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CLOSED RANGE PROPERTY OF 9
ON NONPSEUDOCONVEX DOMAINS

Lor-HinG Ho

1. Introduction

The d problem on strictly pseudoconvex domains was solved by Kohn [7]
with boundary regularity via the solution of the d-Neumann problem. Later,
Hormander [6] solved the problem on pseudoconvex domains by introducing
weighted norms, which bypassed the question of boundary regularity. On
domains that are not necessarily pseudoconvex the d problem on (p, q) forms
can still be solved if the Levi-form has n — g positive eigenvalues at every
point on the boundary ([2], [4], [6], [8] and others). There remains the
question of solving the problem when the n — g eigenvalues of the Levi-form
are allowed to be zero. In a previous paper [5] we proved that we can solve 9
(in the space of d-closed (p, r) form with coefficients locally L? in Q and
r > q) if the domains are so called weakly g-convex, which are domains that
at every point on the boundary the sum of any n — q eigenvalues of the
Levi-form is non-negative. The above condition of weak g-convexity on the
one hand makes the improvement of allowing the eigenvalues of the Levi-form
to be zero, but on the other hand it requires the sum of the eigenvalues
instead of the individual eigenvalue to be nonnegative. Hence, by considering
the case of (p, n — 1) forms, we can see that the weak g-convexity is not the
optimal condition imposed on the Levi-form that we can solve 4. In this
paper we try to further improve the requirement on the Levi-form. For
(p,n — 1) forms we only require that at every point on the boundary there is
one holomorphic vector field whose Levi-form is nonnegative. This is the
expected minimal condition. However, we can only prove that d has closed
range. We also attempt to extend the result to (p, g) forms, with a partial
success. We assume that the Levi-form can be split into blocks with an
(n — q) minor being positive semi-definite. Adding some extra assumptions
we prove similarly that d has closed range.

2. Notations

Let Q) be a smooth domain in C” and p a C* defining function of  so
that p < 0in Q and |dp| = 1 on the boundary. T'* and T>! represents the
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holomorphic and anti-holomorphic vectors at x respectively, and T°(bQ)
represents the vector in 79 which are tangential to the boundary. Through-
out this paper we will assume that L,,..., L, are holomorphic vector field
with C* coefficients and L,,..., L,_, are tangential to bQ). Let w,,..., 0,
be (1, 0) forms dual to L,,..., L,. Then

piy=d0p(L,L;) i,j=1,2,...,n—1

is the Levi-form associated to p. Also, if ¢ is a smooth function on ) then
we write

¢y =09(L, L,), i,j=12...,n.

We use CX(Q) to denote functions compactly supported in () that are &
times differentiable, L%p, (£, @) to denote the (p, q) forms with coefficients
in L? with respect to the weight function e~%, L%p,q)(ﬂ, loc) to denote the
(p,q) forms with locally square integrable coefficients and Cf, () to
denote the (p, q) forms with C* coefficients in () where k can be a positive

integer or o, Let
(u,v)g = juae-¢ dV and llully = (u, us.

The operator 4 is easily defined for (p, q) forms with coefficients in C}(Q). T
denotes the closed operator which is the maximal extension of the d operator
from L7, ,_,(Q,¢) to L, ,(, $), similarly S is the corresponding opera-
tor from L%, .(Q,é) to Lf, ,.,(Q,¢) and T* is the adjoint of T. We use
D; and N, to denote the domain and null space of the operator T
respectively. D, (U N Q) denotes the space of smooth (p, g) forms in Dy
with coefficients compactly supported in U N ). To simplify the notations,
we will prove the theorems for (0, g) forms. The theorem for (p, q) forms
follows since we can consider (p, g) forms as (0, g) forms where coefficients
are (p, 0) forms.

We will use ¢X; to denote the sign of the permutation taking kJ to K. The
symbol ' in the summation means that the summation is over strictly increas-
ing indices. Finally, C and const in this paper are constants that may vary
from line to line.

3. 9 problem on (n — 1) forms

TueoreMm 1. Let Q be a relatively compact subset in C" with smooth
boundary. Suppose that at every point z € b(), there exists a neighborhood U of
z and a smooth vector field L defined in U with values in T-%(bQ N U) such
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that the Levi-form of L satisfies 33 p(L,L) = 0 on the boundary. Then the
range of 9 from L}, ,_,(Q) to L}, ,_(Q) is closed and N = Ny * O\ N is
finite dimensional.

We note that if we can prove that for some ¢ € C(Q) the operator from
LY, .—(Q,¢)to LY, ,_1(Q, ) has a closed range, then the same is true for
other choices of ¢. This is due to the simple reason that different ¢’s will
give equivalent norms on the space L%p, q)(ﬂ). Before proving Theorem 1, we
need to prove the following lemma.

