Z(E)= 1(C), once again a
centralizes C. Since C Z(R), we have [(a),R] [(a), E] Q. By [14],
Theorem 5.3.6, Q R, ( a)] [[ R, (a)], (a)] Q, ( a)] and Q satisfies (b).

Let E E/Z(E). By [14], Theorem 5.3.15, C((a)) Ce((a))/Z(E).
Since [E, (a)]< E, and IZ(E)I r, it follows that Z(E)

_
[E, (a)]. Thus,
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[E, (a)] [E, (a)]/Z(E) and [14], Theorem 5.3.5 and Theorem 5.2.3, imply
that

E= [E,(a}]Ce((a)) and = [,(a}] xC,((a}).

It follows that [Ce((a)), Q] _c Z(E), and [[Ce((a)), Q], (a)]
__

[Z(E), (a)]
1. Moreover, [[(a), Ce((a))], Q] 1, so by the Three-Subgroup Lemma,

[Q, ce((a))] [[Q, (a)], Ct((a))] 1.

We claim that Q is extraspecial. If Q is abelian, then Q centralizes
[Q, (a)] Q and (5.2) and (5.3) imply that Q centralizes E. But then
Q c_ Z(E) and [R, (a)] [Q, (a)] [Z(E), (a)] 1, contrary to our choice
of R. Thus, Q is not abelian. Since Q/Z(E) is elementary abelian, 1 c Q’ __.
Op(Q) c_ Z(E) c_ Z(Q). On the other hand, by (5.2) and (5.3), Z(Q) c_ Z(E),
and so Q’= (Q) Z(Q) Z(E). It follows that Q is extraspecial. Since
z(o) Z(E)= I(Z(R)), (c) and (d) follow. Finally, since [Q, (a)] Q,
[14], Theorem 5.2.3, implies that Ca/z(o)((a))= 1. Thus (a) is fixed-point
free on Q/Z(Q), as desired.

Step 2. dim(Cv(a)) < (3/7)dim(V).

Proof Take Q as in Step 1 and consider Vl<a>a. Let

(5.4) OcGc c=v
be an (a)Q-composition series for V with quotients V V//V/_ 1. Thus,
each V/ is an irreducible (a) Q-module.
By our choice of Q we know that Z(Q)< G. Since V was obtained by

tensoring a quasiprimitive module up to a splitting field, VIz(Q) is the direct
sum of Galois conjugate irreducible modules. Since G is faithful on V, Z(G)
is faithful on every irreducible summand of VIZ(Q). By the Jordan-Holder
Theorem, these are the only irreducibles that can occur in V/IZ(Q), so

Z(Q) is faithful on V/for each i.

Suppose now that Q is extraspecial of order r 2e+ 1o Since (a) is fixed-point
free on Q and centralizes Z(Q), the semidirect product (a)Q is a critical
group. The faithful, irreducible representations of critical groups are de-
scribed in Theorem 3.2 and Theorem 3.3. There are four cases depending
upon whether q divides r e -I- 1 or re- 1 and whether q =p or q p. In
particular, if q[r -t- 1 and q p, then

(5.6) /l<a> s(F[(a)]) P,
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where the module P is the unique indecomposable F( a)-module of dimen-
sion q 1 and s ((r e + 1)/q) 1. If qlr e + 1 and q 4: p, then

V/l<a> s(F[(a)]) (F[(a)]/W),

where W is a 1-dimensional irreducible F(a)-module and s ((r
1. And, finally, if qlr e 1, then

e -i- l/q)-

V/l<a> t(F[(a)]) W,

where W is a 1-dimensional, irreducible module and (re- 1)/q.
Clearly, dim(CFt(a>l(a))= 1, dim(Cp(a))= 1, dim(Cvt(a>l/w(a)) < 1, and
dim(Cw(a)) < 1.

