
ILLINOIS JOURNAL OF MATHEMATICS
Volume 38, Number 3, Fall 1994

LORENTZ-IMPROVING MEASURES

RAYMOND J. GRINNELL AND KATHRYN E. HARE

Introduction

Throughout this paper G will denote an infinite compact abelian group, A
its normalized Haar measure, and F its discrete dual group. The space of
bounded regular Borel measures on G will be denoted by M(G). Measures,
which acting by convolution map Lp to Lp+ for some e e(p) > 0 and
1 < p < oo (or equivalently for all 1 < p < oo), are called LP-improving
measures and have been investigated in a number of recent papers (cf. [5]
and the papers cited therein). Examples of such measures include all Lq(G)
functions for q > 1 (by Young’s inequality), Riesz products [15], and the
Cantor-Lebesgue measure [4].

In this paper we study measures which act by convolution on the Lorentz
spaces L(p, q).

DEFINITION. A measure/x is called Lorentz-improving if there exists p, q
and r, where 1 < p < oo and 1 < q < r < 0% such that/z L(p, r) c_C_ L(p, q).

The Lorentz spaces are function spaces intermediate to the Lp spaces in
the sense that whenever 1 _< q < p < r _< 0%

L

_
.JLt_L(p,q) _Lp_L(p,r)

_
[’L_L1. (1)

>p s <p

We show that the class of Lorentz-improving measures properly contains the
class of LP-improving measures. In fact there are Lorentz-improving mea-
sures that are not even a limit, in the total variation norm, of LP-improving
measures. Lorentz-improving measures are characterized in terms of the size
of the sets {3’ F: It2(,)l > e}. This characterization is analogous to a known
characterization of LP-improving measures [8] and requires the introduction
of a new type of "thin" set, which generalizes the notion of a A(p) set.
Further estimates of the size of Lorentz-improving measures are made in
Section 4. In particular we prove that all such measures are continuous. In
Sections 5 and 6 we focus on Lorentz-improving measures on the circle group
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T. These measures satisfy certain summability conditions, however, unlike
LP-improving measures, they need not be Lipschitz. Lastly we study random
Lorentz-improving Cantor measures and characterize almost surely those
which are LP-improving. We also answer an open problem in [5].

1. Lorentz-spaces

We begin by briefly reviewing for the reader the definition and basic
properties of the Lorentz spaces. Let f be a complex-valued measurable
function on G which is finite A a.e.. The distribution function of f is defined
by

A/(y) A{x G" If(x)l > y} for y > O.

The non-increasing rearrangement of f is the function f* defined by

f*(t) =inf{y > O’Af(y) _<t} foreacht>O.

The Lorentz space L(p, q) is defined as the set of equivalence classes of
functions f as above such that Ilfll,q < o, where

(-fol(tl/pf*(t))qdtt )
1/q

sup tl/Pf*(t)
(0, oo)

ifl<p,q <o

ifl<p <,q=.

Since f* and f have the same distribution function, it follows that Ilfll, p
Ilfllp, so the Lorentz space L(p, p) is equal to L p.
The function II I1, is a quasi-norm, but is not in general a norm. For this

reason it is useful to define the function f** by

f**(t) - (s) ds, fort>0,

and then set

(tl/Pf**(t))q-
Ilfll<,q)

sup l/Pf**(t)
(0, oo)

l/q

forl <p,q <

forl <p <,q .
If 1 < p, q < or if p q {1, o} then L(p, q) is a Banach space with the
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norm II [l(p,q). Hardy’s inequality can be used to prove that the quasi-norm
and norm are related by

(2)

(where (p/q)l/q 1 if q oo). These facts can essentially be found in [11].
We have already mentioned that L(p, q)c_ L(p, r) if q < p < r. In fact

this inclusion holds whenever q < r. Moreover (see [11] and [12])

and

I[fl[,r [Ifll,q (3)

q)(q-l-r-l)
[[f[l(p,r) < - [[fl[(p,q). (4)

Notice also that if 1 < p < P2 < oo and 1 < q < oo then

(llfll,) q
sup (tl/p2f*(t)) q(pFI-p

q 11 t(0, 1)

It follows from this that if 1 </91 </92 < o and 1 < ql, q2 -< oo then

L(p2,q2) -L(/91,q1)" (6)

If we define a total ordering on (1, oo) [1, oo] by (r, s) > (p, q) if r > p or
if r =p and s < q, then inclusions (1) and (6) can be combined as

L(r,s) c_L(p,q) if(r,s) > (p,q). (7)

Moreover this inclusion is proper [21, 2.7].
A final inequality [11, 4.6] we mention is that if h L and if g L(p, oo)

then

Ilh*gll(p,oo) < P Ilhlllllgllp 1 (P’ (8)

The next fact will be useful later.