LemMmA. Let z € b{). Assume that in a neighborhood U of z there exists a
smooth vector field L with values in T>%(bQ N U) such that 3dp(L,L) > 0
on the boundary. Then for a sufficiently large number K and some 0 < n < 1
by setting ¢ = —(—p)" + K|z|* we have for all u € Dpin-nU N Q),

Cliully < ISully + IT*ully + lgull; (1)

for some C > 0 and g € C§(Q). Moreover we can make C arbitrarily large by
setting K to be large. (g depends on K.)

Proof. Let L,,...,L, be smooth vector fields that form a basis for
T(U N Q)ateachpoint xe UNQ, L=L,and L,,...,L,_, tangential
to the boundary. Let w,,...,, be (1,0) forms dual to L,,..., L,.

If ¢ € CH(Q) N C(Q), we define an operator 8w = e®L,(we~?) on func-
tions w € CY(U n Q).

Consider a (0,n — 1) form u € Dy ,_ (U N Q). We can write u as

n
U= YU, NDy A" AN; A AN®

i=1

ne

where ~ means that the term is missing in the expression and u; denotes
Uy, ;- Note that u € Dp» implies that u; = 0 on bQ) for i # n.

From Ho6rmander [6] we have the following two integration by parts
formulas:

For v,w € C{U N Q),

(v, Liw)y = —{8,0,w)y + (v, W)y, 1<j<n—1 (2)
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where o; is some C* function in U N, and for 1 <j,k <n — 1,

(Lyw, ij>¢ = (W, 8wy — {Dpw,w)s

“on p,kIWI2 “*dS + O(lwligliwll ) (3

where

n
iwlly = X | Zw|, + Iwls.
j=1
We know from Hormander [6] that

Z“L wlls + X (bpttjxs e + Z Z[ ij|uj1<|2‘3_¢ as

Jj,k, K j=1 K
2 2
—ISully — IT*ully
< Cllullg(ISully + 1T*ullg + Mully).

Using (3) to integrate by parts on the term IIEJ-u;IIi for the above
expression for 2 < j <n — 1 with j # i we get

n

n—1
£ (12wl +17,0) + T Tk
i=

i=1

+ X "‘Sf“f"i*‘fbmupuluﬁlze"”ds

2<j=<n-1
i+j

leKand nelL
orleL and neK

+[ Y bulugl® + Z¢nn|unKI2 + Y bty e~*av
anU\ g K
O(Z||u||¢|||ul||¢) — ISullz — IT*ull3

< C(IISullg + NT*ully + llull + lulyllully)

The terms |lull4lllulll 4 of the above inequality can be absorbed into the
second and the third term of the left hand side by using the small constant,
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large constant method and invoking (2) to absorb terms (L;u;, u;) whenever
i # j. Finally we get

n n—1
o, _

(NZyuill + IL,ull3) + X Il
=1 i=2

l

2 2
+ Z ||8ju;II¢ +[ p11lu;,| e %dS
bOQNU

2<j<n-1
i+j
2 2 - _

+ (Z¢11|u11<| + Ed’nnlunK' + > Piugly |e ¢av

anU\ g K l1€eKand neL

orleLl and nek
2 2

< C(ISullg + IT*ullg + Ilulli) (4)

We will focus our attention on the fifth term of the left hand side of (4)
which arises from the weight function ¢. Now consider the function ¢ =
—(=p)" + K|z|* for some 0 <n < 1. Clearly ¢ € CX(Q) N C(Q). The
function —(—p)" has been introduced by Diederich and Fornaess [1] on
pseudoconvex domains. However, it can still give the right growth in the

direction L, as well as in the normal direction in the present case. We easily
obtain

¢ij = 35¢(Li’ Z;)
= n(=p)" " 93p(L;, L;) = m(n — )(=p)""*

X(Lip)(f,jp) + Kaﬁlzlz(Li, Z,.).

We consider different cases of i and j.
Using ddp(L,, L,) > 0 on the boundary we get
$11 2 m( _p)n_laép(l‘l’il) +K35|Z|2(L1,I1) (5)
> const((—p)" " '(pC) +K)

> const K

if we choose the neighborhood U to be small enough. (We may assume that
this neighborhood is same as the original U because of the compactly
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supported function g to be chosen later on.) Next
bun =n(—p)" ' 99p(L,,L,) - n(n —1)
X(=p)"*IL,pl* + K3dlzI*(L,, L,)
> const((—p)" > — (—p)" ' — K). (6)
For i, j not both 1 and n we simply use
|1 < const((—p)" ™" + K). (7)
From (7) we have
|istt1,,.) < const(luy 1 + ((=p)°" 72 + K2)lu,, /).

Putting (5), (6), and (7) into (4) get

(K —const) Tlluy iy + X [ ((=p)" %= (=p)*"™?
J J anu
=(=p)""" = K?)lu,,lPe* av < C(ISully + IT*ull} + llull3).