If q divides r e -Jr 1, by (5.6) and (5.7), dim(Cp/(a)) < s + 1, while dim(V/)
=sq+q- 1. Thus,

dim(Cp/(a)) <
s + 1 dim(i)sq+q-1

If q > 5, then

1 dim(/)1 dim(/) <dim(Cp(<a))) <-q-1 -On the other hand, if q 3, we know that s (r e + 1)/3 1 : 0, for
otherwise r e 2, contrary to our hypothesis that GI is odd. Thus, s > 1 and

2 dim(/)dim(C,i((a))) < -Consequently, in both cases,

2 dim(/)< 3
dim(Cp((a))) _< - ff dim(/).

If q divides r e

Thus,
1, by (5.8), dim(Cpi(a)) < + 1, while dim(V/) tq + 1.

t+l dim(//) 1( q- 1 )dim(/)"dim(Ci(a)) < tq + 1 - 1 + tq +-
Since >_ 1, it follows that tq + 1 > q 1. If q > 5, then

2 dim(/).dim(Cp(a)) _<
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On the other hand, if q 3, since q and r are both odd and qlre- 1, we
know that (r e 1)/q > 2. Thus,

1 2 3
dim(/).dim(Cpi(a)) <_ -(1 + g)dim(P/)= -7

Again, in both cases,

3 dim(/).dim(Ci((a))) < -ff

Now suppose that U c_ V is an (a)-submodule of V. Then

Cy((a))/Cu((a)) --_ Cv((a))/U Cv((a))
Cv,((a) ) U/U c_ Cy/u((a)),

and hence

dim(Cv((a})) dim(Cv((a})/Cu((a))) + dim(Cu((a)))
<_ dim(Cv/u((a))) + dim(Cu((a))).

Clearly, we can extend this argument by induction to conclude that

(5.9)
3

dim(Cy((a))) < E dim(Cpi((a))) < -ff E dim(/)
i=1 i=1

dim(V)

Now consider the case that Q is cyclic. By Clifford’s Theorem,

where the W are homogeneous components that are permuted transitively by
(a). But, a has prime order so there are two possibilities: s q o(a) or
s 1. Since F is a splitting field for G, if s 1, then Q acts on V/ by scalars.
Thus, Q [(a), Q] c_ C(a)Q(Vi) which contradicts (5.5).

Suppose, on the other hand, that s q. Then v Cp,((a)) if and only if
aq-Iv w + wa + wa2 + ""_+w Thus,_Cp,((a))-- W1, and, clearly,

dim(Cpi((a))) (1/q)dim(V/)< (1/3)dim(V/). Now the same argument as
above shows that

(5.10) dim(Cv((a))) < (1/q)dim(V) < (1/3)dim(V).

Since 1/3 < 3/7, combining (5.9) and (5.10) yields the desired result.
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Case 2. a F(G).
Let Q be the Sylow q-subgroup of F(G). Again, by Remark 2.16 and

Lemma 2.15 can write Q E C where either E 1 or E is extraspecial
and C is cyclic. Moreover, Via is the direct sum of Galois conjugate
irreducible FQ-submodules. Let W be one such irreducible FQ-summand of

First, suppose that a Z(Q)= C. We claim that a is fixed-point free on
W. Otherwise, Cw(a) is a nontrivial FQ-subspace of W, and, since W is
irreducible, W Cw(a). But, if a centralizes W, then it also centralizes each
Galois conjugate of W, and hence a centralizes V. But A is faithful on V, a
contradiction. Now, since V is the direct sum of Galois conjugates of W, it
follows that Cv(a) 0. Obviously, this satisfies the lemma.
Now, suppose that a Z(Q). Then E : 1 and Q is the central product of

an extraspecial group and a cyclic group. We claim that in this situation,
WI<,>-= sF[(a)], i.e, a sum of copies of the regular F( a )-module. Since
(char(F), IQI)-- 1, this is an easy exercise in ordinary character theory. By
[10], Theorem 31.5, p. 181, the character of a faithful, irreducible, representa-
tion of Q vanishes outside of Z(Q). Consequently, if x is the character of

Wl<a> and p the character of the regular F( a )-module, then

X(1) X(1)
p(1) p I(a)l p"

Hence, our claim holds with s X(1)/l(a)l.
It now follows that

dim(Cw((a))) (1/q)dim(W),

and, since W was an arbitrary summand of V,

dim(Cv((a))) (1/q)dim(V).