LEMMA 1.1. /f 1 < p < oo and iff L(p, r) for all r > 1 then Ilfll(p,r)
[[f[[(p, 1) as r --. 1.
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Proof. Let {rn}__ be a sequence decreasing to
tl/pf**(t) >_ 1). Since

1 and let A={t"

(tl/Pf**(t))rn tl(t)XA < (tl/’f**(t))rlXA

and {(tl/Pf**(t))rnXA} is an increasing sequence, it follows by the dominated
and monotone convergence theorems that

fo (tl/pf**(t))r’dt fo 1/pf** dt
--i- ( t) i-

as r --> 1. This clearly suffices to prove the lemma, o

As with the classical Lp spaces, the simple functions, and hence the
trigonometric polynomials T(G), are dense in L(p, q) whenever 1 < p <
and 1 < q < . Moreover the dual of L(p, q) is L(p’, q’) (where 1/p’ + 1/p

1, 1/q’ + 1/q 1) [11, 2.4 and 2.7]. A duality argument [7, 11.6] proves
that /x L(p 1, ql) --- L(p2, q2) precisely when /x L(pz, q) - L(p], q) if
1 <p,p2 <% 1 <q,q2_<
A Riesz-Thorin like interpolation theorem applies to operators on Lorentz

spaces. As we make extensive use of this result, we will state it here for the
convenience of the reader.

Notation. For j {0, 1}, let py, qy, ry, sy satisf3, either 1 < py, ry, qy, sy <
orpy=ry{1,}orq.=sy{1,}.If0<O < 1, definep, q,r, sby

1 1 -O O 1 1 -O O
P /90 Pl q q0 ql

1 1 -O O 1 1 -O O
r r0 r s sO s

We use this notation in the theorem below.

THEOREM 1.2. [11, p. 266] For j {0, 1} let T" L(p, q) - L(r, s) be a
bounded linear operator satisfying [[Tfll*rj, sj < Mllfll,*;,a; for all f g(pl, ql).
Then

IlZfllr*, C(py, qy, O)M-MIIflI,

for all f L(p, q).
This theorem has an important consequence for measures acting by convo-

lution on the Lorentz spaces.
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THEOREM 1.3.
1 <q<oo.

If tx M(G) then I * L(p, q) c_ L(p, q) for all 1 < p < 0%

Proof Since/x L L and/x L _c L this follows from the interpola-
tion theorem. 0

THEOREM 1.4. Let tx be a Lorentz-improving measure.
(a) For every 1 < p < oo there exist 1 <_ ql < q2 <- oo (depending on p) such

that Ix * L(p q2) L(p, q ).
(b) For every 1 < p < o and 1 < q < oo there exists r < q such that

tx * L(p,q) c_L(p,r).

(c) For every 1 < p < o and 1 < s < oo there exists > s such that

Ix* L(p,t) c_L(p,s).

Proof (a) Since/ is Lorentz-improving there exist 1 < r < oo and 1 < s
< s2 < oo satisfying

tz * L( r, s2) c_ L( r, sl).

If p r the result is proved. If p > r interpolate using the fact that
/ L c_ L, otherwise interpolate using the fact that/x L c_ L1.

(b) and (c) These are similar but use (a) and Theorem 1.3. E

Remark. The ordering of the Lorentz spaces (7) might suggest calling a
measure/x Lorentz-improving if for some (r, s) > (p, q) we have/x L(p, q)__. L(r, s). The inclusions show that this definition is actually the same as the
one we gave in the introduction. Moreover the set of measures /z for which
there exists some p < r with /z L(p, q)

_
L(r, s) is easily seen by (6) to

coincide with the set of LP-improving measures.

2. Examples of Lorentz-improving measures

Our first result yields numerous examples of Lorentz-improving measures.

THEOREM 2.1.
1 <p < oo.

If tz is LP-improving then Ix * L(p, o) c_ L(p, 1) for all

pProof. Fix p> 1 and choose 1 <r<p. As /x is L-improving there
exists some q > r such that /x L c_ Lq. By setting e p(q r)/(q + r)
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and noting that /x L
_
L, we interpolate and conclude that LP-

___
Lv+. By (1), L(p, ) c_ Lv- and L(p, 1)

_
Lp+ so we obtain_

L(p, 1) for all p. []

The main objective of this section is to construct, on any infinite compact
abelian group, an example of a non-LP-improving measure which maps
L(p, ) to L(p, 1) for all 1 < p < . First we need some easy results on
convolution powers of/. These were motivated by [8].

Notation. /z will denote the convolution of/z with itself n times.

PROPOSITION 2.2. Let tz M(G) and suppose there are indices 1 < p < o

and 1 <_ q q2 ot such that tz *L(p, q2) L(p, q ). Then for any 1 <_ r <
there is some positive integer m such that txm L(p r) c_ L(p q )

Proof There is nothing to prove unless q2 < r < . For each positive
integer n set qn+l q2(q2/ql)n-l" Since /z L(p, )

_
L(p, ), if one as-

sumes inductively that

Ix * L(p, qn+l) C_ L(p, qn)

then by interpolation we obtain /z, L(p, qn+9.) c_ L(p,%+l). It is now easy
to see that

n * L(p, qn+)
_
L(p,q) for all n,

and as qn o as n --* , the proof is complete.

COROLLARY 2.3. Let tz M(G) and suppose tz * L(p, q2) ----- L(p, ql) for
some 1 < p < and 1 < q q2 <-- " Then given any 1 < r <_ there is
some positive integer m such that tzm L(p, q2) L( 13, r).