Choosing K large enough the first term on the right hand side above can
be made positive, in fact can be made arbitrarily large. For fixed K, if p is
small enough the second term on the right hand side is positive. Thus we get
forue Dy, ,UNQD)

Cllully < ISullf + 1T*ull3 + Il gull’
for some g € C5(Q).

Proof of Theorem 1. Since b{) is compact, we can find finitely many
points x,...,x, € b} and corresponding neighborhoods Uyp...r U, so
that (1) is true in these neighborhoods.

If x is a function, we know that [S, x] and [T*, x] are also of order zero.
Since C can be made arbitrarily large, by using a partition of unity argument,
we get for u € Dps N Cg ,,_1,(D)

lully < const(lISull3 + IT*ull3 + llgul3) )

for some g € CJ(Q). Since Dy« N Cy ,,_1(Q) is dense in Dz N Dy, (8) is
also true for u € D« N Dy.
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Now Lemma (3.4.2) of Hérmander [6] says that
B = {f: f€Ds N Dy ISFIG + IT*FII5 + I F1I3 < 1}

is relatively compact in L( . (&, 1oc). By this lemma, for any sequence
8% € Dy« N Dg with |lg.ll, bounded and both T*g, — 0 and Sg, — 0, g,
has a convergent subsequence in L%p,n_l)(ﬂ,loc). By (8), g, has a conver-
gent subsequence in L%p,,,__l)(ﬂ,d)). Hence the following theorem from
Hormander [6] implies that d has closed range and N is finite dimensional.

THEOREM H. Assume for every sequence g, € D« N Dg with |lg;ll12
bounded and both T*g, - 0 and Sg, — 0, g, has a strongly convergent
subsequence. Then T has closed range and N is finite dimensional.

4. 4 problem for (p, g) forms

THEOREM 2. Let Q) be a relatively compact subset of C" with smooth
boundary. Assume that for every z € b{) there exists a neighborhood U of z
and smooth vector fields Ly,..., L, € T"°(U N Q) with Ly,..., L, _, tangen-
tial and there is a C? functlon x on Q with the following propertles inUNQ
for some integer m < n:

(i) The Levi form (p;});; j<m is positive semidefinite on bQ N U, and
p;j=0forl<i<mandm <j<n.

(ii)) The commutators [L L. d=0forie{l,...,m,n}and m <j <n.

(i) (@) (x;))1 <i,j <m I8 positive definite near the boundary.

®b) X,J——Ofor1<z<m m<j<n.
Then the range of 9 from L7, ,_(Q) to L}, ,(Q) is closed for g > n — m.

Proof. Following the proof of Theorem 1, we only need to prove that the
corresponding statement for (0, g) forms in the lemma still holds. That is to
say, assume (i) and (ii) of the theorem holds in a neighborhood U of z, we
will prove that for some 0 < 7 < 1 and large M, by setting ¢ = —(—p)" +
My we have

Cllully < ISully + 1T*ull + llgull; (9)

for all u € D, ,(UN Q) where C > 0 is some constant and g € Cg(€).
Also we can make C as large as we please by setting M large.

In the present case of (0, g) forms the expansion of ||Sull} + [[T*ull} is
more difficult.
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Let u = ¥, _,u,®; be in D, (U U Q). Then

Su=YLu,a' Ao’ +...
hJ

and
= —K
T*u= — ) 8uxos +...
i, K
where ... means that there is no differentiation in u. u € D« implies that

u; = 0if n € J in our system of vector fields L;, ..., L,. We will need to use
the formula

[Sk, Ej]w = (Zij¢>)w + [Lk,zj]w
= (Iij(b)w + Y chLw— Y ci,Lw
i i

=W + L chdw — ZE;;J.Z,-W (10)
' i

l
where ¢}, are coefficients independent of ¢. Also note that the Levi-form

pr; = cji (Folland-Kohn [3].
Clearly

2 2
ISully + 1 T*ully

> const( ¥

K

2

K+
ZekJLkuJ
k,J

2
+ Z'l Y Expduy
o H ks

- o(nuni))

)

&

2

Z Eszkuj

.
+\ Y &L,
ke{l,...,m,n},J

¢ m<k<n,J

const( Z'(

K

, 2
+2

H

7
Z €Oy
ke{l,...,m,n},J

+2 Re( Z’< > 816Zku1’ Z EllizluL>¢
K kef{l,...,m,n},J m<I<n,L

+ Y Y elgd Uy, Y e,’;,&,uL>¢) - 0(||u|l§,).