Finally, since q > 3, it follows that

dim(Cv((a))) (1/3)dim(V) < (3/7)dim(V).

This completes the proof of the lemma. D

In the next two lemmas, we will complete the analysis in the case that
F(G) is not abelian. We have already bounded the size of the centralizer of
an element of prime order in A by a function of vI, In the next two lemmas,
under the additional hypothesis that F(G) is not abelian, we bound IAI as a
function of VI. The first of these, Lemma 5.2, expresses a relationship
between IAI and IF(G)I. The second, Lemma 5.3 then describes a relation-
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ship between [vI and IF(G)[ and completes the proof of Theorem 1.2 in the
case that F(G) is not abelian.
Lemma 5.2 makes critical use of a new result of A. Espuelas [12],

Theorem 1 (reproduced here as Theorem 4.3) to find regular orbits of A on
certain sections of the Fitting subgroup of G. His result is a generalization of
an earlier result, [13], Theorem A, in which he examines the action of
solvable subgroups of symplectic groups on their natural symplectic spaces.

LEMMA 5.2. Suppose that G is a finite solvable group of odd order and V is
a faithful, quasiprimitive FG module. Suppose that A is a nilpotent subgroup of
G such that G AF(G) and such that F(G) is not abelian. Let e2=

IF(G)/Z(F(G))[
Then:

(a) irA c__ F(G), then IAI < eEl Z(F(G))1;
(b) irA F(G) and Z(F(G)) has no cyclic Sylow subgroups, then IAI <

(1/6)e4IZ(F(G))[; and
(c) if A F(G) and Z(F(G)) has a cyclic Sylow subgroup, then [A <

(1/36)e41Z(F(G))I 2.

Proof. For each prime r 7r(F(G)), let F be the Sylow r-subgroup of
F(G). By Remark 2.16, we can apply Lemma 2.15. Thus, for each r, Fr
E Z(Fr), where Z(Fr) is cyclic and either E 1 or E is an extraspecial
r-group of exponent r. Let H be the product of the nonabelian Sylow
subgroups of F(G) and C the product of the cyclic Sylow subgroups of F(G),
so F(G)= H C. Since by hypothesis F(G) is not abelian, H 1. Let
2 IEr/Z(Er)l IF/Z(Fr)l. Since F(G) is nilpotent, F(G) is the directe

product of the Sylow r-subgroups Fr, and hence

2 1"[ 2
11 er"e2 I-I e

rzr(F(G)) rzr(H)

Fix a prime r zr(H) and let E Er/Z(Er). Let A r, --r,(A__) and
consider the action of A, on Er. Clearly Ar,/fAr,(__Er) is faithful on E and
since (r’, r) 1, Maschke’s Theorem implies that E is completely reducible.
By Theorem 4.3, E contains at least two regular Ar,/C,r,(E)-orbits. Conse-
quently,

(5.11)
1 1 2[Zr,/f,(r)l < [Tr[ "er"

Since A is nilpotent, it is the direct product of its Sylow subgroups and, for
each r 7r(H), we define the projections 7r: A A,. We also define the
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quotient maps Or’. A r, Ar,/aAr,(Er). Finally, let 0o" A A/CA(C). Com-
bining these homomorphisms, we produce a map

(5.12) " A A/CA(C) I-I Ar,/CA’r(ff,r)
’tr(H

given by q0 Fl,(/4)q, where l]t O 7rr.
Let K Ker() and suppose that a K. For each prime r zr(K), let

K be the Sylow r-subgroup of K. We claim that a CA(C)c F(G).
Clearly, it is sufficient to prove this for elements of prime-power order, so we
assume that a K for some prime r. First note that since a ker(), we
know a ker(00), and therefore a CA(C). Moreover, a ker(qq)for
each q 7r(H). If r q, this implies that a CA ,(E.). But since (r, q) 1,
[14], Theorem 5.1.4, Burnside’s theorem, implieO tlat a CA(Eq). Since
q "a’(H), Eq is extraspecial and therefore a centralizes Z(Eq) fl(Z(Fq)).
By [14], Theorem 5.3.10, a centralizes Z(Fq). Thus, a CA(Fq). This proves
that a centralizes Fq for each q g: r.
Now consider the group KrF(G). Since a was an arbitrary element of Kr,

it follows from the previous paragraph that K centralizes each Sylow
q-subgroup of F(G) for q g: r. Hence, KrF(G) is nilpotent. Moreover, since
K char K < A, it follows that K,.F(G)<1AF(G) G. Thus, KrF(G) c_ F(G),
and therefore, a K c_ CA(C) F(G). This proves the claim.