Proof. By duality/z L(p’, q’l) L(p’, q’2). Since 1 < r’ < , by Proposi-
tion 2.2 there exists a positive integer rn such that m , L(p’,/") L(p’, ql).
Dualizing again gives the result. [3

PROPOSITION 2.4. Let Iz M(G) and suppose for some 1 < p < and
1 < q < we have tz * L(p, o) c_ L(p, q). Then there exists a positive integer
m such that tz L(p, )

_
L(p, 1).

Proof By duality /z, L(p’, q’)_ L(p’, 1), thus if p 2, /z, L(2, q’)_
L(2, 1). If p 4:2 then taking s 1 if p < 2 or s 2p if p > 2 and using the
fact that /z L(s, 1)

_
L(s, 1), interpolating yields /z L(p, t)

_
L(p, 1) for

some > 1. Thus, in either case, applying Proposition 2.2 with q2 t, ql 1
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and r q we can choose m satisfying 1.1,
m * L(p, q) L(p, 1). Hence

Im+l,z(p, 0) lm,z(p,q) t(p,q). I-1

COROLLARY 2.5. Let tx M(G) and suppose , L(p,q)
_
L(p, 1) for

some 1 < p < and 1 < q < . Then there exists a positive integer m such
that [d,

m * L(p ) c_ L(p, 1).

Notation. For a linear operator T: L(pl, q1) - L(p2, q2) denote the
operator quasi-norm of T by

VII* sup{ll Tfll2 q2 Ilfll,, q, < 1}(Pl, ql" P2, q2)

(When Pl ql and P2 q2 we will simply write IITIIpl, p2.)

LEMMA 2.6. Ifp < q and T" Lp --, Lq is a bounded linear operator then

Ilrll(*p,p;p 1) <
q [Irll(*,p;q,q).q-p

Proof If f Lp then inequalities (5) and (3) yield

Zfll,l <
q II Tfll, <

q Trill, q. [-]
q-p q-p

We are now ready for our construction of a Lorentz-improving measure
which is not LP-improving.

THEOREM 2.7. Let G be an infinite compact abelian group. There is an
absolutely continuous measure tx on G for which Ix * L(p, ) c_ L(p, 1) for all
1 < p < o, but tx is not LP-improving.

Proof. For n > 3 let r, 1 + n -1 and define sn by 1/s, 1/r,- 1/2.
Note that s, decreases to 2 as n tends to infinity.

Using the sharp form of Young’s inequality [13] it is possible to choose a
sequence of positive functions {4,}=3 having the following properties"

(i) tn Lr"(G);
(ii) Ilthnlll-" 1;
(iii) There exists some hn such that (n * hn q Ls"+n-.

By Young’s inequality b,, L2 __. Ls- and of course b,, L
_
L=.

For rn > 2, set 0m 2/m and qn, m mSn/2. Since

1 Om 1 Om and
1 O,, 1 Om

m - d- o qn, m Sn
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by the Riesz-Thorin interpolation theorem we see that (n * zm zq"’m and

O O

Lastly, set

{Sn }Dn max
Sn 2’ IInll2, s

Consider the function

Since

Ilwll< 11n111 3
1

22_< <oo
n=3 n D

w LI(G).
Fix p > 2 and choose no so that sn

functions tn are positive
+n for all n > n0. Since the

[Iwll2,p > [[wll2,+n- > ll.ll2, s.+n-.

However, by (iii), the final operator norm in the inequality above is infinite
and so w does not map Lz into Lp. As p>2 was arbitrary w is not
L’-improving.
The operator quasi-norms we are working with do not satisfy the triangle

inequality, however, because II IIp,q) is a norm and the relationship (4)
holds, one can see that for m > 2,

[[(m,m;m 1) < rn ’ IIb m;m 1)
2 2

n--3 n Dn

By Lemma 2.6 and the fact that

qn, m Sn
qn, m rn Sn 2

we see that

IIwlIm, n3

Sn
m’m,1) <. rn

Sn 2 2 2

< rn
I[nllz, s

n=3 n2Dn
<
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Hence w L(m, m)
_
L(m, 1) for all positive integers m and by interpolating

this holds for all 1 < m < oo. By duality/z w w maps L(m, oo) to L(m, 1)
for all 1 < m < oo. Furthermore is not LP-improving since w is not [15].

Remark. This measure was constructed as a norm limit of LP-improving
measures. In Section 6 we study random Cantor measures and prove that
there is a Lorentz-improving measure on T which is not a norm limit of
LP-improving measures.

3. A characterization theorem

LP-improving measures have been characterized in terms of the size of
their Fourier transform: a measure is LP-improving if and only if the sets

are A(p) sets for some p > 2, with A(p) constant 0(e -1) [8]. We will give a
similar theorem for Lorentz-improving measures, but first it is necessary to
generalize the notion of a A (p) set to the Lorentz space setting.

Notation. For a function space X and E F, XE will denote {f e X:
f(y) 0 for all y E}.

DEFINITION [16]. Let 0 < p < . A subset E of F is called a A (p) set if

L Le for some r < p (or equivalently, for all r < p).