H ke{1,...,m,n},J m<l<n,L

7
+‘ Y eiudiuy
¢ m<k<n,J
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We will first show how to simplify the second last term of the right hand
side. In the following computation we will omit the range of k, [, L, and J.
We should keep in mind that k € {1,...,m,n}, m <l <n,and J and L are

some tuples with increasing indices corresponding to the indices k, [, K
and H.

Z’<251§Ek“1’ Zez’izm> + Z <ZEkH6kuJ’ ZngBIuL>
¢ ¢

K ‘k,J I,L H ‘k,J

K+
Z exsLiuy
k,J

-y ZE,L<zek,a Lku,,uL>¢ ' 0(

K L, L

IIuI|¢)
¢

-y Yk <ZEkHL 5k”n”L> +0(|l2‘91{H8kuJ
H L ® k,J

k,J

IIu|I¢)

¢

=Z, > Sineﬁi<[5k’Z1]“J’“L>¢
H Lk,LJ

(( ZJGI{(JT’kuJ
= E Z<¢k1ukH’ulH>¢
H Lk

J
+l Y eigdiuy
k,J

¢)I|u|l¢)

e -
+0(

=§'

¢

¢)I|:||¢)

¢

sy Lyu,

+\ Y elyduy
6 kg

<¢k1ukH’ulH>¢ + 0((
k,J

Lk

J
+ ﬂ M 8kH3kuJ

k,J

i | Tk ||¢)Nun¢) (12)

where the first equality follows from (2), line 3 follows from the fact that
effef; = —¢elyefy (J and L on the two sides are given and J # L), the
second equality follows from (10) and assumption (i) and (ii) of the theorem
gives the index i is from 1 to m. Finally the last equality follows from
integrating by parts on 8,u, using (2).

We can apply the standard integration by parts computation to the first
and the third term of the right hand side in (11) (the reader may refer to [3]
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or [6] for the details) to get

2

2
P Y e Ll + 1 P Exp Oy
K ke{u,...,m,n},J @ H "ke{1,...,m,n},J s
- 2
= Zl > "LkuK"¢
K kef1,...,m,n}
+Y P f Pixttixlyxe *dV
K j,ke{l,...,m,n} vua
+Y X f pjkquﬁkKe_(de"O(”u”i) (13)
K 1<j,k<m”UNbQ

Combining (11), (12), (13) and using the small constant, large constant
technique to absorb the last term of (12) we get

2 2 2
Sulls + 1T *ully + llully

sconst| Y L | Leugl
K kef1,...,m,n}

+Y Y / Gpjxlge *dV
UnQ

K jke{l,...,m,n}

’ - _
+Y X f Picixlge”* dV
K 1<j,k=m UNbQ

!’ -— —
+Y Y [ Gl ge *dV
K je{1,...,m,n} una
m<k<n

+square terms

Let us consider ¢ = —(—p)" + My where 0 < 1 < 1, y is the function in
assumption (iii) of the theorem and M is a large number.
Since

¢y =n(=p)" " 39p(L;, L;) — n(n = 1)(=p)" *(L;p)(L;p) + Mix(L;, L;),
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it is easy to see that

6l <C((=p)" "+ M),i=n,j+*n,

Dun = C(( _p)n—Z - (—p)n—-l - M)’

lp;l<Cforl<i<m,m<j<n,

by assumptions (i) and (iii).
Hence for each g — 1 tuple K, we have

T3

m
. —_ 2
Gtk = const(M D lugl )
j=1

¢nn|unK|2 ConSt(( _p)"l_z - (_p)"l_l - M)lunKl2

|, il x| < const(lu,.Kl2 + (( -p)" 7+ MZ)Iu,,KIZ) fori # n

1

v

A

lpjnttjxtipgl < const(lqul2 + IukKIZ) forl<j<m,m<k<n

Since g > n — m, every g-tuple J must contain an element in {1, ..., m, n}.
If we set M large enough putting the above inequalities into (14) we see that

2 2 2
lSully + 1T*ully + llully

> const(M 3l i3
n&J

N2 _ o N2m=2 o \m—1 2 2
o N (e O GO 0 I

It follows that
lull3 < const(IISulli + IT*ull} + Ilgulli)
for u € D, (U N Q) where g € CHQ).
The rest of the proof goes through without changes as in the proof of

Theorem 1.

Remarks. (1) The assumption (ii) and (iii) of theorem is true typically for
domains where locally we can write the defining function as

p=Rez, +py(z1,...,2,) +P2(Zmi1s-5Zn1)
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where p, is a plurisubharmonic function, p, is any C* function and p,(0) =
p(0) = 0.

(2) It seems that condition (ii) of Theorem 3 is difficult to satisfy. However,
near points where there are m positive eigenvalues of the Levi form with
m > n — q, the inequality (9) is satisfied in a neighborhood U without
assumptions (ii) and (iii). So we really only need the assumptions near points
where the positive eigenvalues of the Levi-form degenerate.
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