Conversely, it is clear that C(C) c F(G) c_ ker(), and therefore,

ker(.) CA(C) t F(G).

It now follows from (5.11), (5.12) and the fact that F(G) is not abelian that

(5.13)
1 IAI 1 IAI[A/(CA(C) F(G))I < I-I er [CA(C)I

< -e ICA(C)Izr(H)

We are now in a position to prove (a), (b), and (c). Suppose first that
A c_ F(G). Then

IAI _<[F(G)I--IF(G)/Z(F(G))I [Z(F(G))[ e21Z(F(G))I.

This proves (a).
Next, suppose A f F(G) and C 1. Then

A CA(C) and A/(CA(C) 6 F(G)) A/(A c F(G))

Moreover, A c F(G) 4: F(G), as otherwise F(G) A, so G AF(G) A
and hence A c_ F(G), contrary to assumption. Thus A c F(G) is a proper
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subgroup of F(G) and, since F(G) has odd order, IF(G): A N F(G)] > 3.
Now, (5.13) yields

IAI le[A F(G)I

< ge F(G) < ge Z(F(G))I.

This proves (b).
Finally, assume that A F(G) and Ifl > 1. Again, A F(G) is a proper

subgroup of F(G), so certainly CA(C) F(G) is a proper subgroup of F(G).
Consequently,

ICA(C) c F(G)[ _<IA n F(G)I <(1 (1/3)eIZ(F(G))I.

Now, by (5.13),

IAI IAI 1 e4
]C(C) F(G)] ICA(C) F(G)I <- -g ICA(C)I IZ(F(G))["

Now, A/CA(C) is isomorphic to a subgroup of Aut(C) of odd order. Since C
is nontrivial, Aut(C) has even order, and hence IA/CA(C)I < (1/2)lAut(C)l
< (1/2)1CI. Finally, since F(G) has odd order and is not abelian, ICI _<

(1/3)IZ(F(G))I. Combining these results yields

IAI < 3e4IZ(F(G))I.
This proves (c) and completes the proof of the lemma. D

LEMMA 5.3. Suppose that G is a finite solvable group of odd order and V is
a faithful, quasiprimitiue FG module. Suppose that A is a nilpotent subgroup of
G such that G AF(G) and F(G) is not abelian. Then A has a regular orbit
on V.

Proof. Let W be a faithful, irreducible F(G)-submodule of V and U an
irreducible Z(F(G))-submodule of W. Set f= dimF(U) and e2=

IF(G)/Z(F(G))I. We claim that

(5.14) divides (I UI 1).

We give a quick proof of this fact. First, since V is quasiprimitive, Z(F(G)) is
faithful on U. Let K HomFz(e(a(U). By Schur’s Lemma and Wedderburn’s
Theorem on finite division rings we know that K is a field, and we can view U
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as a KZ(F(G))-module. As such, U is irreducible and faithful. Since K is a
splitting field for Z(F(G)), it follows that dim(U) 1, and hence Z(F(G))
is isomorphic to a subgroup of Ks. Clearly, UI IKI, and therefore,
IZ(F(G))I divides UI- 1, as desired.

It follows from (5.14) that if IZ(F(G))I > 5, then UI 1 >_ 5, and, since
UI is a power of the characteristic of F, UI >_ 7. Similarly, if IZ(F(G))I 3,
then it follows from (5.14) that UI >_ 4 and UI 1 is divisible by 3. Again,
since UI must be a power of an odd prime, UI >_ 7. Since IZ(F(G))I > 3 in
any case, we have

(5.15) IUI > 7.

Moreover, by Lemma 3.4,

(5.16) dim(W) ef e dim(U) and IWl IVl e.