This definition and the twofold inclusion structure for Lorentz spaces
suggests the following.

DEFINITION. Let E
_

F, 1 < p < o, and 1 < q < . We call E a A I(P, q)
set if there exists some 1 < s < p such that LE(p, q) Le(s, q). The set E
is called a A 2(P, q) set if there is some r > q such that Le(p, q) Le(p, r).

The group F is not a A l(p, q) set or a A 2(p, q) set for any p, q since
L(p,q) 4: L(r,s) if (p,q):/: (r,s). If E is a finite set then E is both a

l(P,q) set and a A 2(P, q) set for all 1 < p < and 1 < q < .
PROPOSITION 3.1. (a) If E is a A (p) set then E is a A ,(p, p) set and a

A l(q, 1) set for all 1 < q < p.
(b) If E is a A I(P, q) set then E is a A 2(P, q) set. Moreover E is a A(r)

set for all r < p, and it is a A (p) set if q < p.

Proofi This is evident from the inclusions in (1) and (6). [

There are many natural questions concerning A I(P, q) and A 2(P, q) sets
which should be pursued. A number of these are obviously implied by the
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theory of A (p) sets. Our purpose for introducing A 2(P, q) sets in this paper
is to use them to prove a characterization theorem for Lorentz-improving
measures (Theorem 3.4 below). In order to do this, we shall need the next
two results which give properties of a set which are equivalent to the
definition of a A 2(P, q) set.

THEOREM 3.2. Let E c F, 1 < p < 0% and 1 <_ q < oo. The following are
equivalent"

(i) E is a A 2(P, q) set;
(ii) There is a constant k such that Ilfll(v,q) <- kllfllo,,oo) for all f TE(G);
(iii) Le(p, q) Le(p,

Proof (i ii) From the definition of a A 2(P, q) set and the closed graph
theorem we know there exists some r > q and constant k such that
IIfll<,q) _< k IIfll<,r) for all f Te(G).

Now

[If[lp,r) -- sup (tl/pf**(t))r-# (tl/pf**(t))adt
(o, oo)

-ilfll-a

Combining these inequalities and simplifying gives (ii).
(ii iii) We need to prove L(p, oo) c_ Lg(p, q), so let f L(p, oo). Let

{K} be a bounded approximate identity in T(G).
First assume q 1. Then

ILK.* fll(p.q) < kllK.* fl’lv.oo <
kp

Ilfllp 1 (p,o),

and as L(p,q) has a weak topology, a subnet of {K, f} converges
weak ,. But F_L(p’,q’) and so K,f converges weak to f. Thus
f Le(p, q), indeed,

kp
II/11Ilfll,,a) < lim inf IIK, fll,,a)< p 1

To handle the case q 1 we note that for s > 1 inequalities (4) and (7)
and assumption (ii)yield

IlK. * fll(p.) < IlK. * fll(p.1)< k
1Is’

IlK. *



376 RAYMOND J. GRINNELL AND KATHRYN E. HARE

As in the first case we can conclude that f L(p, s) and that

Ill <,, ) <_p kP,
l_

Letting s 1 and applying Lemma 1.1 completes the proof.
(iii i) is obvious.

THEOREM 3.3. Let E c F and let 1 <_ q < 2. The following are equivalent"
(i) E is a A 2(2, q) set;
(ii) There exists a constant k such that for each g L(2, q’) there is some

h L2 with ,[e [e and 11hl12 -< kllgll(E,q’);
(iii) There exists a constant k such that for all g L(2, q’)

)
1/2

1(3’)12 < kllgll(2,).
yE

Proof (i = ii) Applying the previous theorem (iii) it follows that L2e
L(2, q). Thus the inclusion map I’L2e L(2, q) is bounded and hence so is
its adjoint, the quotient map Q’L(2, q’) L2e. Define h by

(ii iii). Obvious.
(iii = i) Property (iii) can be restated as saying the quotient map

Q" L(2, q’) ---> L2e is bounded.
Assume first that q 4: 1. Taking adjoints it follows that the inclusion map

I’L2e - L(2, q) is bounded, which proves (i).
Suppose q 1. For 2 < p < oo consider the quotient map Qp’L(2, p)

L2e. By (ii) and (4),

)
1/2

IIQ < )II2= 2 _<kllgll<z,)
yE

Hence its adjoint Ii’LEe --> L(2, p’) has norm at most k(p/2)1/p. Thus for
all f L

Iif11<2,1)--
pl’imllfll<2’p’)-a < lim sup k Ilfll2 < oo

p’-l

which proves E is a A 2(2, 1) set.

Of course, similar results could be obtained for A I(P, q) sets.
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Notation. For E c_ r and 1 _< q < 2 let A 2(2, q; E)--sup{l[fl[(2,q): f
L2e, IIfll 2 -< 1}.

THEOREM 3.4. For IX M(G) the following are equivalent:
(i) Ix is Lorentz-improving;
(ii) There exists 1 <_ q < 2 and a >_ 1 such that for each e > 0 the sets

E(e) are A 2(2, q) sets and A 2(2, q; E(e)) O(e-);
(iii) There exists 1 <_ q < 2 and a positive integer n such that Ixn.

