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CLOSED RANGE PROPERTY OF 0
ON NONPSEUDOCONVEX DOMAINS

LoP-HING Ho

1. Introduction

The problem on strictly pseudoconvex domains was solved by Kohn [7]
with boundary regularity via the solution of the 0-Neumann problem. Later,
H6rmander [6] solved the problem on pseudoconvex domains by introducing
weighted norms, which bypassed the question of boundary regularity. On
domains that are not necessarily pseudoconvex the 0 problem on (p, q) forms
can still be solved if the Levi-form has n -q positive eigenvalues at every
point on the boundary ([2], [4], [6], [8] and others). There remains the
question of solving the problem when the n q eigenvalues of the Levi-form
are allowed to be zero. In a previous paper [5] we proved that we can solve 0
(in the space of -closed (p, r) form with coefficients locally L2 in 12 and
r > q) if the domains are so called weakly q-convex, which are domains that
at every point on the boundary the sum of any n-q eigenvalues of the
Levi-form is non-negative. The above condition of weak q-convexity on the
one hand makes the improvement of allowing the eigenvalues of the Levi-form
to be zero, but on the other hand it requires the sum of the eigenvalues
instead of the individual eigenvalue to be nonnegative. Hence, by considering
the case of (p, n 1) forms, we can see that the weak q-convexity is not the
optimal condition imposed on the Levi-form that we can solve . In this
paper we try to further improve the requirement on the Levi-form. For
(p, n 1) forms we only require that at every point on the boundary there is
one holomorphic vector field whose Levi-form is nonnegative. This is the
expected minimal condition. However, we can only prove that 0 has closed
range. We also attempt to extend the result to (p, q) forms, with a partial
success. We assume that the Levi-form can be split into blocks with an
(n q) minor being positive semi-definite. Adding some extra assumptions
we prove similarly that 0 has closed range.

2. Notations

Let fl be a smooth domain in C and p a C defining function of 12 so
that p < 0 in 12 and 1Opl 1 on the boundary. T’ and Tx’1 represents the
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holomorphic and anti-holomorphic vectors at x respectively, and Txl’(bf)
represents the vector in T1’ 0 which are tangential to the boundary. Through-
out this paper we will assume that L1,... L are holomorphic vector field
with C coefficients and L1,..., Ln_ are tangential to bll. Let tox,..., to,
be (1, 0) forms dual to Zl,... Ln. Then

Pij =eD(Li,j) i,j 1,2,...,n- 1

is the Levi-form associated to p. Also, if b is a smooth function on 12 then
we write

ij 05(Li, -j), i, j 1, 2,..., n.

We use c0k(f) to denote functions compactly supported in f that are k
times differentiable, Lp,q)(, 49) to denote the (p, q) forms with coefficients
in L2 with respect to the weight function e -6, Lp,,(f, loc) to denote the
(p,q) forms with locally square integrable coefficients and c(kp, q(II) to
denote the (p, q) forms with Ck coefficients in 11 where k can be a positive
integer or oo. Let

< u, v fuve-* dV and II u < u, u>.
The operator is easily defined for (p, q) forms with coefficients in cl(). T
denotes the closed operator which is the maximal extension of the operator
from Lp,q_l)(f, ok) to Lp,q)(f, b), similarly S is the corresponding opera-
tor from Lp,q)(", ) to Lp,q+l)([- p) and T* is the adjoint of T. We use
Dr and Nr to denote the domain and null space of the operator T
respectively. (p,,)(U 12) denotes the space _f smooth (p, q) forms in Dr
with coefficients compactly supported in U fl. To simplify the notations,
we will prove the theorems for (0, q) forms. The theorem for (p, q) forms
follows since we can consider (p, q) forms as (0, q) forms where coefficients
are (p, 0) forms.

/( to denote the sign of the permutation taking kJ to K. TheWe will use ekj
symbol in the summation means that the summation is over strictly increas-
ing indices. Finally, C and const in this paper are constants that may vary
from line to line.

3. a problem on (n 1) forms

THEOREM 1. Let f be a relatively compact subset in C with smooth
boundary. Suppose that at every point z bf, there exists a neighborhood U of
z and a smooth vector field L defined in U with values in T 1’ (bf f3 U) such
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that the L_evi-form of L satisfies O$ p(L, ,) > 0 on the boundary. Then the
range of 0 from Lp,n_2Xl") to Lp,n_l)(l’) is closed and U NT r] N is

finite dimensional.