Finally, since IZ(F(G))I and U are both odd, (5.14) implies that

IUI- 1 IUI(5.17) Z(F(G)) < <2 2

We now turn to the counting technique described in 4. Recall that every
element of V that is centralized by no minimal subgroup of A must generate
a regular A-orbit. Thus, to show that A has a regular orbit on V, it is
sufficient to show that

(5.18) IVI >0,

where A contains one generating element from every minimal subgroup of
A. In particular, every element a z{ has prime order.

In order to show (5.18), we break the analysis into three cases correspond-
ing to the three parts of Lemma 5.2.

Case 1. A c_ F(G).
If A

_
F(G), then by (5.17) and Lemma 5.2(a)

le2IAI _< e2IZ(F(G)) <_ - IUI.

By Lemma 5.1, since A c_C_ F(G), we know ICv(a)l < IVI 1/3 for every a A.
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Since A has odd order, we know I1 < IAI/2 and, by (5.16), IVI IWI IUI e.
Thus,

IVI 1 1/3 1
>_ IVI lZl IVI >_ IVI- e2lUI IV[ 1/3,

and to prove (5.18) it is sufficient to show that

(5.19) iUl(2e/3)- 1 2
4 e >0.

Now, by (5.15), IuI >_ 7, and so IUI(2e/3)-1 > 7(2e/3)-1. Moreover, since F(G)
has odd order and is not abelian, e >_ 3. It is an easy exercise in differential
calculus to prove that f(x) 7(2x/3)-1 (1/4)x2 > 0, for all x > 3. This
verifies (5.19), and hence (5.18) in this case.

Case 2. A 9 F(G) and Z(F(G)) has no cyclic Sylow subgroups.
If A F(G) and Z(F(G)) has no cyclic Sylow subgroups, then by (5.17)

and Lemma 5.2(b)

IAI < e (F(G))I < e41UI

This time, Lemma 5.1 tells us that ICv(a)l _< IVI 3/7 for every a A. By the
argument presented in Case 1, to prove (5.18) it is sufficient to show that

1 13/7Igl- .IAI IV > O.

Using our bound on IAI and the fact that IVI IUI e, it is sufficient to show
that

IuI 4e/7-1 l---e4 > o.24

Since IuI 7, this reduces to showing 74e/7-1 (1/24)e4 > 0. In this case, a
brief detour through differential calculus shows that f(x) 74x/7-1

(1/24)x 4 > 0 whenever x > 3. Since F(G) is not abelian, e > 1, and is an
odd integer, this inequality completes the proof of Case 2.

Case 3. A F(G) and Z(F(G)) has a cyclic Sylow subgroup.
If A 9 F(G) and Z(F(G)) has a cyclic Sylow subgroup, then by (5.17) and

Lemma 5.2(c),

IAI _< 6e41 Z( F( G))I _< 1e4IUI.
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Again, Lemma 5.1 yields ICv(a)l IVI 3/7 for every a cA. As in the
previous cases, it is sufficient to show that

IVl 1/21Zl IVI 3/7 > 0,

and this time, using our bound on IA l, it is enough to show that

1 e4>0"gl 4e/7- 2

288

Since uI 7, this reduces to showing 74e/7-2 (1/288)e4 > 0. As before,
we rely on differential calculus to verify that f(x) 74x/7-2 (1/288)x 4 > 0
whenever x > 3. Since F(G) is not abelian, e > 1, and is an odd integer, this
inequality completes the proof of Case 3 and of the lemma, t

If the Fitting subgroup of a minimal counterexample to Theorem 1.2 is
abelian, then by Theorem 2.15 it is cyclic. In the next lemma we show in this
case that VIFa) is irreducible. It follows that the FG-module V can be
viewed as a KG-module, where K CEndF(v)(F(G))= HomFF(V). Since
K is a splitting field for F(G), V (the module V viewed as a KG-module) is
one-dimensional and its structure precisely determined. This one-dimen-
sional configuration was examined by A. Turull in his dissertation [22], and
he gives there explicit criteria for the existence of a regular orbit. The two
relevant theorems are reproduced in 4 as Theorem 4.5 and Theorem 4.6.