L(2, q’) - L2.

Proof. The proof of this theorem is very similar to the equivalence of (1)
and (2) in the analogous characterization of LP-improving measures [8].
There it was observed that if Ixn is LP-improving for some n then so is Ix.
This was derived in [15] as a consequence of Stein’s analytic interpolation
theorem. The same type of arguments, but using the Lorentz space analogue
[17] of Stein’s analytic interpolation theorem, proves that if Ix is Lorentz
improving then so is Ix. We leave the details to the reader. D

An interesting application of this theorem is to prove a sufficient sum-
mability condition for Lorentz-improving measures.

COROLLARY 3.5. Suppose Ix M(G) and for some s < oo

E (exp I/2(T)l-s)
-1

C <

Then Ix[l+, L(2, oo) L2 and Ix is Lorentz-improving.
In order to prove this we first need to compute an upper bound for

A 2(2, q; E) when E is a finite set.

LEMMA 3.6. ff E
___
F has cardinality n >_ 3 and 1 <_ q < 2 then

2(2, q; E) _< 4e(log n)1/.

Proof Let 1 < q < 2, and let f TE(G). Define r > 2 by

1 1 1
2 r q log n

Since Ilfllr _< nl/2-1/rllfll2 it follows that

Ilfll(2,a} 2 - r- 2

(1)1/(1 1)
-a/q

nl/2-1/r< 2 - 7 Ilfll2

< 4e(log n)l/llfll2.
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Proof of Corollary 3.5. Observe that

CardE(e) < E (expl()l)-1-s
<C<.

exp e -s
E(e)

Thus E(e) is a set of cardinality at most C exp e -s, and so by the lemma
A 2(2, 1; E(e)) < 4e log(C exp e -s) O(e-s). Now apply the theorem.

4. The size of Lorentz-improving measures

Recall that a measure/x on G is called strongly continuous if for all closed
subgroups H of infinite order in G, and for all x G, [/x I(x + H) 0.
Obviously strongly continuous measures are continuous. LP-improving mea-
sures are always strongly continuous [5, 3.2]. Although the same result is true
for Lorentz-improving measures, a different method of proof is needed. Our
method could also give a new proof for LP-improving measures.

LEMMA 4.1. Let {b’a}as I be a net in M(G) and let 1 < p < 0% 1 < ql <-
q2 < o. Supposefor all a I, v, L(p, q2) C_ L(p, ql) with uniformly bounded
operator norm and suppose lim P(y) b(y) exists for all y F. Then the
operator M6 defined by Mf(y) d(y)f(y) maps L(p, q2) to L(p, qa).

Proof Let f T(G) and choose a I so that for all 3’ supp f,

Card(supp

For this choice of a,

Together with the triangle inequality this gives

p 1 + lip, 2;,, ql) Ilfllp, q2"
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Since Ilvll*,q2; P, ql) can be bounded independently of the choice of a, and
T(G) is dense in L(p, q.), it follows that M inaps L(p, q) to L(p, q). rn

Notation. Let y/x be the measure given by y/X(E) fe/ d/x.

PROPOSITION 4.2. Let /X. L(p, ql) c_ L(p, q2) for some 1 < 19 < oo, 1 <
q2 < q < oo. Assume belongs to the weak closure in/=(F) of the convex hull
of {y/x: Y F}. Then M6 maps L(p, ql) to L(p, q2).

Proof To see this we just need to remark that if v= EiN=lai3"i/x where
O<ai< 1, Eai= landyi F,then

and that evaluation at y F is a continuous linear functional on/(F).

THEOREM 4.3. If /x is a Lorentz-improving measure then /x is continuous.

Proof. If is not continuous then the unique constant function in the
weak closure of the convex hull of {3’/x,/2"3, F} is not the zero function
[14]. Being constant, b ce for some c 0. (Here te is the point mass
measure at the identity of G.) The measure /x,/2 is Lorentz improving,
hence by the proposition so is ce. But E(c, ce) F which is not a A 2(2, q)
set for any q < 2, contradicting the characterization Theorem 3.4. t3

COROLLARY 4.4. If/x is Lorentz-improving then /x is strongly continuous.

Proof. Suppose/x is not strongly continuous. Since translates of Lorentz-
improving measures are Lorentz-improving, without loss of generality we may
assume that there exists a closed subgroup H of infinite index such that
II(H) 0. Let 7r/x be the measure defined on G/H by the formula

ft/J(t) dzr/x(t) =- fJo zr(s)

for f C(G/H).
Let 1 < p < and 1 < q < . Since/x ,(f 7r)(g) zr/x f(Tr(g)) for all

continuous functions f, the distribution functions of r/ f and / ,(f r)
are equal. Thus

from which it follows that 7r/x is also Lorentz-improving. But r/x is not
continuous since [/x [(H) = 0 which contradicts the theorem. D
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If the measure /z maps L2 to Lp for p > 2 then lim sup I/2(3,)1 <
V/-/p [[/z l[ [8]. As there are LP-improving, norm one measures/x on D with
lim sup [/21 >_ 1 e for any given e > 0 [9, 2.7], the best one could hope for
with Lorentz-improving measures is the inequality limsup [/2(7)[ < [I/z I[.
This we have for Lorentz-improving measures on T.