We note that if we can prove that for some $ C(f) the operator from
Zp, 2)(’, )) tO Lp, n 1)(’, () has a closed range, then the same is true for
other choices of b. This is due to the simple reason that different b’s will
give equivalent norms on the space Lp, q)(). Before proving Theorem 1, we
need to prove the following lemma.

LEMMA. Let z bf. Assume that in a neighborhood U of z there exists a
smooth vector field L with values in T 1, O(b 1] r U) such that O$p(L, -) > 0
on the boundary. Then for a sufficiently large number K and some 0 < q < 1
by setting 4 -(-P)’ + K[z,[ 2 we have for all u (p,n_l)(U n ),

2Cllull Ilaull + IIZ*ull + Ilgull (1)

for some C > 0 and g C(I]). Moreover we can make C arbitrarily large by
setting K to be large. (g depends on K.)

Proof. Let L1,...,Ln be smooth vector fields that form a basis for
Txl’(U r ) at each point x U r , L L and L1,..., Ln_ tangential
to the boundary. Let Ol,..., w be (1, 0) forms dual to L1,..., Ln.

If b cl(f) r C(), we define an operator 6w e6L(we-) on func-
tions w CI(u r f).

Consider a (0, n 1) form u (0, n_l)(U r f). We can write u as

U

n

E U’I A 2 A A 0 A / n"
i=1

where means that the term is missing in the expression and ug denotes
U12......n" Note that u Dr. implies that u 0 on bf for 4: n.
From H6rmander [6] we have the following two integration by parts

formulas"
For v, w C(U r] ),

( v Ljw )4, ( 6jv w )4, + ( dpv w ), 1 < j < n 1 (2)
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where %. is some C function in U n f, and for 1 < j, k < n 1,

(LkW, Ljw), > (jw, akW)4, (.ikw, W)4,

j’,lwl2e- dS + O(llwll III III )

where

n

We know from H6rmander [6] that

(3)

n-1

E < (jkUjK, UkK >d 21- E E fb jjlUjKl2e -4" dS
j,k,K j=l K l

IISu llg T* u llg

Cllull,(llSull, / IIZ*ull / III u III ).

Using (3) to integrate by parts on the term IIuzll for the above
expression for 2 < j < n 1 with j : we get

n n-1

i=1 i=2

E
2<j<n-1

ij

 ,uell / f f c uPlllU [2e -’b dS

E (jkUKIL) e -4’ dV
K and nL

or IL and nK

The terms Ilull III u III of the above inequality can be absorbed into the
second and the third term of the left hand side by using the small constant,
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large constant method and invoking (2) to absorb terms (Ljut, uk) whenever
#: j’. Finally we get

n n--1

E ([[ElU’[[b "[- [[nU’[[) -- E [[ZiU’[lb
i=1 i=2

E
2<j<n-1

ij

IIxull + L p11[u,12e -4’ as

q- E tllIUlK 12 -4r E )nnlUnK "+" E jkUKL
(3.U K K lKandnL

or L and nK

e -4’ dV

(4)

We will focus our attention on the fifth term of the left hand side of (4)
which arises from the weight function b. Now consider the function
_(_p)n / Klz[2 for some 0 < r/ < 1. Clearly b cl(f) (3 C(). The
function -(-p)n has been introduced by Diederich and Fornaess [1] on
pseudoconvex domains. However, it can still give the right growth in the
direction Z as well as in the normal direction in the present case. We easily
obtain

We consider different cases of and j.
Using Op(L1, Z 1) 0 on the boundary we get

bll > Tl(--p)r-lcgP(Ll, _,l) -F KcgIzI2(LI, Zl)
> const((-p)n-l(pC) +.K)
> const K

(5)

if we choose the neighborhood U to be small enough. (We may assume that
this neighborhood is same as the original U because of the compactly
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supported function g to be chosen later on.) Next

tnn (--/9) */-10P(Ln, Zn) ( 1)

X (-p) n-2lLnpl2 + g alzl2(Zn, n)
> const((-p)n-2- (-p)"-- K). (6)