LEMMA 5.4. Suppose that G is a finite solvable group of odd order and V is
a faithful, quasiprimitive FG module. Suppose that A is a nilpotent subgroup of
G such that G AF(G) and F(G) is abelian. Then A has a regular orbit on V.

Proof Let H F(G). By hypothesis, H Z(H) and by Lemma 2.13 and
Remark 2.14, H is cyclic. As in Lemma 5.3, let W be a faithful, irreducible
FH-submodule of V. We claim that in this situation V W, i.e., VIH is
irreducible.
As in Lemma 5.1, let K F be a finite extension of F to a splitting field for

G and let V V (R)F K. By Theorem 4.1, we may assume that F is finite, and
hence, by [19], Theorem 9.21, p. 154, the Schur index is one. Thus, [18],
Theorem VII.l.18, p. 21 implies that V: -= W W2 Wt, where the
W/are nonisomorphic, irreducible, Galois conjugate KG-modules. Since H is
faithful on VI and the modules W are Galois conjugates, H is faithful on
each W/.

Let U be a Clifford component of W11H. By Clifford’s Theorem, W1 is the
direct sum of the Clifford components, which are permuted by G. Since H
is cyclic, Cn(U)char H < G, and hence, H is faithful on U. Since K is a
splitting field for G and U is homogeneous, H acts on U by scalar multipli-
cation. Now suppose that g Na(U). Then, for every h H, the commuta-
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tor [g,h] acts trivially on U. But H <IG, so [g,h] H and, since H is
faithful on U, we discover that [g, h] 1. But then, g Co(H). Now, since
H F(G) and G is solvable, [14], Theorem 6.1.3, implies that g H. Thus,
No(U) H. Consequently, [21] Theorem 8.1.3(iv) tells us that U is an
irreducible KH-module and hence one-dimensional. Moreover, it is immedi-
ate from the Clifford decomposition that W1 U. Since the modules W/are
all nonisomorphic, U is not a summand of W/ for 1. We can now
conclude that VII/-/ is the direct sum of nonisomorphic, irreducible, faithful,
one-dimensional KH-modules.
On the other hand, if VI/-/ is not irreducible, then by Maschke’s theorem

VI/-/ can be decomposed into a nontrivial direct sum of irreducible FH-sub-
modules. Since VI/-/ is homogeneous, these summands are isomorphic, and
we can write V[/-/= sW, where W is an irreducible FH-module and s > 1.
But then VI sWK, where W: K (R)F W. Clearly, an irreducible KH-sub-
module of sW has multiplicity s > 1, a contradiction. Thus, V[/-/ is irre-
ducible.
Now, by hypothesis G AH and, by Remark 2.16, G satisfies the conclu-

sion of Lemma 2.15. We can now follow the procedure described in 4.3 of
[9] to produce a faithful KH-module M and a homomorphism tr: G
Gal(K/F) having kernel Co(Z(H)) Co(H) such that the action of H on
M extends to a semilinear action of G on M (with respect to tr), M --- V as
G-sets and MF-= V. Since (MIH)F (MF)IH, it follows that (MIH)F is
irreducible and therefore MH is irreducible. Moreover, K is a splitting field
for Z(H) H and so M is a faithful, one-dimensional KH-module. There-
fore, H is isomorphic to a subgroup of K and M --- K with the action of H
on M given by field multiplication. Furthermore, since Co(H)= H, it
follows that G/M is isomorphic to a subgroup of Gal(K/F). (See also [3],
(2.1), p. 515 and [22], Proposition 2.1, p. 55.)
We can summarize the previous paragraph by saying that G is isomorphic

to a subgroup of Gal(K/F) < K# and M is isomorphic to K, and the action
of G on M is the natural action on the one-dimensional vector space K, i.e.,
with the normal subgroup K# acting by field multiplication and Gal(K/F)
acting as Galois automorphisms. The group Gal(K/F) t K# has been stud-
ied by A. Turull in [22].
By Theorem 4.5, A has a regular orbit on K unless there is a prime q such

that A contains a subgroup conjugate in Gal(K/F)t K# to GN(1, pn, q).
(See {}4 for the definition of the group GN(1, pn, q).) But, by Theorem 4.6,
GN(1, p", q) is not nilpotent unless either char(F) p 2 or q 2, in which
case IGN(1, pn, q)l is even. Thus, it follows from Turull’s analysis that in our
situation A always has a regular orbit on K and hence A has a regular orbit
on V.