COROLLARY 4.5. If tX is a Lorentz-improving measure on T then
lim sup I/2(n)l < I1 II.

Proof. Suppose first that/z is a Lorentz-improving probability measure on
T with lim sup [/2(n)[ 1. Then, just as in the proof of Lemma 1 of [2], one
can argue that there is a Lorentz-improving discrete probability measure,
contradicting Theorem 4.3.
Now assume /z is any Lorentz-improving measure with limsup I/2(n)l

1 I1 II. Replacing/z if necessary by/z /2 we may assume without loss of
generality that there exists a net (n) in Z with 0 </2(n) 1. Let X be the
weak limit in AM(T) of the subnet (n). Then/2(X) 1, and as Ixl -< 1
and I111-- 1, this implies that Ixl 1 I1 a.e.
The measures /z,--n,/z are norm bounded, and thus have a weak

converging subnet (not renamed) with limit w M(T). From Lemma 4.1 we
know that w is Lorentz-improving. Furthermore if(n) lim/2(n)
thus w X/x. As IlwllM(r> IIxzlIM(>---1 and if(0)=/2(X) 1, w is a
positive measure and thus lim sup I1 < 1.
Now g oo(w) (see [10, p. 37] for the definition) and thus Ixl 2 (w),

This means there exists a net (nv) in Z tending to infinity and converging
weak in L(w) to Ixl 2. In particular ff(nv) (Ixl 2) 1 as IXwl 2-- 1
w a.e. This contradicts the fact that lim sup I1

With the aid of Corollary 4.4 we can characterize Lorentz-improving Riesz
products. For the definition we refer the reader to [6, 7.1].

COROLLARY 4.6. For a Riesz product measure p the following are equiva-
lent"

(i) p is LP-improving;
(ii) p is Lorentz-improving;
(iii) Limsup It(,)l 1,

Proof. (i) = (ii) comes from 2.1. The equivalence of (i) and (iii) is
established by Ritter in [15]. However, in proving (i)= (iii) [15, p. 294],
Ritter actually proves a stronger result, namely, if p is a Riesz product
measure, with limsup [(y)l 1, then there is a quotient measure 7rp,

defined on an infinite quotient group, which is discrete. Consequently p is not
strongly continuous and hence not Lorentz-improving, proving (ii)= (iii).
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5. Lipschitz.like conditions

A measure / on T is said to belong to Lip(a) for some 0 < a _< 1 if its
distribution function F(x) =-/x[0, x) satisfies a Lipschitz condition of order
a. It was proved in [5, 2.1] that if /x, LPc_. L2 for some p < 2 then
’lJl <nl/(j)[ O(nl/2-1/P), which implies (by [3, p.45]) that/x Lip(1/p
1/2). This is not the case for Lorentz-improving measures as our next
example shows.

Example 5.1. An absolutely continuous measure /x on T such that
* L(p, oo) c_ L(p, 1) for all 1 < p < 0% and tz Lip(a) for any a > 0.

Construction. The function

einx
f(x) E lo’- l + 2(1 + eix + e -ix)

Inl>2

is known to belong to LI(T). It is easy to verify that

E (expif(n)[-2)
-1

<oo,
Inl2

so by Corollary 3.5 g f f f maps L(2, oo) to L(2, 2). By interpolating it
follows that g L(p, oo) G L(p, p) for all 2 < p < oo. By Proposition 2.4, for
each integer n > 2 there is an integer mn such that gmn maps L(n, oo) to
L(n, 1). Redefine mn, if necessary, so the sequence {mn} is increasing and let
C be the corresponding operator quasi-norm. Let

An max{llglll, Ilgllp,1;p,1) for p 2,3,...,n}.

Choose a sequence of positive integers {Nn}=z with log Nn > 2n2A’ and
n(log Nn)3mn+l < Nn1/n. Let gn denote the 2N-th Fej6r kernel, i.e.,

eun (1_ IJ ) eijtKn( t ) E 2Nn+ 1
j= -2N

and let

W
gm. , Kn

2 n2Amn
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Clearly w LI(T). For any integer p with 2 _< p _< n

gmn* gn IG, 1) sup
Ilhll,,

Ilgm"llv,o;p,llg,,. h I1o,oo

sup P * mv * *(p, p,p gmn my II(p, l’p,l[I g oo; llh I1,

< P A,.-m;cv< P m

-p-1 -p-1An Cv"

Thus for any integer p with 2 < p < n,

Ilwll<*p,oo;w,1) p’ E 2m
n2 rt

(p, oo;p, 1)

<P’( gm" * Kn l[(5’ ; P’ l)

p P- 1 "sTCP )2,mn E
2 <n <p rt "Z-In n >p u

Since gin,,. Kn T(G), it maps L(p, oo) to L(p, 1), so the expression above
is finite. Thus w L(p, oo) G L(p, 1) for all integers p > 2 and by interpolat-
ing and dualizing we see that w L(p, o) c_ L(p, 1) for all 1 < p <

It remains to show the measure w does not belong to Lip(a) for any a > 0.
Since I(n)l decreases monotonically as n +oo it suffices to show that
Iff(n)l 4: O(Inl-) [1, p. 216]. But the choice of N ensures that

I (Un) >-
gm"(Nn) 1
2- 2 "mnrt ’ 2n2Zn(log Nn)3m"

1 n

(log Nn)3mn+l Nnl/n

which proves the desired result.