For i, j not both 1 and n we simply use

Ibijl _< const((-p) n-1 + K). (7)

From (7) we have

[tijtlljlnL[ const(iulr[2 + ((_p)2n-2 + K2)IUnLI2).
Putting (5), (6), and (7) into (4) get

(K- const)E]lu,ll + Efa (( _p).-2 (_p)2.-2
j j

_(_p)n-1 g2)lUnjl2e_4 dV "< C(IISulI26 + IIT*ull + Ilull).
Choosing K large enough the first term on the right hand side above can

be made positive, in fact can be made arbitrarily large. For fixed K, if p is
small enough the second term on the right hand side is positive. Thus we get
for u (0, n_l)(U O ’)

2Cllull IlSull + IIZ*ull + Ilgull

for some g C(f/).

Proof of Theorem 1. Since bf/ is compact, we can find finitely many
points Xl,..., xn bf/ and corresponding neighborhoods Uxl,...,Ux, so
that (1) is true in these neighborhoods.

If X is a function, we know that [S, X] and [T*, X] are also of order zero.
Since C can be made arbitrarily large, by using a partition of unity argument,
we get for u DT, ("1 C(,n_l)(’)

Ilull < const(llSull + IIT*ull + Ilgull) (8)

for some g C(f/). Since DT, (’1 C(,n_l)(’) is dense in DT, 0 Ds, (8) is
also true for u DT, C3 Ds.
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Now Lemma (3.4.2) of H6rmander [6] says that

B {f’f Ds (3 D," IISfll + IIT*fll + Ilfll < 1}

is relatively compact in Lp,q)(,loc). By this lemma, for any sequence
gk Dr* Ds with Ilgkl] bounded and both *T gkO and SgkO, gk
has a convergent subsequence in Lp,n_l)(l,loc). By (8), gk has a conver-
gent subsequence in Lp,n=l)([-,t). Hence the following theorem from
HSrmander [6] implies that 0 has closed range and N is finite dimensional.

THEOREM H. Assume for every sequence gk Dr* 0 Ds with IlgkllL
bounded and both T*gk 0 and Sgk O, gk has a strongly convergent
subsequence. Then T has closed range and N is finite dimensional.

4. 0 problem for (p, q) forms

THEOREM 2. Let [ be a relatively compact subset of Cn with smooth
boundary. Assume that for every z bf there exists a neighborhood U of z
and smooth vector fields L1,... L TI’(U ) with L1,... Ln_ tangen-
tial and there is a C 2 function X on with the following properties in U
for some integer m < n"

(i) The Levi form ([Dij)i<_i,j<_ m is positive semidefinite on bfl ( U, and
[ij 0 for 1 < < m _and m < j < n.

(ii) The commutators [Li, Li] 0 for {1,..., m, n} and m < j < n.
(iii) (a) (’ij)l <_i,j <m is positive definite near the boundary.

(b) Xii O 1 < < m, m < j < n.
Then the range of 0 from Lp,q_l)(fl) to Lp,q)(l)) is closed for q > n m.

Proof. Following the proof of Theorem 1, we only need to prove that the
corresponding statement for (0, q) forms in the lemma still holds. That is to
say, assume (i) and (ii) of the theorem holds in a neighborhood U of z, we
will prove that for some 0 < r/ < 1 and large M, by setting b _(_p)n +
MX we have

Cllull Ilaull + IIZ*ull + Ilgull (9)

for all u (p,q)(g 1") ") where C > 0 is some constant and g CO (f).
Also we can make C as large as we please by setting M large.

In the present case of (0, q) forms the expansion of IlSull / IIr*ull is
more difficult.
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Let u ElJl=qujj be in (p,q)(U U ). Then

Su .,Zuj /x J +
j,J

and

T*u _, jUjKK -[-

j,K

where means that there is no differentiation in u. u Dr, implies that
uj 0 if n J in our system of vector fields L1,..., Ln. We will need to use
the formula

(10)

where Cjk are coefficients independent of b. Also note that the Levi-form
Pkj C;k (Folland-Kohn [3]).