Proof of Theorem 1.2. We argue first that A has at least one regular orbit
on V. To this end, assume that (G, A, V) is a minimal triple satisfying
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Hypothesis 2.1. Clearly, F(G) is either abelian or not abelian. By the
reductions stated in 2, G, A, and V satisfy the hypotheses of Lemma 5.3
and Lemma 5.4. Thus if F(G) is not abelian, by Lemma 5.3, A has a regular
orbit on V, a contradiction. On the other hand, if F(G) is abelian, Lemma
5.4 provides a contradiction.

It follows that under the hypotheses of the theorem, A has at least one
regular orbit. Now suppose that v V generates a regular A-orbit. Since
char(F) is odd, 1 4: -1 F and, clearly, the vector -v also generates a
regular orbit. Moreover, since IAI is also odd, -1 is not an eigenvalue for
any element of A. Thus, v and -v generate disjoint orbits and A has at
least two regular orbits on V. rq

REFERENCES

1. M. ASCHBACHER, Finite group theory, Cambridge Studies in Advanced Mathematics, vol. 10,
Cambridge U. Press, Cambridge, England, 1986.

2. T. R. BERGER, Hall-Higman type theorems. II, Proc. Amer. Math. Soc. 37 (1973), 317-325.
3. HalloHigman type theorems. I, Canad. J. Math. 26 (1974), 513-531.
4. Hall-Higman type theormes, lI, Proc. London Math. Soc. 31 (1975), 21-54.
5. Hall-Higman type theorems. III, Trans. Amer. Math. Soc. 228 (1977), 47-93.
6. Hall-Higman type theormes. 1/’, Pacific J. Math. 73 (1977), 1-62.
7. Hall-Higman type theorems. II, Trans. Amer. Math. Soc. 205 (1977), 47-69.
8. Hall-Higman type theorems, l//, J. Algebra 51 (1978), 416-474.
9. W. CARLIP, Regular orbits of nilpotent groups in non-coprime representations, Ph.D. thesis,

The University of Chicago, Chicago, Illinois, 1988.
10. L. DORNHOFF, Group representation theory, vol. A. Marcel Dekker, New York, 1971.
11. A. ESPUELAS, The existence of regular orbits, J. Algebra 127 (1989), 259-268.
12. A theorem of Hall-Higman type for groups of odd order, Arch. Math. (Basel),

55(1990), 218-223.
13. Regular orbits on symplectic modules, J. Algebra 138 (1991), 1-12.
14. D. GORENSTEIN, Finite Groups, Chelsea, New York, 1980.
15. P. HALL and G. HIGMAN, On the p-length of p-soluble groups and reduction theorems for

Burnside’s problem, Proc. London Math. Soc. 7 (1956), 1-42.
16. B. HARGRAVES, The existence of regular orbits for nilpotent groups, J. Algebra 72 (1981),

54-100.
17. B. ]{UPPERT, Endliche gruppen I, Die Grundelhren der mathematischen Wissenschaften, vol.

134, Springer-Verlag, New York, 1967.
18. B. HUPPERT and N. BLACKBURN, Finite groups H, Grundlehren der mathematischen Wis-

senschaften, vol. 242, Springer-Verlag, New York, 1982.
19. I. M. ISAACS, Character theory of finite groups, Pure and Applied Mathematics, vol. 69,

Academic Press, New York, 1976.
20. G. JONES, The influence of nilpotent subgroups on the nilpotent length and derived length of a

finite group, Proc. London Math. Soc. 49 (1984), 343-360.
21. D. J. S. ROrtNSON, A course in the theory of groups, Springer-Verlag, New York, 1982.
22. A. TURULL, Supersolvable automorphism groups of solvable groups, Math. Zeitschr. 183

(1983), 47-73.

OHIO UNIVERSITY
ATHENS, OHIO