There are, however, some necessary summation conditions which Lorentz-
improving measures on the circle possess.

PROPOSITION 5.2. Let tz M(T) and suppose Iz * L2 L(2, q) for some
q < 2. Then there exists a constant C such that

I/2(k)l
n= [k[ =n [kl 3/2

nq/2-1 )
1/q

< Cv/log N

for all N.
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We need to prove two lemmas first.

Notation. For q < 2 let lw(q) ((xn)__l: (Elxnlqnq/2-1)1/q < oo}.

LEMMA 5.3. If f L(2, q) for q < 2 and f^(n) > O for all n
{ETkl f(k)/Ikl}= lw(q).

Proof Let {akin= be the Fourier cosine coefficients of f. Let

Then ak >_ 0 for all k and I(x)l _< Ill** L(2, q), so by [18, p. 247],-- lw(q )
n=l

then

LEMMA 5.4. Let tz L2 L(2, q) for some q < 2. For f L2 define

T(f) {(Tf)n}:= E Ix* f(k)
Ikl n Ikl

n=l

Then T is a bounded linear operator from L2 to lw(q).

Proof. Let f L2. Notice that I(Zf)l < (Tg) where (k)
sgn/2(k)ljt(k)l. Since g L2,/x g L(2, q), and as/x g(n) > 0 for all n,
the previous lemma says Tg lw(q). Thus T maps L2 to lw(q). Clearly T is
linear.
Suppose fk-f in L2 and T(fk)--, y =--{Yn}=l in lw(q). It is easy to

check that y (Tf) for all n so by the closed graph theorem T is a
bounded operator. [3

Proof of Proposition 5.2. From Lemma 5.4 we know there exists a con-
stant C so that for all f L2

E E Ix* f(k)
q 1/q

nq/2 < cllfll2.
n=l Ikl =n Ikl

Taking the polynomial f with Fourier coefficients

sgn/2(
j(n)

0

gives the result.

n) iflnl <N,n:O

otherwise
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If /x M(T) is LP-improving and It2(n)l decreases as n- +/-oo then
[/2(n)[ O(Inl-) [5, 2.2]. For Lorentz-improving measures we have a simi-
lar result.

COROLLARY 5.5. Suppose tz M(T) and It2(n)l decreases as n +oo.
Then Ix is Lorentz-improving if and only if It2(n)l O(log Inl)-) for some

a<-.

Proof If /z is Lorentz-improving then there exists some q < 2 with

/z L2 c_ L(2, q). It is a straightforward exercise to verify that Proposition 5.2
combined with the assumption that It2(n)l decreases implies It2(n)l--
O((log In I)1/2 1/).

For the converse, simply apply Corollary 3.5. rn

Taking q 1 in Proposition 5.2 and simplifying yields the next corollary.

COROLLARY 5.6. If tZ * L2 c_ L(2, 1) then

N

E I(k)l O(v/log N)

In [5, 2.3] an example is constructed of an L function which belongs to
Lip(a) for all 0 < a < 1 but which is not LP-improving. We modify this
example for the Lorentz-improving case.

Example 5.7. A function f LI(T) such that flT [0<a<l Lip(a), but
fAT is not Lorentz-improving.

Construction. Since Z is not a A 2(2, q) set for any 1 _< q < 2,

La(n) A2(2, q;{-n,...,O, 1,...,n})ooasn-->.

Choose a sequence {qn}_ with 1 < qn
integers m such that

< 2 and qn increasing to 2, choose

2n2 as n --> ,
and choose integers N such that

n 4mk

k--1

<__ Nn1/n and Nn+ > 2m,,N,,.
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Let K, denote the n-th Fej6r kernel, and let

Hn( x ) g2mn( gnx), f= H,,(x)
=1 n2

Clearly f L1.
Since supp/j c3 supp/-)k {0}, the Fourier coefficients of f satisfy

f(J)=
1 2mn "-0

if j=0

if j=Nnk, k {+/-l,..., +_mn}

otherwise.

In particular ]f(j)l < 1In2 if j Nnk, k {+ 1,..., + mn} and

E 1

Thus A 2(2, q; E(1/2n2)) >_ Lq(m). As Lq(m) >_ Lq(m,,) for all n with
q >_ q, there is no q < 2 with

A2 2, q;E n2 =O(n2)

so fA is not Lorentz-improving.
The fact that fA belongs to Lip(a) for all a > 0 is proved using a similar

argument to that found in [5].

6. Random Cantor measures

The examples constructed in Sections 2 and 5 of Lorentz-improving mea-
sures which were not L’-improving were both L functions, and hence the
norm limit of L*’-improving measures (to wit, polynomials). Here we prove
the existence of a Lorentz-improving Cantor measure which is not such a
limit. We will also characterize, almost surely, the L’-improving Cantor
measures. These results are easy consequences of work of Salem [20].