Clearly

IISull / IIT*ull

ekjLkUj
k,J

+ E J kUJEkH
4, H k,J

2 )
EkJ k

k{1 m,n},J 4’

ekjLkUj
m<k<n,J

EkH EkH J
H k{1 m,n},J m<k<n,J 4"

+ 2Re( E’( E /(--EkJZkUJ’ E E(LElUL>4"
K k{1 m,n},J m<l<n,L

(11)

H k{1 m, n}, J m <l<n, L
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We will first show how to simplify the second last term of the right hand
side. In the following computation we will omit the range of k, 1, L, and J.
We should keep in mind that k {1,..., m, n}, rn < < n, and J and L are
some tuples with increasing indices corresponding to the indices k, l, K
and H.

ekJ61LkUj UL + 0 E KeklLkUl
K l,L k,J k,J

ekHLt6kUr, Uz + 0 enU Ilull
H k,J 4, ’,k,J

(12)

where the first equality follows from (2), line 3 follows from the fact that
L (j and L on the two sides are given and J g: L), theK K E[HEjHEILEkJ

second equality follows from (10) and’ assumption (i) and (ii) of the theorem
gives the index is from 1 to m. Finally the last equality follows from
integrating by parts on aiUkH using (2).
We can apply the standard integration by parts computation to the first

and the third term of the right hand side in (11) (the reader may refer to [3]
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or [6] for the details) to get

ek]LkU] / J tkUEkH J
k{1 m,n},J 4 k{1 m,n},J

K k{1 m,n}

+E’ E
K j,k{1 re,n}

jkUjKlkKe-4 dV

+ 2’ E fu ba
&ku’eFt:e-4" dV- O([[u[[) (13)

K l<j,k<_m

Combining (11), (12), (13) and using the small constant, large constant
technique to absorb the last term of (12)we get

2Ilaull + IIZ*ull + Ilull

_>const(’ E IIZ u ll
K k{1 re,n}

/ E’ E fu tjkujKkKe- dV
K j,k{1 re, n} t

+E’ E
K l<j,k<m

PjkUiKkKe-4 dV

+E’ E
K j{1 re, n}

m<k<n

/ square terms)
fU (jkujKkKe-4’ dV

Let us consider 4) _(_p)n + MX where 0 < r/ < 1, g is the function in
assumption (iii) of the theorem and M is a large number.

Since

(ij 9(-P)’rl-IoP(Li, Ej)- 9(g X)(-p)’-2(Lip)(ZjD) / MOx.(Li, Ej)
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it is easy to see that

Idijl C((-p) n-1 + M), i= n,j n,

nn >- C((-P) r/-2- (_p)r/-1- M),
14,,jl-< C for 1 < < m, m < j < n,

by assumptions (i) and (iii).
Hence for each q 1 tuple K, we have

m ( m )CjkUjKkK > const M lul 2

j,k=l j=l

(nn[UnKI 2 const((-p) "-2 (--p)I-1--M)IUnKI 2

iinUiKnK const(lUigl2 + (( _p)2n-2 + M2)lUng[2) for n

IkUkl const(lul2, + lUk12), for 1 j m, m < k < n

Since q > n m, every q-tuple J must contain an element in {1,..., m, n}.
If we set M large enough putting the above inequalities into (14)we see that

2IISull + IIZ*ull + Ilull

> const(M E IlujIl
nJ

-]- fu ((__p)r/-2- (__p)2r/-2- (__p)rl-1 MU)lU,Li2e_ dV
L cbfl

It follows that

Ilull < const(llSull + IIT*ull + Ilgull)

for u (p,q)(U (’) )where g Cg(ll).
The rest of the proof goes through without changes as in the proof of

Theorem 1.

Remarks. (1) The assumption (ii) and (iii) of theorem is true typically for
domains where locally we can write the defining function as

p Re Z -[- pl(Zl,...,Zm) -I- p2(Zm+l,...,Zn_l)
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where p is a plurisubharmonic function, P2 is any C function and P1(0)
P2(0) 0.

(2) It seems that condition (ii) of Theorem 3 is difficult to satisfy. However,
near points where there are m positive eigenvalues of the Levi form with
m > n- q, the inequality (9) is satisfied in a neighborhood U without
assumptions (ii) and (iii). So we really only need the assumptions near points
where the positive eigenvalues of the Levi-form degenerate.
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