First we describe what we mean by a random Cantor set and measure.
Given a sequence {k}7=l with 0 < SCk < 1/2, there is associated a Cantor set
with ratios of dissection {sc-l}. The Cantor measure supported on this set
satisfies

jt,(n) (--1)
n 1"-I COS 7rnl
k--1
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Now suppose {ak} and {bk} are chosen with 0 < ak < bk < . and bk ak >--
1/Wk with wk increasing and limk_,(lOgWk)/k 0. Define independent
random variables k(W) uniformly distributed over [ak, bk] and let gw be the
associated Cantor measures. These are the measures we will refer to as
random Cantor measures.

PROPOSITION 6.1. Random Cantor measures satisfying

liminf k /2 -13 ( a ak ) 1/k > 0

for some > 0 are Lorentz-improving a.s..

Proof. In the proof of Theorem IV of [20] Salem shows that there exist
constants 0 < O < 1 and a > 0 so that all measures/x as above satisfy

in [/(log-)
a.So

As [nl "/(lgn) >_ (log [n[)1/2 for n sufficiently large, it follows from Corollary
3.5 that/x is Lorentz-improving. rn

Remark. In contrast it is known that if limk k1/2(a1 ak)l/k 0 then
limsup I/2(n)l 1 [19, p. 326] so /x is not Lorentz-improving by Corollary
4.5.

Example 6.2. Here is an example of a singular Lorentz-improving mea-
sure which is not the norm limit of LV-improving measures. With the
notation as above, let bk 2ak 2k 1/3, Wk 2. Then if/3 < g

k l/2-13
lim kl/E-13(al ak) 1/k-- lim 1/3k(k!)

so there exists a Cantor measure with ak < k N bk for all k and which is
Lorentz-improving. Observe that the support of/x is contained in the union
of 2k disjoint intervals of length 1 k" Call this union Ek.

Suppose there are LP-improving measures/xn which converge in measure
to/x. Choose N such that II/xN -/x < 7, Being LP-improving,/xr Lip a
for some a > 0. Thus there is a constant C so that for all k,- >--Ila, tZN(Ek)I >-Ila,(Ek)l C2k(1

> 1 c2k(2kk!-l/3) 1

which is a contradiction.
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Remark. In contrast to LP-improving measures, this Lorentz-improving
measure has Hausdorff dimension 0.

Salem’s work also enables us to easily characterize LP-improving random
Cantor measures.

PROPOSITION 6.3. Almost surely random Cantor measures belong to Lip(a)
for some a > 0 if and only if they are LP-improving.

Proof Necessity is known for all LP-improving measures as we remarked
previously [5, 2.1].
For sufficiency we note that an argument similar to [22, vol. 1, p. 296-7]

shows that a Cantor measure with ratios of dissection so; is Lipschitz if and
only if

limsup(sl k) -1/k < O0

and Salem has shown that random Cantor measures with this property satisfy
[/2(n)l O(1/In[) for some 6 > 0 a.s.. Such measures are LP-improving
[8]. r

Previously only Cantor measures with bounded ratios of dissection were
known to be LP-improving [4]. The previous result clearly shows that this is
unnecessary in general, however, if the ratios of dissection are integer valued
it is a necessary condition as our final result demonstrates.

PROPOSITION 6.4. Let lz be a Cantor measure with integer ratios of
dissection 1. If inf k 0 then limsup [/2(n)l 1.

Proof Choose a sequence {kn}= with k _< 2-" and let an I-Ikl"-1-1.
We will prove that [/2(an)[ - 1. First notice that if j < kn, then

(:x s_)(1 j)an Z.

AIso

(1 kn-1)(1 .)an (1 :k.) >-- 1 2-";

thus

k

H cOS 7ran(l j-1)(1 j)[ >- cOs 7r(1 2-n) I’
j=l
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We remark that as : < for all i, if j > k then

(1 j-1)( 1 j)an (k,, -1)(1 j) -< 2-n2-(J-l-k")"

Thus

j=kn+l
[COS 7ran(i’’" j_l)(1 :J)l >- H [cs2-(-l-"+")er[

kn+l

kn+l 2

IY-Io(.=l-"r’t’22-2(n+J)).
Combining these results we have

la(a.)l -> Icos 7r(1 2-n)ljl-I0.= 1 --2-2(n+j) 1 asn o

hence lim sup I/2(n)l 1. rq

In [5] it is asked if LP-improving and Lipschitz are equivalent for Cantor
measures. Since we can easily arrange for -1 N for all k, inf k 0 and
lim sup(l k)-l/k < oo this question is answered negatively; there are
Lipschitz Cantor measures which are not LP-improving.

COROLLARY 6.5. For a Cantor measure with integer ratios of dissection the
following are equivalent:

(i) The ratios of dissection are bounded;
(ii) The measure is LP-improving;
(iii) The measure is Lorentz-improving.

Proof These facts are immediate from [4], Theorem 2.1, Proposition 6.4,
and Corollary 4.5. El
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